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Abstract. The rapid advancement of AI technologies, particularly Large Language Models (LLMs), has 

sparked interest in their integration into Multi-Agent Systems (MAS). This holds substantial promise for 

applications such as smart homes, where it can significantly enhance user experience by optimizing comfort, 

energy efficiency, and security. Despite the potential benefits, the implementation of MAS based on LLMs 

faces several challenges, including the risks of hallucinations, scalability issues, and concerns about the 

reliability of these systems in real-world applications. This study explores the development of MAS 

incorporating LLMs, with a focus on mitigating hallucinations through the integration of formal logical models 

for knowledge representation and decision-making, along with other machine learning methods. To 

demonstrate the efficacy of this approach, we conducted experiments with a plant care module within a smart 

home system. The results show that our approach can significantly reduce hallucinations and enhance the 

overall reliability of the system. Further research will focus on refining these methods to enhance adaptability 

and scalability to ensure system’s functionality in real-world environments. 
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Аннотация. Стремительное развитие технологий искусственного интеллекта, в частности больших 

языковых моделей (LLM), вызвало интерес к их интеграции в мультиагентные системы (МАС). Это 

открывает широкие перспективы в том числе для приложений умного дома, где они могут значительно 

улучшить пользовательский опыт за счет комфорта, энергоэффективности и безопасности. Несмотря 

на потенциальные преимущества, реализация МАС на основе LLM сталкивается с рядом проблем, 

включая риск возникновения галлюцинаций, проблемы масштабируемости и опасения по поводу 

надежности этих систем в реальных приложениях. В данном исследовании рассматривается разработка 

МАС, включающих LLM, с акцентом на уменьшение галлюцинаций путем интеграции формальных 

логических моделей для представления знаний и принятия решений, а также методов машинного 

обучения. Чтобы продемонстрировать эффективность этого подхода, были проведены эксперименты с 

симуляцией системы ухода за растениями в контексте умного дома. Результаты показали, что наш 

подход позволяет значительно уменьшить количество галлюцинаций и повысить общую надежность 

системы. Дальнейшие исследования будут направлены на доработку этих методов с целью повышения 

адаптивности и масштабируемости для обеспечения функциональности системы в реальных условиях. 

Ключевые слова: мультиагентные системы; большие мультиагентные языковые модели LLM-MA; 

логика первого порядка; умный дом. 
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1. Introduction 

Multi-Agent Systems (MAS) are a well-established concept in the field of distributed artificial 

intelligence, developed to enable multiple autonomous agents to operate, interact, and make 

decisions within a shared environment. These systems are designed to tackle complex problems that 

are difficult or inefficient for a single agent to solve alone [1]. MAS have been applied across various 

domains, including smart homes, industrial automation, robotics, and environmental simulation.  

With the emergence of large language models (LLMs) and ongoing advancements in artificial 

intelligence, a trend has emerged toward integrating AI with MAS to enhance decision-making. As 

a result, the concept of LLM-MA (LLM Multi-Agent) has appeared – MAS that are either entirely 

based on LLM agents or incorporate LLMs. The relevance of such systems is supported by various 

studies showcasing their application in problem solving, world simulation, knowledge acquisition, 

and more [2]. 

However, since LLM-MA systems are based on LLMs, they inherit many of the same challenges: 

scalability issues, limited collaboration capabilities, and difficulty in assessing accuracy and 

reliability. The most significant problem is hallucination, which in MAS can lead to unpredictable 

behavior. Therefore, although LLMs can have a transformative impact on MAS development, many 

problems remain unsolved or only partially addressed, offering substantial opportunities for 

research. 
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In this paper, we focus on the integration of LLMs into MAS and the development of a hardware-

software system for automated plant care as part of a smart home MAS. The goals of this research 

are: (1) to describe a novel approach aimed at reducing the effect of LLM hallucinations in MAS, 

(2) to propose a MAS architecture designed for the same purpose, (3) to demonstrate how this 

approach can be applied in a real-world smart home scenario focused on plant care. 

The remainder of the paper is organized as follows: Section 2 introduces the methods underlying 

our approach. Section 3 and 4 detail the developed algorithms and the approach itself, showcasing 

a smart home plant-watering agent, its implementation, and experimental results. The final sections 

discuss the related work, results, and directions for future research. 

2. Key Concepts and Methods 

As mentioned previously, Multi-Agent Systems (MAS) are systems composed of agents – 

computational units designed to operate independently and efficiently in dynamic environments [3]. 

