Tpyowr UCIT PAH, mom 37, evin. 4, uacme 2, 2025 2. /| Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025

DOI: 10.15514/ISPRAS-2025-37(4)-28 tOC-EH

Combining Logical Reasoning and LLMs Toward
Creating Multi-Agent Smart Home Systems

L. Rezunik, ORCID: 0009-0000-9428-4718 <lrezunik@hse.ru >
M.A. Prozorskiy, ORCID: 0009-0006-9250-7280 <mprozorskiy@hse.ru>
D.V. Alexandrov, ORCID: 0000-0002-9759-8787 <dvalexandrov@hse.ru>

HSE University,
11, Pokrovsky boulevard, Moscow, 109028, Russia.

Abstract. The rapid advancement of Al technologies, particularly Large Language Models (LLMSs), has
sparked interest in their integration into Multi-Agent Systems (MAS). This holds substantial promise for
applications such as smart homes, where it can significantly enhance user experience by optimizing comfort,
energy efficiency, and security. Despite the potential benefits, the implementation of MAS based on LLMs
faces several challenges, including the risks of hallucinations, scalability issues, and concerns about the
reliability of these systems in real-world applications. This study explores the development of MAS
incorporating LLMs, with a focus on mitigating hallucinations through the integration of formal logical models
for knowledge representation and decision-making, along with other machine learning methods. To
demonstrate the efficacy of this approach, we conducted experiments with a plant care module within a smart
home system. The results show that our approach can significantly reduce hallucinations and enhance the
overall reliability of the system. Further research will focus on refining these methods to enhance adaptability
and scalability to ensure system’s functionality in real-world environments.

Keywords: multi-agent system; LLM-MA,; first order logic; smart home.

For citation: Rezunik L., Prozorskiy M.A., Alexandrov D. V. Combining Logical Reasoning and LLMs
Toward Creating Multi-Agent Smart Home Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, paet 2,
2025, pp. 219-234. DOI: 10.15514/ISPRAS-2025-37(4)-28.

Acknowledgements. This work is an output of a research project implemented as part of the Basic Research
Program at the National Research University Higher School of Economics (HSE University).

219

Rezunik L., Prozorskiy M.A., Alexandrov D.V. Combining Logical Reasoning and LLMs Toward Creating Multi-Agent Smart Home
Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 219-234.

KombuHupoBaHue nornyeckux paccyxaeHmn u LLM Ha nyTu K
CO34aHUI0 MYNbTUAreHTHbIX CUCTEM YMHOro AomMa

JI. Pesynux, ORCID: 0009-0000-9428-4718 <Irezunik@hse.ru >
M.A. Iposopckuii, ORCID: 0009-0006-9250-7280 <mprozorskiy@hse.ru>
H.B. Anexcanopos, ORCID: 0000-0002-9759-8787 <dvalexandrov@hse.ru>

Hayuonanwuwiil uccnedosamensckuil ynugepcumem « Boicuias wikona s3koHOMUKuy,
Poccus, 109028, 2. Mockea, Ilokpoeckuii 6yxn., 11, cmp. 10.

AHHoTanus. CTpeMUTENIbHOS Pa3BUTHE TEXHOJOTHH MCKYCCTBEHHOTO MHTEIUICKTA, B YaCTHOCTH OOJIBLINX
SI3BIKOBBIX Mogenel (LLM), BeI3Bano uHTEpec K MX MHTErpaluy B MyjibTHareHTHble cucteMsl (MAC). Dto
OTKpHIBaeT IIHPOKHE IIEPCIIEKTHBEI B TOM YHCIIE JUTS IIPHIOKEHUH YMHOTO JIOMa, T/Ie OHU MOTYT 3HAYUTEIHHO
YIIy4IINTH TOJIB30BATENIBCKHI OIBIT 3a cdeT koMmdopTa, sHeprodpdexkruBHOCTH U Oe3onmacHocTH. HecMoTpst
Ha IOTEHIUaJbHBIe IpenMmyInecTBa, peamm3anus MAC Ha ocHoBe LLM crankuBaercs ¢ psgoM mpoGiem,
BKJIIOYAs PHCK BO3HMKHOBEHHS TaJUTIONMHALMH, MpOOJIeMBbl MacmTaOMPYyeMOCTH M OIACEHUS II0 HMOBOIY
HaJIeKHOCTH 9TUX CHCTEM B PEalIbHBIX IPHIIOKEHUSX. B TaHHOM HCClieJOBaHUH paccMaTpUBAaeTCs pa3padoTKa
MAC, Bxmouaromux LLM, ¢ akiieHTOM Ha yMEHBIICHHE TaJUTIOLUHALUNA ITyTeM MHTETrpanuu HopMaIbHBIX
JIOTHYECKHUX MOJCNCH M NPEACTABICHHS 3HAHUH M IPHHATHSA PELICHUH, a TaKKe METOIOB MAIIWHHOTO
00y4enus. UToObI IpoIeMOHCTPUPOBATh 3P PEKTUBHOCTH ATOTO MOAX0/a, OBUIM MPOBEACHBI IKCTIEPUMEHTHI C
CHMYJIALMEH CHCTEMBI yXOJa 3a PACTEHHSIMH B KOHTEKCTE YMHOTO JoMa. Pe3ynpTaThl MOKas3ajid, YTO HAII
MIOAXOJ TI03BOJISIET 3HAYUTEIBHO YMEHBIINTD KOJIWYECTBO TALTIOIMHALUK M HOBBICUTH OOLIYIO HaJeKHOCTD
cucteMsl. JlanpHeiIe ueceJoBaHus OyIyT HalpaBiIeHbl Ha JOpabOTKY 9THX METOMOB C LEIbIO TTOBBIIICHHS
aJalITUBHOCTH M MaCIITaOUPYyEeMOCTH JUTsl oOecrieueHus! HyHKIMOHAIBHOCTH CUCTEMBI B PEaIbHBIX YCIOBHSX.

KiioueBble ¢10Ba: MyJIbTHAar€HTHBIE CHCTEMBI; OOJBIINE MYJIbTHAreHTHBIE S3bIKOBBIE Monenu LLM-MA;
JIOTHKA [IEPBOTO MOPSAKA; YMHBII JOM.

