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Abstract. This study introduces an Al-driven assistant prototype that automates the generation of data
visualization scripts from natural language queries, eliminating the need for users to have programming skills.
The article examines research aimed at developing tools for effective data visualization, compares data
visualization systems based on the use of artificial intelligence, and shows the limitations of the existing tools.
The proposed approach to data visualization is based on integrating knowledge-driven DSM platform (language
toolkits) and generative Al tools. The proposed methodology categorizes tasks of data visualization into two
distinct types: standard and non-standard. Standard tasks are solved with a code-generation approach based on
prompts within a visual environment. Non-standard tasks are handled by extending existing libraries with
user-defined packages. The language-oriented approach with DSM tools effectively unifies both categories: for
standard tasks, users work with pre-existing DSLs and adjust parameters as necessary, whereas for non-standard
tasks, users develop new DSLs with language toolkits automating visual DSL creation and code generation.
The core of the language toolkits is multifaceted ontology. By integrating a large language model (LLM) with
a knowledge-driven framework and a multifaceted ontology, the system enables dynamic, context-aware
visualization workflows that ensure semantic traceability and reproducibility. The ontology not only stores
descriptions of data visualization tasks but also facilitates the reuse of generated scripts, thereby enhancing the
system’s adaptability and fostering collaborative analytical work among user communities. The dataset,
containing entries and variables encompassing different domains, is used to demonstrate the functionality of
the prototype. The article provides examples of developing several visualization options, demonstrating the
application of the proposed approach. Case studies demonstrate the prototype’s efficacy in creating histograms,
scatter plots, and other visualization methods, while reducing technical barriers for users. Future work will
extend the assistant’s functionality by incorporating user-defined visualization packages and additional LLM
training to address non-standard tasks and complex visualization scenarios.
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AHHOTanus1. B nanHOM HCclieoBaHNY IpeCTaBIIeH MIPOTOTHII ACCUCTEHTA, YIIPABISIEMOT0 HCKYCCTBEHHBIM
MHTEJJIEKTOM, KOTOPBIH aBTOMATH3UPYET I'eHEPAlHIO CKPUIITOB BU3yallM3allMK JAHHBIX Ha OCHOBE 3alPOCOB