We can formalize the concept of a MAS and define it as a tuple: 

𝑀𝐴𝑆 =  (𝐴, 𝐸, 𝐼) 

Here A represents a set of agents, E – the environment, in which the system operates and I – a set of 

relationships between agents of MAS. 

An agent in a multi-agent system can be described in terms of its actions, perceived environmental 

changes, and its responses – i.e., actions performed in reaction to those changes: 

𝐴 =  (𝐸𝑛𝑣, 𝐴𝑐𝑡, 𝑅) 

 Env – the set of observations the agent can receive from the environment. 

 Act – the set of possible actions. 

 R – the reaction function 𝑅: 𝐸𝑛𝑣  𝐴𝑐𝑡, which determines the action the agent takes based 

on the environment. 

Agents may also possess internal states, and their actions can depend on these states. However, 

agents are generally considered reactive. 

When discussing LLM agents in MAS, the environment of such an agent is defined by its inputs: 

user prompt, system prompt (hidden prompt), embeddings, and configuration settings (e.g., 

temperature, max tokens). All these elements can be controlled. However, it is difficult to explicitly 

define the actions of an LLM agent in response to a specific environmental trigger. Therefore, to 

reduce the effect of hallucinations, we can only manipulate the agent’s environment. 

There are various machine learning methods developed to achieve this, as well as alternative 

approaches outside the ML domain – such as logical reasoning, which we will discuss later in this 

section. We will consider all relevant methods in the following subsections. 

2.1 Machine Learning Methods 

Many different machine learning methods have been developed to reduce hallucinations in LLMs. 

In this section, we will consider some of the most used approaches. 

 In-context Learning. 

This method encompasses all prompting techniques that involve providing the LLM with 

examples of similar tasks directly within the prompt. It is widely used due to its cost-

effectiveness and as an alternative to fine-tuning. 

There are various in-context learning techniques, such as few-shot learning, where several 

example input-output pairs are included in the prompt, and Chain-of-Thought (CoT) 

prompting [4], which encourages the LLM to describe its reasoning process and break the 

task into smaller, manageable steps. 
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 Multi-Agent Debate. 

This method is specifically designed to mitigate hallucinations or misconceptions through 

iterative discussions among multiple agents [5-6] (no fewer than two). The core idea is that 

the same question is posed across several iterations until the agents reach a consensus. Once 

agreement is achieved, the debate ends, and the final answer is accepted as the truth. 

However, this method is not always reliable. Depending on the model, one agent may be 

easily influenced by another, leading to biased or incorrect answers. To address this, 

knowledge bases are sometimes introduced into the debate. These are used by agents to 

support their responses, forcing the LLM to consider factual information before answering. 

This introduces a form of learning into the process (see Fig. 1). 

 

Fig. 1. Example of multi-agent debate scenario with and without the knowledge base [6]. 
 

Although the methods mentioned above help reduce hallucinations in LLM agents, the risk is not 

eliminated. In MAS, this issue is particularly critical, as most tasks require reasoning, and LLMs 

may struggle to provide coherent answers even for simple tasks [7]. For this reason, we introduce 

another method – an approach that has long been used prior to recent advancements in AI: logical 

reasoning. 

2.2 Logical Reasoning 

In addition to existing machine learning approaches, there is an alternative method in which LLMs 

are excluded from the reasoning process altogether to avoid hallucinations. Instead, reasoning is 

performed by matching goals with facts and rules in a structured knowledge base. This is achieved 

through logic-based agents, which use ontologies and apply the resolution method for logical 

inference. The knowledge is structured in the form of formal rules and relationships that agents can 

process to make decisions. This approach demonstrated improved accuracy and performance in 

question-answering tasks compared to popular LLMs such as GPT-4 [8]. 

In our current research on developing logic-based agents, we utilize Prolog. Prolog is well-suited 

for this task because it does not require step-by-step algorithmic instructions for reasoning; instead, 

it matches facts to rules using first-order logic. 
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Facts represent known truths. For example, in the case of a MAS for plant care, we can define that 

a humidity sensor is a sensor, it monitors humidity, and it is associated with a specific plant. This is 

demonstrated in Listing 1. 

plant(rose_1). 

sensor(humidity_sensor_1). 

monitors(humidity_sensor_1, humidity). 

connected_to(rose_1, humidity_sensor_1). 