Jas nurupoBanusi: Pesynux JI., Ilposopckuit M.A., Anexcangpos /[.B. KomOuHMpOBaHHE JTOrHYECKUX
paccyxaenuii u LLM Ha myTH K cO3IaHHIO MyJIbTHATEHTHBIX cucTeM yMHOro aoma. Tpyast UCIT PAH, Tom
37, Boim. 4, yacts 2, 2025 r., ctp. 219-234 (na anrnuiickoM si3pike). DOI: 10.15514/ISPRAS-2025-37(4)-28.

Baaromapnocrn. JlanHas paboTa sSBISETCS Pe3yIbTaTOM HMCCIENOBATENBCKOTO MPOEKTa, PEaln30BaHHOTO B
pamkax [Iporpammsl GpyHAaMeHTaNbHBIX HecnenoBanuii HUY BIID.

1. Introduction

Multi-Agent Systems (MAS) are a well-established concept in the field of distributed artificial
intelligence, developed to enable multiple autonomous agents to operate, interact, and make
decisions within a shared environment. These systems are designed to tackle complex problems that
are difficult or inefficient for a single agent to solve alone [1]. MAS have been applied across various
domains, including smart homes, industrial automation, robotics, and environmental simulation.
With the emergence of large language models (LLMs) and ongoing advancements in artificial
intelligence, a trend has emerged toward integrating Al with MAS to enhance decision-making. As
a result, the concept of LLM-MA (LLM Multi-Agent) has appeared — MAS that are either entirely
based on LLM agents or incorporate LLMSs. The relevance of such systems is supported by various
studies showcasing their application in problem solving, world simulation, knowledge acquisition,
and more [2].

However, since LLM-MA systems are based on LLMs, they inherit many of the same challenges:
scalability issues, limited collaboration capabilities, and difficulty in assessing accuracy and
reliability. The most significant problem is hallucination, which in MAS can lead to unpredictable
behavior. Therefore, although LLMs can have a transformative impact on MAS development, many
problems remain unsolved or only partially addressed, offering substantial opportunities for
research.

220

Pesynuk JI., [Iposzopckuit M.A., Anexcanapos J1.B. KomGunupoBauue norndeckux paccyxaenuii 1 LLM Ha myTH K co3aaHuio
MYJIBTHATEHTHBIX CHCTEM YMHOTO foma. Tpyoer UCIT PAH, 2025, Tom 37 Beim. 4, yacts 2, ¢. 219-234.

In this paper, we focus on the integration of LLMs into MAS and the development of a hardware-
software system for automated plant care as part of a smart home MAS. The goals of this research
are: (1) to describe a novel approach aimed at reducing the effect of LLM hallucinations in MAS,
(2) to propose a MAS architecture designed for the same purpose, (3) to demonstrate how this
approach can be applied in a real-world smart home scenario focused on plant care.

The remainder of the paper is organized as follows: Section 2 introduces the methods underlying
our approach. Section 3 and 4 detail the developed algorithms and the approach itself, showcasing
a smart home plant-watering agent, its implementation, and experimental results. The final sections
discuss the related work, results, and directions for future research.

2. Key Concepts and Methods

As mentioned previously, Multi-Agent Systems (MAS) are systems composed of agents —
computational units designed to operate independently and efficiently in dynamic environments [3].
We can formalize the concept of a MAS and define it as a tuple:

MAS = (AE,I)

Here A represents a set of agents, E — the environment, in which the system operates and | — a set of
relationships between agents of MAS.

An agent in a multi-agent system can be described in terms of its actions, perceived environmental
changes, and its responses — i.e., actions performed in reaction to those changes:

A = (Env,Act,R)

e Env - the set of observations the agent can receive from the environment.
e Act — the set of possible actions.

e R —the reaction function R: Env — Act, which determines the action the agent takes based
on the environment.

Agents may also possess internal states, and their actions can depend on these states. However,
agents are generally considered reactive.

When discussing LLM agents in MAS, the environment of such an agent is defined by its inputs:
user prompt, system prompt (hidden prompt), embeddings, and configuration settings (e.g.,
temperature, max tokens). All these elements can be controlled. However, it is difficult to explicitly
define the actions of an LLM agent in response to a specific environmental trigger. Therefore, to
reduce the effect of hallucinations, we can only manipulate the agent’s environment.

There are various machine learning methods developed to achieve this, as well as alternative
approaches outside the ML domain — such as logical reasoning, which we will discuss later in this
section. We will consider all relevant methods in the following subsections.

2.1 Machine Learning Methods

Many different machine learning methods have been developed to reduce hallucinations in LLMs.
In this section, we will consider some of the most used approaches.

e In-context Learning.

This method encompasses all prompting techniques that involve providing the LLM with
examples of similar tasks directly within the prompt. It is widely used due to its cost-
effectiveness and as an alternative to fine-tuning.

There are various in-context learning techniques, such as few-shot learning, where several
example input-output pairs are included in the prompt, and Chain-of-Thought (CoT)
prompting [4], which encourages the LLM to describe its reasoning process and break the
task into smaller, manageable steps.

221

Rezunik L., Prozorskiy M.A., Alexandrov D.V. Combining Logical Reasoning and LLMs Toward Creating Multi-Agent Smart Home
Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 219-234.

e Multi-Agent Debate.

This method is specifically designed to mitigate hallucinations or misconceptions through
iterative discussions among multiple agents [5-6] (no fewer than two). The core idea is that
the same question is posed across several iterations until the agents reach a consensus. Once
agreement is achieved, the debate ends, and the final answer is accepted as the truth.
However, this method is not always reliable. Depending on the model, one agent may be
easily influenced by another, leading to biased or incorrect answers. To address this,
knowledge bases are sometimes introduced into the debate. These are used by agents to
support their responses, forcing the LLM to consider factual information before answering.
This introduces a form of learning into the process (see Fig. 1).

Question: On what date in 1969 did Neil Armstrong first set foot on the moon?