Ha €CTECTBEHHOM fI3BIKE, YCTPaHAs HE0OXOMMOCTb MOJIb30BATENCH BllaJeTh HABBIKAMHU NTPOrPaAMMHUPOBAHHS.
B crarthe paccMaTpUBAIOTCS HCCICNOBAHMSA, HAlpaBICHHbIE Ha pa3paboTKy cpeictB i 3((dexkTuBHON
BU3YAIN3aLMM JAHHBIX, INPOBOJMTCS CPABHEHHE CHUCTEM BH3YAIW3alMH JAHHBIX, OCHOBAHHBIX Ha
HCTIONb30BAHUN  HCKYCCTBEHHOTO HWHTEIUIEKTa, IIOKa3aHbBl OTPAaHWYCHHS CYIISCTBYIOIIMX CpPEJCTB.
IMpemnaraeMelii MOAXOA K BHU3yaJIM3allM JAHHBIX OCHOBaH Ha MHTerpanuu DSM-matgopMsl (S3BIKOBOTO
HMHCTPYMCHTAPHS), YIPABIAEMOro 3HAHHSAMH, 1 HHCTPYMECHTOB T'€HEPaTHBHOTO HCKYCCTBEHHOTO MHTEILICKTA.
[pemmaraemMasi METOIOJIOTHS pas3feiseT 3aJadyd BH3yalH3alliM JAHHBIX HA [Ba THUIA: CTaHAAPTHHIE H
HecTaHaapTHele. CTaHAAPTHBIC 33/1a4M PEIIAIOTCS C IOMOIIBI0 T'€HEpalMi KoJa Ha OCHOBE IIOJICKa30K B
BU3yalbHOW cpene. HecranmapTHple 3agaun  oOpabaThIBAIOTCS IyTEM PpACIIMPEHHsS CYIIECTBYIOIIUX
OUONHOTEK C MOMOLIBIO ONPEACISEMBIX IOJNB30BATEIEM MAKETOB. SI3bIKOBO-OPHEHTUPOBAHHBIN MOAXOJ C
ucnosb3oBanueM cpeactB DSM sddextrBHO 00beanHseT 00 Kareropuu: Uisl CTaHIAPTHBIX 3amad
mosp30BaTen paboTaT ¢ cymecTByomumMu DSL U HacTpawBaroT mapamMeTpsl M0 Mepe HeOOXOAUMOCTH,
TOT/la KaKk JJIs HeCTAaHJapTHBIX 3aJad II0JIb30BaTeNM pa3padaTeiBaloT HOBble DSL ¢ moMompio sS3BIKOBOTO
HHCTPYMEHTApHs1, aBTOMaTU3UPYIOIIETo co3iaHne BU3yalnbHbIX DSL u reHeparuio xozxa. SIapom sS36IKOBOTO
HWHCTPYMEHTApPHUS SBJISETCS MHOTOACIIEKTHAs OHTONOrHs. biaronapst naTerpanny 6oIbIIoi S36IKOBOW MOJETH
(LLM) ¢ ¢peitMBOpKOM, yIpaBIsieMbIM 3HaHUSIMH, 1 MHOTOACIIEKTHOM OHTOJIOTHEH, cucTeMa obecednBacT
JMHAMHUYECKHE, KOHTEKCTHO-OPHEHTHPOBAHHBIC paboyre MPOLECChl BU3yaIM3alluK, KOTOPBIC TapaHTHPYIOT
CEMaHTHYECKYIO TIPOCIICKMBAEMOCTb U BOCIIPOU3BOIUMOCT. OHTONOTHS HE TOJNBKO XPAHUT ONMMCAHMS 3a/1a4
BU3YaIN3allU JAHHBIX, HO U 00JierdaeT MOBTOPHOE HCIOJIb30BaHUE CTCHEPHPOBAHHBIX CKPHIITOB, MOBBIIIAS
TEeM CaMbIM aJalTHBHOCTH CHCTEMBI M CIIOCOOCTBYSI COBMECTHOH aHaJMTHYECKOH paboTe cooOuIecTB
none3oBaterneil. HaOop maHHBIX, coiepkamMii 3almMCH M IepEeMEHHBIC, OXBAaTHIBAIOIINE pa3JIMYHbIC
NpeaMeTHbIe O00JacTH, WCHONB3yeTcs I JeMOHCTpauuu (yHKIMOHAIBHOCTH IpoToTHNA. B craTthe
MIPUBEICHBI IPUMEpPbI Pa3paObOTKN HECKOJIbKHX BapHAHTOB BU3yAIM3ALHi, IEMOHCTPUPYIOIINE NPUMEHEHHE
npejuIaraeMoro noaxoxa. [IpuBenéHHble pUMepsl IeMOHCTPUPYIOT 3G (GEKTHBHOCTD MTPOTOTHUIA B CO3JaHUN
THCTOTPAaMM, TOYEYHBIX IHAarpaMM U APYTUX METOIOB BU3YaIM3allMK U CHIDKEHUH TEXHUUECKUX 0aphepoB UL
nosib3oBaTenei. B mepcnexTuBe (yHKIMOHAIBHOCTh ACCHCTEHTa OYyAET pacIIMpeHa 3a CYET MOAACPIKKH
T0JIb30BATENNBCKUX TIAKETOB BU3YaIH3aLMH 1 IOTIONHUATENBHOTO 00yueHus LLM st penieHns HectaHapTHBIX
3a/1a4 U CJIOKHBIX CLIEHAPHEB BU3YaJIN3aliH.