Listing 1. Examples of facts in Prolog. 

Rules are logical statements that describe relationships between facts and allow the inference of new 

information. For example, we can define a predicate that states that a plant needs watering if the 

humidity level detected by the sensor connected to it is below the defined threshold (see Listing 2). 

needs_watering(Plant) :- 

    connected_to(Plant, Sensor), 

    monitors(Sensor, humidity), 

    current_humidity(Sensor, H), 

    humidity_threshold(Plant, T), 

    H < T. 

Listing 2. Example of a rule in Prolog. 

Prolog-based agents handle interactions from users or other agents through queries – essentially, 

questions the agent attempts to answer using its existing facts and rules. The reasoning process 

follows a depth-first search strategy, exploring possible solutions and backtracking when a chosen 

path does not lead to a valid answer. Failures occur when variable matching is unsuccessful, as 

Prolog depends on a unification mechanism to align query terms with the knowledge stored in its 

database. 

3. The Proposed Approach 

The core idea of our approach is that the impact of hallucinations from LLM agents on a MAS can 

be almost entirely eliminated by relying on logic-based agents for reasoning. In this setup, the LLM 

agent primarily functions as a user interface, acting as a bridge between the user and the system. 

Given that the agents within the MAS are based on Prolog logic, we propose the possibility of 

creating an LLM agent capable of generating Prolog queries from user input and directing them to 

the appropriate agent in the MAS for processing (see Fig. 2). 

 

Fig. 2. Generalized representation of the proposed LLM agent workflow. 
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3.1 Facts and Rules Extraction 

Since LLMs have demonstrated strong performance in various text-related tasks, such as semantic 

parsing and machine translation [9], we decided to employ an LLM-driven parsing approach to 

transform natural language into Prolog facts and rules. Although it is possible to use an LLM without 

any additional setup, we considered utilizing in-context learning and CoT to improve accuracy.  

The prompt given to the LLM follows a structured format that remains consistent across all queries, 

to ensure consistency and effectiveness. The prompt consists of the following components: 

 Instruction – An imperative statement that gives generalized description of the task. 

 Context – A set of ontology facts and rules that provide the necessary knowledge for 

accurate translation. 

 Example – A sample input and output demonstrating a similar task. 

 User Prompt – An input text string from the user to MAS. 

Algorithms that implement LLM-based parsing into logical statements have already been developed 

[10]. However, these methods share a common limitation: the user must provide the complete 

context for the LLM to accurately translate the query based on the available knowledge. We propose 

an alternative that avoids providing the entire ontology to the LLM, as doing so may degrade 

performance. Instead, we suggest using Retrieval-Augmented Generation (RAG) [11], particularly 

embeddings, which can effectively represent the ontology. This approach allows us to apply any 

ontology to our method, as popular ontology formats and Prolog can be converted into vector 

representations [12]. In future work, we plan to explore this by experimenting with different 

ontologies as knowledge representations for our agents. 

3.2 Correction Algorithm 

We need to ensure that the logical statements generated by the LLM agent are correct both in terms 

of meaning and syntax. To achieve this, we have developed a two-step algorithm that first verifies 

the meaning and then the syntax. To verify the meaning, we utilize the LLM-as-a-judge method, and 

implicitly previously mentioned multi-agent debate method. 

The first step of the algorithm involves two different LLMs: the first is the LLM agent that generates 

the Prolog query, and the second is a secondary LLM that acts as a judge to determine whether the 

generation is correct (see Algorithm 1). We can only proceed to the next step once the secondary 

LLM is satisfied with the generation. If the generation is deemed unsuccessful, the judge produces 

a response identifying the issue. The LLM agent will then repeat the generation, using both the user 

prompt and the error message from the judge as input. This process continues until the result is 

deemed satisfactory by the judge. 

It should be noted that there is a possibility of getting stuck in an infinite loop; however, we can 

limit the number of verification loops to avoid this. 

The second step of the algorithm involves syntax checking. The LLM agent can have a built-in 

Prolog compiler to perform this check, or it can delegate the task to another agent. In our example, 

the LLM agent utilizes the compiler (see Algorithm 2) and attempts to execute the code. If the code 

is not executable, we must repeat step 1 of the algorithm. 