[= ~ '
: n_ The answer is [July 11, 1969]. The answer is [July 20, 1969]. ‘«*" 1
] 1
3T A— . Agent2 |
| @ g
i - . . 5

| The answer is [July 11, 1969]. The answer is [July 11, 1969]. | |
| !
\ Agent 1 Round 2 Agent 2 i

(1
i I don't need knowledge. L Knowledge [1], [3] can :
' = help me. 1
: - Shared Knowledge Pool ~ :
1 2 e) . "
i n The answer is [July 11, 1969]. The answer is [July 20, 1969]. ;* d !
'
T Aeerm————— e S ——————— Agent2 |
1 1
! Knowledge [1], [2] is == Knowledge [1], [3] can :
: helpful. = help me. 1
1 Shared Knowledge Pool !
[A
. = The other agent is correct. The I don’t agree the other agent. ‘&‘4 1
i n answer is [July 20, 1969]. The answer is [July 20, 1969]. -
" Agent 1 Round 2 Agent2 |

(b) Adaptively introducing shared knowledge into debates.

Fig. 1. Example of multi-agent debate scenario with and without the knowledge base [6].

Although the methods mentioned above help reduce hallucinations in LLM agents, the risk is not
eliminated. In MAS, this issue is particularly critical, as most tasks require reasoning, and LLMs
may struggle to provide coherent answers even for simple tasks [7]. For this reason, we introduce
another method — an approach that has long been used prior to recent advancements in Al: logical
reasoning.

2.2 Logical Reasoning

In addition to existing machine learning approaches, there is an alternative method in which LLMs
are excluded from the reasoning process altogether to avoid hallucinations. Instead, reasoning is
performed by matching goals with facts and rules in a structured knowledge base. This is achieved
through logic-based agents, which use ontologies and apply the resolution method for logical
inference. The knowledge is structured in the form of formal rules and relationships that agents can
process to make decisions. This approach demonstrated improved accuracy and performance in
question-answering tasks compared to popular LLMs such as GPT-4 [8].

In our current research on developing logic-based agents, we utilize Prolog. Prolog is well-suited
for this task because it does not require step-by-step algorithmic instructions for reasoning; instead,
it matches facts to rules using first-order logic.

222

Pesynuk JI., [Iposzopckuit M.A., Anexcanapos J1.B. KomGunupoBauue norndeckux paccyxaenuii 1 LLM Ha myTH K co3aaHuio
MYJIBTHATEHTHBIX CHCTEM YMHOTO foma. Tpyoer UCIT PAH, 2025, Tom 37 Beim. 4, yacts 2, ¢. 219-234.

Facts represent known truths. For example, in the case of a MAS for plant care, we can define that
a humidity sensor is a sensor, it monitors humidity, and it is associated with a specific plant. This is
demonstrated in Listing 1.

plant(rose_1).

sensor(humidity_sensor_1).

monitors(humidity_sensor_1, humidity).

connected_to(rose_1, humidity_sensor_1).

Listing 1. Examples of facts in Prolog.

Rules are logical statements that describe relationships between facts and allow the inference of new
information. For example, we can define a predicate that states that a plant needs watering if the
humidity level detected by the sensor connected to it is below the defined threshold (see Listing 2).
needs_watering(Plant) :-

connected_to(Plant, Sensor),

monitors(Sensor, humidity),

current_humidity(Sensor, H),

humidity_threshold(Plant, T),

H<T.

Listing 2. Example of a rule in Prolog.

Prolog-based agents handle interactions from users or other agents through queries — essentially,
questions the agent attempts to answer using its existing facts and rules. The reasoning process
follows a depth-first search strategy, exploring possible solutions and backtracking when a chosen
path does not lead to a valid answer. Failures occur when variable matching is unsuccessful, as
Prolog depends on a unification mechanism to align query terms with the knowledge stored in its
database.

3. The Proposed Approach

The core idea of our approach is that the impact of hallucinations from LLM agents on a MAS can
be almost entirely eliminated by relying on logic-based agents for reasoning. In this setup, the LLM
agent primarily functions as a user interface, acting as a bridge between the user and the system.
Given that the agents within the MAS are based on Prolog logic, we propose the possibility of
creating an LLM agent capable of generating Prolog queries from user input and directing them to
the appropriate agent in the MAS for processing (see Fig. 2).

user input

@' deepseek l

redirecting Logic-Based
LLM <«——> LLM-Agent Agent 1
Shared
Ontology

logic statement
generation

Fig. 2. Generalized representation of the proposed LLM agent workflow.

223

Rezunik L., Prozorskiy M.A., Alexandrov D.V. Combining Logical Reasoning and LLMs Toward Creating Multi-Agent Smart Home
Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 219-234.

3.1 Facts and Rules Extraction

Since LLMs have demonstrated strong performance in various text-related tasks, such as semantic
parsing and machine translation [9], we decided to employ an LLM-driven parsing approach to
transform natural language into Prolog facts and rules. Although it is possible to use an LLM without
any additional setup, we considered utilizing in-context learning and CoT to improve accuracy.
The prompt given to the LLM follows a structured format that remains consistent across all queries,
to ensure consistency and effectiveness. The prompt consists of the following components:

e Instruction — An imperative statement that gives generalized description of the task.

e Context — A set of ontology facts and rules that provide the necessary knowledge for
accurate translation.

e Example — A sample input and output demonstrating a similar task.
e User Prompt — An input text string from the user to MAS.

Algorithms that implement LLM-based parsing into logical statements have already been developed
[10]. However, these methods share a common limitation: the user must provide the complete
context for the LLM to accurately translate the query based on the available knowledge. We propose
an alternative that avoids providing the entire ontology to the LLM, as doing so may degrade
performance. Instead, we suggest using Retrieval-Augmented Generation (RAG) [11], particularly
embeddings, which can effectively represent the ontology. This approach allows us to apply any
ontology to our method, as popular ontology formats and Prolog can be converted into vector
representations [12]. In future work, we plan to explore this by experimenting with different
ontologies as knowledge representations for our agents.

3.2 Correction Algorithm

We need to ensure that the logical statements generated by the LLM agent are correct both in terms
of meaning and syntax. To achieve this, we have developed a two-step algorithm that first verifies
the meaning and then the syntax. To verify the meaning, we utilize the LLM-as-a-judge method, and
implicitly previously mentioned multi-agent debate method.