3.3 Safe Reasoning 

Although we suggest that the Prolog statements generated by the LLM agent are syntactically correct 

and use terms available in the ontology, we cannot guarantee that the LLM agent will not generate 

statements that are unsafe to execute. To address this, we developed a Safety-Reasoning Agent 

(SRA). This agent is responsible for maintaining an ontology of safety rules, all of which must be 

satisfied at any given time within the system. It ensures that the execution of a command or the 

introduction of a new fact does not violate these safety rules. 
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We must ensure that commands are executed only if they are deemed safe. Therefore, before 

interacting with any agent, the LLM agent must consult the Safety-Reasoning Agent (see Fig. 3). 

The SRA's role is to check the statement generated by the LLM agent against the safe ontology, 

which is separate from other MAS ontologies. This is a novel approach to creating a logic-based 

observer agent for MAS that use LLMs, although it is rooted in earlier ideas [13-14]. 
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To demonstrate this approach and the MAS architecture in action, we developed an example of a 

plant care subsystem for a smart-home system’s MAS. This is illustrated in Figure 4, which shows 

several logical agents, an LLM agent that acts as a supervisor, and a safety-reasoning agent. 
 

 

Fig. 3. MAS architecture after the introduction of the safety-reasoning agent 

 

Fig. 4. Example of MAS for plant watering scenario 

The process starts with the LLM, which generates commands (or queries) based on user input, and 

these commands are later executed by MAS agents. The algorithm for generating these commands 

is outlined in Section 3.2. In our approach, the LLM is supported by an LLM agent, which is tasked 

with implementing the algorithm. Additionally, the LLM agent functions as a communication 

facilitator, enabling the exchange of messages (including executable commands) with the 

appropriate agents. 

The remainder of the system can employ actuators or reasoning agents as needed. The MAS benefits 

from agents built on formal logic models, enabling reasoning without the hallucinations often 

encountered with LLMs. Agents can either share a common ontology or work with their own 

individual ones. However, we suggest maintaining a shared ontology for facts while defining rules 

within each agent separately. 
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4. Experiments 

We have proposed a method for integrating LLM agents with logic-based agents in MAS. The next 

step is to assess the accuracy of the LLM agent to determine if it introduces hallucinations. We also 

plan to evaluate the efficiency of the algorithm outlined in Section 3.2. Additionally, we will run the 

same scenarios with and without the safety-reasoning agent to observe its impact on execution speed. 

In this chapter, we present a simple MAS example that incorporates an LLM agent designed 

according to our approach. The system demonstrates a subsystem for a smart home, specifically 

focusing on plant watering. A schematic representation of the system is shown in Figure 4. 

4.1 Overview 

The MAS incorporates several Prolog-based actuator agents that share the same ontology and update 

it when changes occur in the environment: 

 Soil Humidity Sensor (H) – Responsible for monitoring and handling changes in soil 

humidity. There are several agents, each connected with its own plant. 

 Temperature sensor (T) – Reacts to changes in the air temperature. 

Additionally, there is a reasoning plant-watering agent (W), which manages turning the turning 

on/off of the watering. To achieve this, it utilizes decision-making: the plant should be watered only 

when the soil humidity is low, and the temperature exceeds the minimum required for watering. 

should_water(Plant) :- 

    soil_moisture(Plant, low), 

    temperature(Plant, Temp), 

    min_temp_for_watering(Plant, MinTemp), 

    Temp >= MinTemp.   

Listing 3. Plant watering rule. 

We utilize OpenAI's GPT-4 which is accessed by the LLM agent. When a query is received, the 

LLM agent relays it to the Safety Reasoning Agent (SRA), which assesses whether the query can be 

safely executed. In our scenario, activating the watering system is deemed safe as long as the 

maximum soil humidity level has not been exceeded. If this condition is met, the LLM agent then 

sends the command directly to the physical watering agent. 

4.2 Scenarios Testing 

To evaluate the system's performance, we implemented the SRA, W, T, and H agents in Prolog, as 

described earlier. For the LLM agent, we created a separate Python script that generates a text 

embedding based on the ontology's classes, relations, and properties. The script processes user input, 

constructs a prompt, and sends it to the OpenAI API. The Prolog query is then extracted using the 

algorithms outlined in Section 3.2. This query is executed by the Prolog agents, which return either 

the result or an error if the query cannot be processed. 

We conducted several tests, including: 

1) Triggering an actuator (H agent, T agent). 

2) Calling the reasoning W agent to control watering (on/off). 