The first step of the algorithm involves two different LLMs: the first is the LLM agent that generates
the Prolog query, and the second is a secondary LLM that acts as a judge to determine whether the
generation is correct (see Algorithm 1). We can only proceed to the next step once the secondary
LLM is satisfied with the generation. If the generation is deemed unsuccessful, the judge produces
a response identifying the issue. The LLM agent will then repeat the generation, using both the user
prompt and the error message from the judge as input. This process continues until the result is
deemed satisfactory by the judge.

It should be noted that there is a possibility of getting stuck in an infinite loop; however, we can
limit the number of verification loops to avoid this.

The second step of the algorithm involves syntax checking. The LLM agent can have a built-in
Prolog compiler to perform this check, or it can delegate the task to another agent. In our example,
the LLM agent utilizes the compiler (see Algorithm 2) and attempts to execute the code. If the code
is not executable, we must repeat step 1 of the algorithm.

3.3 Safe Reasoning

Although we suggest that the Prolog statements generated by the LLM agent are syntactically correct
and use terms available in the ontology, we cannot guarantee that the LLM agent will not generate
statements that are unsafe to execute. To address this, we developed a Safety-Reasoning Agent
(SRA). This agent is responsible for maintaining an ontology of safety rules, all of which must be
satisfied at any given time within the system. It ensures that the execution of a command or the
introduction of a new fact does not violate these safety rules.

224

Pesynuk JI., [Iposzopckuit M.A., Anexcanapos J1.B. KomGunupoBauue norndeckux paccyxaenuii 1 LLM Ha myTH K co3aaHuio
MYJIBTHATEHTHBIX CHCTEM YMHOTO foma. Tpyoer UCIT PAH, 2025, Tom 37 Beim. 4, yacts 2, ¢. 219-234.

Algorithm 1 Generation and correction of Prolog statements

1: Input: P + User prompt

2 E + Error (initially NULL)

3: Ontology + Path to ontology (vector/graph DB)

4 PT + Prompt template

5: Output: Status (success/error message), PrologStatement

: AttemptCounter = 0

: Error = NULL

while AttemptCounter != N do
AttemptCounter++

© e N>

> Search for relevant ontology fragments
10: OntologyFragments < RAGSearch(P, Ontology)
> Prompt forming
11: Prompt + OntologyFragments.InsertInto(PT)
> LLM request
12: Statement < CallLLM(Prompt, Error)
> Meaning Correction — request 2nd LLM
13: Valid, Error < Validate(Statement, P)
14: if Error != NULL then

15: Continue to the Next Iteration
16: end if
17: return (SuccessStatus, PrologStatement)

18: end while

19: return ErrorStatus > Exceeded the counter limit

Algorithm 2 Prolog Statement Compiler Check

1: Input: S < Statement in Prolog
2: P + Initial prompt
3: Qutput: Status (success/error message), PrologStatement

AttemptCounter = 0
Error = NULL
while AttemptCounter != N do
AttemptCounter++
Error < CompilerCheck(S)
if Error != NULL then
10: S « Algorithm_1(P, Error)
11: end if
12: return (SuccessStatus, PrologStatement)
13: end while

LR A S

14: return ErrorStatus > Exceeded the counter limit

We must ensure that commands are executed only if they are deemed safe. Therefore, before
interacting with any agent, the LLM agent must consult the Safety-Reasoning Agent (see Fig. 3).
The SRA's role is to check the statement generated by the LLM agent against the safe ontology,
which is separate from other MAS ontologies. This is a novel approach to creating a logic-based
observer agent for MAS that use LLMs, although it is rooted in earlier ideas [13-14].

225

Rezunik L., Prozorskiy M.A., Alexandrov D.V. Combining Logical Reasoning and LLMs Toward Creating Multi-Agent Smart Home
Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 219-234.

To demonstrate this approach and the MAS architecture in action, we developed an example of a
plant care subsystem for a smart-home system’s MAS. This is illustrated in Figure 4, which shows
several logical agents, an LLM agent that acts as a supervisor, and a safety-reasoning agent.

@'deepseek L

@ LLM <«—— LLM-Agent —>» Reasoning Agent ——» B

Shared
O Meta oniobgy
Safety-Reasoning
Agent
Sale
Ontology

Fig. 3. MAS architecture after the introduction of the safety-reasoning agent

Plant Watering connected to
Agent 1 (W)

@ GPT-4 <——> LLM-Agent ES

L

Shared
Ontology
Safety-Reasoning
Agent Soll Humidity
Sensor 1 (H1) Plant 1

Soil Humidity
Sensor 2 (H2)

Plant 2

0

Safe Temperature
Ontology —> Sensor (T)

Fig. 4. Example of MAS for plant watering scenario

The process starts with the LLM, which generates commands (or queries) based on user input, and
these commands are later executed by MAS agents. The algorithm for generating these commands
is outlined in Section 3.2. In our approach, the LLM is supported by an LLM agent, which is tasked
with implementing the algorithm. Additionally, the LLM agent functions as a communication
facilitator, enabling the exchange of messages (including executable commands) with the
appropriate agents.

The remainder of the system can employ actuators or reasoning agents as needed. The MAS benefits
from agents built on formal logic models, enabling reasoning without the hallucinations often
encountered with LLMs. Agents can either share a common ontology or work with their own
individual ones. However, we suggest maintaining a shared ontology for facts while defining rules
within each agent separately.

226

Pesynuk JI., [Iposzopckuit M.A., Anexcanapos J1.B. KomGunupoBauue norndeckux paccyxaenuii 1 LLM Ha myTH K co3aaHuio
MYJIBTHATEHTHBIX CHCTEM YMHOTO foma. Tpyoer UCIT PAH, 2025, Tom 37 Beim. 4, yacts 2, ¢. 219-234.

4. Experiments

We have proposed a method for integrating LLM agents with logic-based agents in MAS. The next
step is to assess the accuracy of the LLM agent to determine if it introduces hallucinations. We also
plan to evaluate the efficiency of the algorithm outlined in Section 3.2. Additionally, we will run the
same scenarios with and without the safety-reasoning agent to observe its impact on execution speed.
In this chapter, we present a simple MAS example that incorporates an LLM agent designed
according to our approach. The system demonstrates a subsystem for a smart home, specifically
focusing on plant watering. A schematic representation of the system is shown in Figure 4.

4.1 Overview
The MAS incorporates several Prolog-based actuator agents that share the same ontology and update
it when changes occur in the environment:

e Soil Humidity Sensor (H) — Responsible for monitoring and handling changes in soil

humidity. There are several agents, each connected with its own plant.

e Temperature sensor (T) — Reacts to changes in the air temperature.
Additionally, there is a reasoning plant-watering agent (W), which manages turning the turning
on/off of the watering. To achieve this, it utilizes decision-making: the plant should be watered only
when the soil humidity is low, and the temperature exceeds the minimum required for watering.

should_water(Plant) :-
soil_moisture(Plant, low),
temperature(Plant, Temp),
min_temp_for_watering(Plant, MinTemp),
Temp >= MinTemp.

Listing 3. Plant watering rule.

We utilize OpenAl's GPT-4 which is accessed by the LLM agent. When a query is received, the
LLM agent relays it to the Safety Reasoning Agent (SRA), which assesses whether the query can be
safely executed. In our scenario, activating the watering system is deemed safe as long as the
maximum soil humidity level has not been exceeded. If this condition is met, the LLM agent then
sends the command directly to the physical watering agent.

4.2 Scenarios Testing

To evaluate the system's performance, we implemented the SRA, W, T, and H agents in Prolog, as
described earlier. For the LLM agent, we created a separate Python script that generates a text
embedding based on the ontology's classes, relations, and properties. The script processes user input,
constructs a prompt, and sends it to the OpenAl API. The Prolog query is then extracted using the
algorithms outlined in Section 3.2. This query is executed by the Prolog agents, which return either
the result or an error if the query cannot be processed.

We conducted several tests, including:
1) Triggering an actuator (H agent, T agent).
2) Calling the reasoning W agent to control watering (on/off).
3) Retrieving knowledge from the ontology.
4) Modifying the ontology.

An example of the test output for the plant watering scenario is provided in Listing 4.

We measured execution times for all scenarios in two variations: (1) when SRA was present in the
system, (2) when it was not included in the scenario to see whether it will significantly affect the
execution time. The results are presented in Tables 1 and 2.

227

Rezunik L., Prozorskiy M.A., Alexandrov D.V. Combining Logical Reasoning and LLMs Toward Creating Multi-Agent Smart Home
Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 219-234.

User Input:

"Water the ficus, please"

Attempt 1: Generated Prolog Query:
execute_watering(ficus).
Generation time: 0.7765 seconds
Validation time: 3.1058 seconds
Query is valid, sending to Prolog server

Response from Prolog server:

{
'status': 'success’,
‘result”: 'watering_module_1
is watering ficus.\n
Moisture is now medium
for ficus.\n'
}
Prolog execution time: 0.5929 seconds
Total execution time: 4.4753 seconds

Listing 4. Example of an output of the testing program.

Table 1. Test of Query Generation.

Scenario Ne Generation Time, s Validation Time, s
1 1.7311 9.1456
2 0.7765 3.1058
3 1.5481 7.2752
4 1.4584 0.6220

Table 2. Execution Time Test.

Scenario Ne Without SRA, s With SRA, s
1 0.5919 0.5955
2 0.5911 0.5929
3 0.5921 0.5931
4 0.5913 0.5918

We observed that the execution time difference with and without the SRA was minimal, the Prolog
execution time overall was consistently under 0.6 seconds. Additionally, in this example the system
demonstrated 100% accuracy in constructing Prolog queries, effectively mitigating hallucination
issues. However, this comes at a significant time cost: while generating the initial query takes about
1 second (thanks to embeddings), the evaluation process can take over 9 seconds, which depends on
the complexity and length of the query.

4.3 Simulations Comparison

After implementing the test version of the system and conducting the initial evaluation, the following
questions also needed to be answered:

1. Does the proposed approach really reduce the effect of hallucinations on MAS?
2. lsit possible to block the hallucinatory actions of the LLM agent?

228

Pesynuk JI., [Iposzopckuit M.A., Anexcanapos J1.B. KomGunupoBauue norndeckux paccyxaenuii 1 LLM Ha myTH K co3aaHuio
MYJIBTHATEHTHBIX CHCTEM YMHOTO foma. Tpyoer UCIT PAH, 2025, Tom 37 Beim. 4, yacts 2, ¢. 219-234.

3. Will it be possible to compensate for the small number of LLM model parameters by using
the proposed approach?
To answer each of these questions, two systems (with and without using the proposed approach)
were developed to model a MAS that simulates a greenhouse, its environment and the system
controlling its agents.
System #1 (see Fig. 5) does not utilize the approach developed in the study. It includes sensor agents:
o Soil Humidity Sensor — an agent responsible for monitoring changes in soil moisture.
Several such agents may be present in the system, each associated with a different plant.

e Soil Temperature Sensor —an agent responsible for monitoring changes in soil temperature.
Several such agents may be provided in the system, each associated with a different plant.

e Air Temperature Sensor — an agent responsible for responding to changes in air
temperature.

¢ Air Humidity Sensor — an agent responsible for monitoring changes in air humidity.

e Carbon Dioxide (CO2) Sensor — an agent responsible for monitoring changes in the level
of carbon dioxide in the air (percentage).

©

AreHTbl BKNIOYEHMA |

GPT-4 BBIKNIOYEHUA
Soil Humidity 4
Sensor
x Watering Agent
Soil Temperature LLM-Agent
Sensor
» Vent Agent
Air Temperature &
Sensor kS
Heater Agent
Alr Humnidity Ontology 9
Sensor
CO2 Sensor Time Agent
Environment
State

Fig. 5. Representation of a greenhouse simulation. Suggested approach is not implemented.