3) Retrieving knowledge from the ontology. 

4) Modifying the ontology. 

An example of the test output for the plant watering scenario is provided in Listing 4. 

We measured execution times for all scenarios in two variations: (1) when SRA was present in the 

system, (2) when it was not included in the scenario to see whether it will significantly affect the 

execution time. The results are presented in Tables 1 and 2. 
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User Input: 

"Water the ficus, please" 

Attempt 1: Generated Prolog Query: 

execute_watering(ficus). 

Generation time: 0.7765 seconds 

Validation time: 3.1058 seconds 

Query is valid, sending to Prolog server 

Response from Prolog server:  

{ 

    'status': 'success',  

    'result': 'watering_module_1  

               is watering ficus.\n 

               Moisture is now medium  

               for ficus.\n' 

} 

Prolog execution time: 0.5929 seconds 

Total execution time: 4.4753 seconds 

Listing 4. Example of an output of the testing program. 

Table 1. Test of Query Generation. 

Scenario № Generation Time, s Validation Time, s 

1 1.7311 9.1456 

2 0.7765 3.1058 

3 1.5481 7.2752 

4 1.4584 0.6220 
 

Table 2. Execution Time Test. 

Scenario № Without SRA, s With SRA, s 

1 0.5919 0.5955 

2 0.5911 0.5929 

3 0.5921 0.5931 

4 0.5913 0.5918 
 

We observed that the execution time difference with and without the SRA was minimal, the Prolog 

execution time overall was consistently under 0.6 seconds. Additionally, in this example the system 

demonstrated 100% accuracy in constructing Prolog queries, effectively mitigating hallucination 

issues. However, this comes at a significant time cost: while generating the initial query takes about 

1 second (thanks to embeddings), the evaluation process can take over 9 seconds, which depends on 

the complexity and length of the query. 

4.3 Simulations Comparison 

After implementing the test version of the system and conducting the initial evaluation, the following 

questions also needed to be answered: 

1. Does the proposed approach really reduce the effect of hallucinations on MAS? 

2. Is it possible to block the hallucinatory actions of the LLM agent? 
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3. Will it be possible to compensate for the small number of LLM model parameters by using 

the proposed approach? 

To answer each of these questions, two systems (with and without using the proposed approach) 

were developed to model a MAS that simulates a greenhouse, its environment and the system 

controlling its agents. 

System #1 (see Fig. 5) does not utilize the approach developed in the study. It includes sensor agents: 

 Soil Humidity Sensor – an agent responsible for monitoring changes in soil moisture. 

Several such agents may be present in the system, each associated with a different plant. 

 Soil Temperature Sensor – an agent responsible for monitoring changes in soil temperature. 

Several such agents may be provided in the system, each associated with a different plant. 

 Air Temperature Sensor – an agent responsible for responding to changes in air 

temperature. 

 Air Humidity Sensor – an agent responsible for monitoring changes in air humidity.  

 Carbon Dioxide (CO2) Sensor – an agent responsible for monitoring changes in the level 

of carbon dioxide in the air (percentage). 

 

Fig. 5. Representation of a greenhouse simulation. Suggested approach is not implemented. 
 

The state of the greenhouse environment is simulated by sensor agents, as well as a time agent that 

updates the time within the system, the time of day in the simulation (morning, day, evening, night). 

The indicators of the external environment (humidity, temperature) can be influenced by action 

agents: 

 Heater – an agent responsible for turning the heating on and off. It simulates power 

consumption and updates the air temperature value. 

 Watering – an agent responsible for turning watering on and off. It simulates water 

consumption and updates the soil humidity value.  

 Vent – an agent responsible for turning ventilation on and off. Simulates electricity 

consumption and updates the value of carbon dioxide level in the air. 

These agents switch between two states – activation and deactivation. In active mode, the agents 

change the value of a certain environmental parameter at regular intervals (set within the agent) until 

they are stopped. To control the action agents, an LLM agent is included in the system. Its task is to 
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decide on the activation/deactivation of the action agent depending on the state of the environment 

broadcast by the sensor agents. Thus, in this case, the agents of the system do not reason, but only 

perform actions at the request of the LLM agent. 

Logging to .csv files was implemented to track changes within the system. Each record contains 

information necessary for analysis (see Table 3), as well as for working with process mining tools 

(such as ProM or pm4py). One log file record contains information about the day number within the 

simulation (case_id), time, environment parameters (air temperature and humidity, soil temperature, 

etc.), amount of consumed water and electricity, the event that occurred, and which agent caused it. 

System #2 (see Fig. 6) utilizes the approach developed in the study. The MAS includes sensor agents 

similar to System #1, as well as an LLM agent that redirects requests from the sensor agents to the 

action agents. However, in this case, the LLM agent is not responsible for making the final decision 

as to which agent will be activated. Action agents in this case are Prolog-agents that check the state 

of the system regarding facts that will result in an agent not being switched without explicitly stating 

so in the ontology. For example, a plant watering agent that controls the on/off of watering uses the 

rule from Listing 3: a plant should only be watered when the soil moisture is low, and the temperature 

is above the minimum required for watering. 

The GPT-4 model from OpenAI was used in the MAS implementation, access to which was granted 

to the LLM agent. It should be noted that the LLM agent was implemented similarly to the one 

presented in Section 4.1. 

The difference between the LLM agent of System #2 and System #1 is also that when a response 

with a command is received from the LLM, the LLM agent passes it to the Safety Reasoning Agent 

(SRA), which performs a check whether the request can be safely executed. In our scenario, 

activation of the irrigation system is considered safe as long as the maximum soil moisture level is 

not exceeded. If this condition is met, the LLM agent sends the command directly to the logical 

irrigation agent. It is worth noting that both System #1 and System #2 use the same ontology, i.e., 

the agent behavior constraints are defined in the same way. 

Table 3. Example of a fragment of the simulation system log file. 

case_id time day air_t air_hum co2 soil_t soil_h electr water triggered_by event_type timestamp 

1 00:04 
LATE_ 

NIGHT 
12 42 30 18 40 0.0 0.0 air_temperature_1 

SENSOR_AIR_ 

TEMPERATURE 

_stable 

23.05.2025 

01:19:29 

… 

1 04:46 
EARLY_ 

MORNING 
20 52 26 12 93 7000 4248.3 ACTOR_VENT 

ACTOR_VENT 

_active 

23.05.2025 

01:24:11 

1 04:53 
EARLY_ 

MORNING 
14 53 26 8 94 7000 4414.9 

ACTOR_ 

WATERING 

ACTOR_ 

WATERING 

_active 

23.05.2025 

01:24:18 

… 

2 10:41 MORNING 19 46 10 17 97 49250 32820.19 soil_humidity_1 

SENSOR_SOIL_ 

HUMIDITY 

_decrease 

23.05.2025 

01:54:14 

2 10:42 MORNING 25 46 10 21 92 49500 32820.19 
ACTOR_ 

HEATER 

ACTOR_HEATER 

_active 

23.05.2025 

01:54:15 

2 10:44 MORNING 25 46 10 19 100 49500 32903.49 
ACTOR_ 

WATERING 

ACTOR_ 

WATERING 

_active 

23.05.2025 

01:54:17 

… 

3 00:38 
LATE_ 

NIGHT 
17 57 42 16 97 70625 43565.9 carbon_1 

SENSOR_CO2 

_increase 

23.05.2025 

02:08:16 
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Fig. 6. Representation of a greenhouse simulation. Suggested approach is implemented. 
 

As part of testing, the implemented MASs were run, simulating changes in the external environment 

and greenhouse agents. The log files were collected and analyzed. As a result, the question of 

reducing the effect of hallucinations on MAS can be looked at from different perspectives: 

 From the point of view of occurrence of undesirable actions – in this case it is necessary to 

check that agents in both systems do not allow dangerous actions (such actions are marked 

in the ontology). 

 From the point of view of energy efficiency of the whole system – in this case it is necessary 

to consider what impact the system has on water and electricity consumption. 

As a result of analyzing the log files, it was revealed that System #1 allowed actions that can be 

characterized as “dangerous”. Also, a number of actions that were inefficient in terms of resource 

consumption were identified (for example, switching on the ventilation and irrigation agent occurred 

when the values were within the acceptable level). System #2 allowed a different number of 

“dangerous” actions in each test run, but this number was lower than for System #1. Also, during 

the testing of System #2 no actions of the agents that were not justified by the environmental factors 

were observed.  

Both systems were also tested with different variations of LLMs connected to the agent LLM 

(variations of gpt-3 and gpt-4). Regardless of the LLM configuration, System #2 proved to be more 

energy efficient and safer compared to the system without logical agents. 