The state of the greenhouse environment is simulated by sensor agents, as well as a time agent that
updates the time within the system, the time of day in the simulation (morning, day, evening, night).
The indicators of the external environment (humidity, temperature) can be influenced by action
agents:

e Heater — an agent responsible for turning the heating on and off. It simulates power
consumption and updates the air temperature value.

e Watering — an agent responsible for turning watering on and off. It simulates water
consumption and updates the soil humidity value.

e Vent — an agent responsible for turning ventilation on and off. Simulates electricity
consumption and updates the value of carbon dioxide level in the air.

These agents switch between two states — activation and deactivation. In active mode, the agents
change the value of a certain environmental parameter at regular intervals (set within the agent) until
they are stopped. To control the action agents, an LLM agent is included in the system. Its task is to

229

Rezunik L., Prozorskiy M.A., Alexandrov D.V. Combining Logical Reasoning and LLMs Toward Creating Multi-Agent Smart Home
Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 219-234.

decide on the activation/deactivation of the action agent depending on the state of the environment
broadcast by the sensor agents. Thus, in this case, the agents of the system do not reason, but only
perform actions at the request of the LLM agent.

Logging to .csv files was implemented to track changes within the system. Each record contains
information necessary for analysis (see Table 3), as well as for working with process mining tools
(such as ProM or pm4py). One log file record contains information about the day number within the
simulation (case_id), time, environment parameters (air temperature and humidity, soil temperature,
etc.), amount of consumed water and electricity, the event that occurred, and which agent caused it.
System #2 (see Fig. 6) utilizes the approach developed in the study. The MAS includes sensor agents
similar to System #1, as well as an LLM agent that redirects requests from the sensor agents to the
action agents. However, in this case, the LLM agent is not responsible for making the final decision
as to which agent will be activated. Action agents in this case are Prolog-agents that check the state
of the system regarding facts that will result in an agent not being switched without explicitly stating
so in the ontology. For example, a plant watering agent that controls the on/off of watering uses the
rule from Listing 3: a plant should only be watered when the soil moisture is low, and the temperature
is above the minimum required for watering.

The GPT-4 model from OpenAl was used in the MAS implementation, access to which was granted
to the LLM agent. It should be noted that the LLM agent was implemented similarly to the one
presented in Section 4.1.

The difference between the LLM agent of System #2 and System #1 is also that when a response
with a command is received from the LLM, the LLM agent passes it to the Safety Reasoning Agent
(SRA), which performs a check whether the request can be safely executed. In our scenario,
activation of the irrigation system is considered safe as long as the maximum soil moisture level is
not exceeded. If this condition is met, the LLM agent sends the command directly to the logical
irrigation agent. It is worth noting that both System #1 and System #2 use the same ontology, i.e.,
the agent behavior constraints are defined in the same way.

Table 3. Example of a fragment of the simulation system log file.

case_id| time day air_t [air hum | co2 | soil t |[soil h| electr | water triggered_by event_type timestamp
SENSOR_AIR
LATE_ . o | 23.05.2025
1 00:04 NIGHT 12 42 30 18 40 0.0 0.0 air_temperature_1| TEMPERATURE 01:19:29
_stable
EARLY_ ACTOR_VENT |23.05.2025
1 04:46 MORNING 20 52 26 12 93 7000 4248.3 ACTOR_VENT _active 01:24:11
ACTOR
EARLY_ ACTOR_ - 23.05.2025
1 04:53 MORNING 14 53 26 8 94 7000 4414.9 WATERING WATEBING 01:24:18
_active
SENSOR_SOIL_ 3.05.2025
2 10:41 | MORNING | 19 46 10 17 97 49250 132820.19| soil_humidity_1 HUMIDITY 0'1_5;1'14
_decrease o
ACTOR_ ACTOR_HEATER| 23.05.2025
2 10:42 | MORNING | 25 46 10 21 92 49500 |32820.19 HEATER active 01:54:15
ACTOR
ACTOR_ = 23.05.2025
2 10:44 | MORNING | 25 46 10 19 100 | 49500 |32903.49 WATERING WATEBING 01:54:17
_active
LATE_ SENSOR_CO2 |23.05.2025
3 00:38 NIGHT 17 57 42 16 97 70625 | 43565.9 carbon_1 increase 02:08:16

230

Pesynuk JI., [Iposzopckuit M.A., Anexcanapos J1.B. KomGunupoBauue norndeckux paccyxaenuii 1 LLM Ha myTH K co3aaHuio
MYJIBTHATEHTHBIX CHCTEM YMHOTO foma. Tpyoer UCIT PAH, 2025, Tom 37 Beim. 4, yacts 2, ¢. 219-234.

@ Nornyeckue

GPT-4 areMThl
Soil Humidity
Sensor I
Watering Agent —
Soll Temperature — LLM-Agent
Sensor
» v Vent Agent
Air Temperature 2 Safety-Reasoning
Sensor '% Agent Shared
= Ontology
Heater Agent —
Air Humidity
Sensor
CO2 Sensor | —— Sale
Ontology

-

Environment
State

Fig. 6. Representation of a greenhouse simulation. Suggested approach is implemented.

As part of testing, the implemented MASs were run, simulating changes in the external environment
and greenhouse agents. The log files were collected and analyzed. As a result, the question of
reducing the effect of hallucinations on MAS can be looked at from different perspectives:

e From the point of view of occurrence of undesirable actions — in this case it is necessary to
check that agents in both systems do not allow dangerous actions (such actions are marked
in the ontology).

¢ From the point of view of energy efficiency of the whole system — in this case it is necessary
to consider what impact the system has on water and electricity consumption.

As a result of analyzing the log files, it was revealed that System #1 allowed actions that can be
characterized as “dangerous”. Also, a number of actions that were inefficient in terms of resource
consumption were identified (for example, switching on the ventilation and irrigation agent occurred
when the values were within the acceptable level). System #2 allowed a different number of
“dangerous” actions in each test run, but this number was lower than for System #1. Also, during
the testing of System #2 no actions of the agents that were not justified by the environmental factors
were observed.

Both systems were also tested with different variations of LLMs connected to the agent LLM
(variations of gpt-3 and gpt-4). Regardless of the LLM configuration, System #2 proved to be more
energy efficient and safer compared to the system without logical agents.

5. Developing the Hardware

Currently, we are exploring the possibility of creating a real-life prototype of a smart home system
based on our approach. To facilitate this, we have developed a watering device. The hardware
subsystem is built on the Raspberry Pi Pico W board, which features the RP2040 microcontroller
and provides network interaction with the server part via the built-in Wi-Fi module. Figure 7 shows
a schematic diagram of the device, which includes the following components:

e Raspberry Pi Pico W microcontroller — the central component of the system, responsible
for data processing, controlling connected devices, and networking.

e Servo actuator — controls the water supply process.

o Soil moisture sensor — provides data for analyzing the condition of the crop environment.
231

Rezunik L., Prozorskiy M.A., Alexandrov D.V. Combining Logical Reasoning and LLMs Toward Creating Multi-Agent Smart Home
Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 219-234.

e LED —serves as a visual indicator of the device's status.
e Power supply — ensures the stable operation of the device.

The idea is for soil moisture sensor to continuously check the moisture content of the soil, sending
the data to the server. When the moisture level falls below the preset threshold, the LLM agent
should trigger the watering process, activating the servo actuator to release water to the plants.
Afterward, the device checks the moisture level again to determine if the required watering amount
has been reached.

Currently, the device allows users to remotely monitor and control the watering system, providing
an interface for manual intervention if needed. In future iterations, we plan to enhance the system's
capabilities by incorporating more advanced features, such as adaptive watering schedules based on
weather forecasts or plant types, integrating additional sensors.

Fig. 7. The schema of plant watering device.

6. Related Works

This paper investigates the potential to fully eliminate the risk of hallucinations. To achieve this,
reasoning in the agents is carried out by aligning their goals with facts and rules from a structured
knowledge base. This method has proven effective and has been successfully used in the
development of chatbots to enhance creativity and maintain focus on specific topics [8]. The
combination of logic and ontologies has also been shown to improve accuracy and efficiency in
tasks like question answering, outperforming popular LLMs [15]. While this paper focuses on
Prolog ontologies and Prolog-based agents, it's important to note that the same approach can be
implemented using other declarative programming languages, such as ASP (Answer Set
Programming) [16].

Though the combination of LLMs and logic is a well-explored area with various applications [17-
18] limited research has been conducted in the context of multi-agent systems (MAS). Our work
places particular emphasis on ensuring system safety by introducing a safety-reasoning agent. A
similar concept has been explored in previous studies [13-14], showing that although these works
are not recent, their foundational ideas can still be adapted and applied today.

7. Future Work

In future research, we plan to explore additional MAS architectures and configurations to broaden
the applicability of our approach. We will also investigate the algorithms for the dynamic enrichment
of ontologies, allowing for more adaptive knowledge representation. As part of our ongoing work,

232

Pesynuk JI., [Iposzopckuit M.A., Anexcanapos J1.B. KomGunupoBauue norndeckux paccyxaenuii 1 LLM Ha myTH K co3aaHuio
MYJIBTHATEHTHBIX CHCTEM YMHOTO foma. Tpyoer UCIT PAH, 2025, Tom 37 Beim. 4, yacts 2, ¢. 219-234.

we intend to further develop the smart-home system based on the principles outlined in this paper.
This will involve refining and optimizing the algorithms we've designed to improve their
performance and scalability, ensuring that our solution can handle more complex scenarios and
larger-scale implementations. Additionally, there is a big potential to explore new techniques such
as real-time learning and cross-agent collaboration, to enhance the system's capabilities and
efficiency.

8. Conclusion

In this paper, we introduced a novel approach for integrating Large Language Models (LLMSs) into
Multi-Agent Systems (MAS) with a focus on minimizing the risks of hallucinations and enhancing
system safety. Our method leverages LLMs primarily for the transformation of natural language into
logical statements, while the decision-making process is carried out by predicate logic agents. To
ensure the correctness of the generated logical statements, we developed a two-step algorithm that
incorporates meaning verification and syntax checking. Additionally, we introduced a Safety-
Reasoning Agent (SRA), which ensures that only safe actions are executed within the system.

Our results, demonstrated in a smart home automation scenario focused on plant care. The developed
two-step algorithm for generating Prolog logic statements from natural language proved successful
in reducing hallucinations and ensuring the correctness of the generated code. The incorporation of
the Safety-Reasoning Agent strengthened the system by preventing unsafe actions. Despite the
promising results, the system's validation process remains computationally intensive, suggesting a
need for further optimization in future work in terms of scalability.

We believe that this approach holds significant potential for application in other Multi-Agent
Systems, particularly in the context of smart homes, where the integration of LLMs can improve
user experience. The inclusion of a Safety-Reasoning Agent introduces an additional layer of
reliability, which is crucial for environments where human safety and security are of the primary
importance.

References

Janbi N., Katib I., Mehmood R. Distributed artificial intelligence: Taxonomy, review, framework, and
reference architecture. Intelligent Systems with Applications, vol. 18, 2023, p. 200231. DOI:
10.1016/j.iswa.2023.200231.

Guo T., Chen X., Wang Y., Chang R., Pei S., Chawla N.V., Wiest O., Zhang X.N. Large language model
based multi-agents: A survey of progress and challenges. arXiv preprint, 2024. DOI:
10.24963/ijcai.2024/890.

Christman J., Mele A.R. Autonomous agents: From self-control to autonomy. The Journal of Philosophy,
vol. 96, no. 2, 1999, pp. 95-100. DOI: 10.2307/2564674.

Wei J., Wang X., Schuurmans D., Bosma M., Ichter B., Xia F., Chi E., Le Q.V., Zhou D. Chain-of-thought
prompting elicits reasoning in large language models. arXiv preprint, vol. arXiv:2201.11903, 2023.
Available at: https://arxiv.org/abs/2201.11903.

Wang H., Du X., Yu W., Chen Q., Zhu K., Chu Z., Yan L., Guan Y. Learning to break: Knowledge-
enhanced reasoning in multi-agent debate system. Neurocomputing, vol. 618, 2025, p. 129063. Available
at: https://www.sciencedirect.com/science/article/pii/S0925231224018344.