5. Developing the Hardware 

Currently, we are exploring the possibility of creating a real-life prototype of a smart home system 

based on our approach. To facilitate this, we have developed a watering device. The hardware 

subsystem is built on the Raspberry Pi Pico W board, which features the RP2040 microcontroller 

and provides network interaction with the server part via the built-in Wi-Fi module. Figure 7 shows 

a schematic diagram of the device, which includes the following components: 

 Raspberry Pi Pico W microcontroller – the central component of the system, responsible 

for data processing, controlling connected devices, and networking. 

 Servo actuator – controls the water supply process. 

 Soil moisture sensor – provides data for analyzing the condition of the crop environment. 
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 LED – serves as a visual indicator of the device's status. 

 Power supply – ensures the stable operation of the device. 

The idea is for soil moisture sensor to continuously check the moisture content of the soil, sending 

the data to the server. When the moisture level falls below the preset threshold, the LLM agent 

should trigger the watering process, activating the servo actuator to release water to the plants. 

Afterward, the device checks the moisture level again to determine if the required watering amount 

has been reached. 

Currently, the device allows users to remotely monitor and control the watering system, providing 

an interface for manual intervention if needed. In future iterations, we plan to enhance the system's 

capabilities by incorporating more advanced features, such as adaptive watering schedules based on 

weather forecasts or plant types, integrating additional sensors. 

 

Fig. 7. The schema of plant watering device. 

6. Related Works 

This paper investigates the potential to fully eliminate the risk of hallucinations. To achieve this, 

reasoning in the agents is carried out by aligning their goals with facts and rules from a structured 

knowledge base. This method has proven effective and has been successfully used in the 

development of chatbots to enhance creativity and maintain focus on specific topics [8]. The 

combination of logic and ontologies has also been shown to improve accuracy and efficiency in 

tasks like question answering, outperforming popular LLMs [15]. While this paper focuses on 

Prolog ontologies and Prolog-based agents, it's important to note that the same approach can be 

implemented using other declarative programming languages, such as ASP (Answer Set 

Programming) [16]. 

Though the combination of LLMs and logic is a well-explored area with various applications [17-

18] limited research has been conducted in the context of multi-agent systems (MAS). Our work 

places particular emphasis on ensuring system safety by introducing a safety-reasoning agent. A 

similar concept has been explored in previous studies [13-14], showing that although these works 

are not recent, their foundational ideas can still be adapted and applied today. 

7. Future Work 

In future research, we plan to explore additional MAS architectures and configurations to broaden 

the applicability of our approach. We will also investigate the algorithms for the dynamic enrichment 

of ontologies, allowing for more adaptive knowledge representation. As part of our ongoing work, 
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we intend to further develop the smart-home system based on the principles outlined in this paper. 

This will involve refining and optimizing the algorithms we've designed to improve their 

performance and scalability, ensuring that our solution can handle more complex scenarios and 

larger-scale implementations. Additionally, there is a big potential to explore new techniques such 

as real-time learning and cross-agent collaboration, to enhance the system's capabilities and 

efficiency. 

8. Conclusion 

In this paper, we introduced a novel approach for integrating Large Language Models (LLMs) into 

Multi-Agent Systems (MAS) with a focus on minimizing the risks of hallucinations and enhancing 

system safety. Our method leverages LLMs primarily for the transformation of natural language into 

logical statements, while the decision-making process is carried out by predicate logic agents. To 

ensure the correctness of the generated logical statements, we developed a two-step algorithm that 

incorporates meaning verification and syntax checking. Additionally, we introduced a Safety-

Reasoning Agent (SRA), which ensures that only safe actions are executed within the system. 

Our results, demonstrated in a smart home automation scenario focused on plant care. The developed 

two-step algorithm for generating Prolog logic statements from natural language proved successful 

in reducing hallucinations and ensuring the correctness of the generated code. The incorporation of 

the Safety-Reasoning Agent strengthened the system by preventing unsafe actions. Despite the 

promising results, the system's validation process remains computationally intensive, suggesting a 

need for further optimization in future work in terms of scalability. 

We believe that this approach holds significant potential for application in other Multi-Agent 

Systems, particularly in the context of smart homes, where the integration of LLMs can improve 

user experience. The inclusion of a Safety-Reasoning Agent introduces an additional layer of 

reliability, which is crucial for environments where human safety and security are of the primary 

importance. 
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