Jiang Y.-H., Li R., Zhou Y., Qi C., Hu H., Wei et al. Al agent for education: von Neumann multi-agent
system framework. In Proc. of the 28th Global Chinese Conference on Computers in Education, 2024.
Nezhurina M., Cipolina-Kun L., Cherti M., Jitsev J. Alice in Wonderland: Simple tasks showing complete
reasoning breakdown in state-of-the-art large language models. arXiv preprint, vol. arXiv:2406.02061,
2024. Available at: https://arxiv.org/abs/2406.02061.

Zeng Y., Rajasekharan A., Basu K., Wang H., Arias J., Gupta G. A reliable common-sense reasoning
socialbot built using LLMs and goal-directed ASP. Theory and Practice of Logic Programming, vol. 24,
no. 4, 2024. DOI: 10.1017/S147106842400022X.

OpenAl. GPT-4 Technical Report. arXiv preprint, vol. arXiv:2303.08774, 2024. Available at:
https://arxiv.org/abs/2303.08774.

233

https://arxiv.org/abs/2201.11903
https://www.sciencedirect.com/science/article/pii/S0925231224018344
https://arxiv.org/abs/2406.02061
https://arxiv.org/abs/2303.08774

Rezunik L., Prozorskiy M.A., Alexandrov D.V. Combining Logical Reasoning and LLMs Toward Creating Multi-Agent Smart Home
Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 219-234.

Wang Z., Liu J., Bao Q., Rong H., Zhang J. ChatLogic: Integrating logic programming with large language
models for multi-step reasoning. arXiv preprint, vol. arXiv:2407.10162, 2024. Available at:
https://arxiv.org/abs/2407.10162.

Lewis P.S.H., Perez E., Piktus A., Petroni F., Karpukhin V., Goyal N., Kuttler H., Lewis M., Yih W.-T,
Rocktéschel T., Riedel S., Kiela D. Retrieval-augmented generation for knowledge-intensive NLP tasks.
arXiv preprint, vol. arXiv:2005.11401, 2020. Available at: https://arxiv.org/abs/2005.11401.

Chen J., Hu P., Jiménez-Ruiz E., Holter O.M., Antonyrajah D., Horrocks I. OWL2Vec*: Embedding of
OWL ontologies. arXiv preprint, vol. arXiv:2009.14654, 2020. Available at:
https://arxiv.org/abs/2009.14654.

Modgil S., Fox J. A guardian agent approach to safety in medical multi-agent systems. In Safety and
Security in Multiagent Systems, 2009.

Nimis J., Lockemann P.C. Robust multi-agent systems: The transactional conversation approach? 2004.
Cabalar P., Fabiano F., Gebser M., Gupta G., Swift T. Proceedings of the 40th International Conference on
Logic Programming (ICLP 2024). In Electronic Proceedings in Theoretical Computer Science (EPTCS),
University of Texas at Dallas, Dallas, TX, USA, Oct. 2024, pp. 69-77.

Lifschitz V. What is Answer Set Programming? In Proceedings of the National Conference on Atrtificial
Intelligence, vol. 3, 2008, pp. 1594-1597.

Lin X., Wu Y.-C,, Yang H., Zhang Y., Zhang Y., Ji J. CLMASP: Coupling large language models with
answer set programming for robotic task planning. arXiv preprint, vol. arXiv:2406.03367, 2024. Available
at: https://arxiv.org/abs/2406.03367.

Yang Z., Ishay A., Lee J. Coupling large language models with logic programming for robust and general
reasoning from text. arXiv preprint, vol. arXiv:2307.07696, 2023. Available at:
https://arxiv.org/abs/2307.07696.

Ungpopmayusi 06 aemopax / Information about authors

Jlrommuna Anekcannposaa PE3YHUK — maructp nporpammuoii nuwkenepuu, HUY BIID. Chepa
HaY4YHBIX HHTEPECOB: pa3pabdoTKa MOOMIBHBIX PUIIOKEHHUI, MyJIbTHATCHTHBIE CHCTEMBbI, OOJIbIINE
s13b1KOBBIe Mozienin LLM), apxurekTypa nporpaMmMHoro obecreyeHusl.

Lyudmila Aleksandrovna REZUNIK — Master of Software Engineering, HSE. Research interests:
mobile application development, multi-agent systems, LLM, software architecture.

Muxaun Anexceena [TPO3OPCKUM — crynent HUY BIID, crakep-uccieoBaTelh HayqHO-
y4eOHO# aboparopuu OONaYHBIX W MOOWIBHEIX TexHomorumiit HUY BIID. Cdepa HaydHBIX
MHTEPECOB: pa3paboTKa MOOWJIBHBIX IPWIOKEHHWH, CHUCTEMBI YMHOTO JOMa, apXHUTEKTypa
MIPOTPaMMHOTO 00eCIeYeHHSL.

Mikhail Aleekseevich PROZORSKIY - student at HSE, researcher at the Educational and Research
Laboratory of Cloud and Mobile Technologies, HSE. Research interests: mobile application
development, smart home systems, software architecture.

Jmvutpuii Bmagumuposuu AJIEKCAHJIPOB — fgokTop TeXHWYECKHX Hayk, mpodeccop,
3aBeAYIONINI HaydHO-yueOHOU 1aboparopun 00JavuHBIX U MOOMIBHBIX TexHonoruii HUY BIID.
Cdepa HaydHBIX MHTEPECOB: METOMABI M TEXHOJIOTMH HCKYCCTBEHHOTO HHTEIUICKTa, pa3paboTka
MOOWIIBHBIX MPIJIOKCHHH, pa3paboTKa MpOrpaMMHOTO 00eCTICUCHH ST, MHXKCHEPUS 3HAHUH.

Dmitry Vladimirovich ALEXANDROV - Dr. Sci. (Tech.), Professor, Head at the Educational and
Research Laboratory of Cloud and Mobile Technologies, HSE. Research interests: methods and
techniques of artificial intelligence, mobile application development, software development,
knowledge engineering.

234

https://arxiv.org/abs/2407.10162
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2009.14654
https://arxiv.org/abs/2406.03367
https://arxiv.org/abs/2307.07696