KioueBble cjioBa: BH3yalu3alus [JaHHBIX; HCKYCCTBEHHBI HHTEIUIEKT; MPEAMETHO-OPHEHTHPOBAHHOE
MO/IEIMPOBaHHE; SI3bIKOBON HHCTpyMeHTapHid; ontonorust; Python; Dash; Plotly.

Jasi murupoBanusi: JDxeitpansa A.Jl., JIsgosa JI.H. MuTerpauus monxoja K BU3yallM3alldid JaHHBIX Ha
OCHOBE OHTOJIOTMH M BH3yanusaiuu Ha ocHoBe MU ¢ ucnons3oBanuem Plotly. Tpyast UCIT PAH, Tom 37,
Boi. 4, 2025 ., crp. 191-206 (ua anrnmiickom si3eike). DOI: 10.15514/ISPRAS-2025-37(4)-26.

1. Introduction

The field of data visualization has gained significant academic attention, as evidenced by a 77%
increase in related publications in the Scopus database, rising from 3 232 in 2015 to 5 724 in 2024.
In data-driven decision-making, visualization tools play a crucial role in interpreting complex
datasets, identifying patterns, and supporting insightful decision processes. These tools are used by
a wide range of professionals, including data analysts, scientists, business executives, managers,
educators, students, and other stakeholders.
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Despite the growing reliance on data visualization, many users encounter substantial challenges in
generating effective and accurate visual representations. A major concern is the proliferation of low-
quality or misleading visualizations that either fail to convey meaningful insights or even distort the
underlying data 0. This issue is widely discussed in communities such as “Data is Ugly”
(www.reddit.com/r/dataisugly/), where enthusiasts and experts alike showcase and critique poor
visualization practices. To address these challenges, the integration of user-defined visualization
specifications is essential 0. These specifications enable users to customize visualizations according
to the specific requirements of their tasks and domains, ensuring a more effective and informative
presentation of data.

Current solutions — including spreadsheets, business intelligence (BI) platforms, programming
languages with libraries for data visualization, domain specific languages (DSLs) for customizing
visualization models, and approaches leveraging LLMs — offer varied levels of customization and
implementation of specifications. However, in most cases, customization is limited to basic
parameter adjustments, which may not always be sufficient. Some scenarios require more advanced
modifications, such as the ability to create custom chart types. For example, designing a basketball
specific scatter plot, where the plotting area mimics the layout of a basketball court rather than a
basic rectangle, etc. 0.

Many researchers also highlight the inherent complexity of creating high-quality visualizations. As
noted in O, traditional visualization methods often require high programming expertise for
customizing models, which poses significant challenges for users. Similarly, 0 emphasizes that
designing effective visualizations remains a time-consuming and complex task, even for experienced
professionals.

Thus, there is a growing need for a novel approach that enables the customization of diagrams to
align with domain specific requirements and task objectives — without the necessity for advanced
programming skills.

In previous studies, a promising data visualization methodology that categorizes visualization tasks
into standard and non-standard ones was proposed. The platform architecture adheres to knowledge-
driven principles, with a multifaceted ontology serving as the central repository for expert
knowledge [5-7]. One method for addressing data visualization tasks within this methodology
involves the generation of scripts in a programming language, thereby simplifying the workflow for
non-technical users when developing and customizing diagrams.

Building upon this foundation, the present research aims to design and implement a prototype Al-
assistant for the automated generation of visualization scripts, integrated with knowledge-driven
architecture. The tasks of the study include:

1) an analysis of existing tools for automated visualization generation;

2) the architectural design of the Al-assistant prototype;

3) the prototype implementation, including the development of the subontology;
4) the demonstration of the prototype’s functionality using a representative dataset.

2. Related Works

Programming languages offer extensive capabilities for creating effective and customizable visual
representations. The most widely used languages in this field are Python, R, and JavaScript, each
providing a rich ecosystem of visualization libraries 0. Maximum data visualization customization
is provided for users, but coding skills are required. Specialized libraries reduce this barrier, though
a basic understanding of programming remains essential. Recent advances in artificial intelligence
have begun bridging this gap by automating data visualization workflows [9-11], particularly
through natural language interfaces and script generation.

Modern Al-driven systems leverage large language models like GPT-3 and ChatGPT to interpret
user queries, generate visualization scripts, and refine outputs iteratively. For instance, Chat2VIS
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demonstrates how prompt engineering can produce context-aware visualizations while maintaining
data security 0. Similarly, the platform described in 0 integrates NLP techniques and generative Al
with Pandas to automate Python script generation for CSV-based datasets. ChatVis 0 is an iterative
assistant built atop GPT-4 that synthesizes Python scripts for scientific visualization. Using an error-
feedback loop, ChatVis captures runtime exceptions from each script execution and resubmits them
to the model for correction, repeating until the code runs successfully. Data Formulator 2 0 combines
a drag-and-drop Ul with natural-language instructions to define new data fields and desired charts.
It compiles Ul selections, dialogue context, and NL directives into an LLM prompt, then generates

Python code for both data transformation and visualization in an interactive, iterative session.
However, current Al-driven visualization systems exhibit critical limitations (Table 1).
Table 1. Limitations of current Al-driven visualization systems

Limitation Description
Model LLMs may produce syntactically invalid code, or misinterpret parameters,
“hallucinations” undermining trust and necessitating expert oversight of generated scripts [12, 13]

Poor handling of
ambiguity

When faced with vague or multi-interpretation queries, systems often generate overly
generic or incomplete visualizations, failing to capture the full nuance of user intent in
complex analytical scenarios 0

Restricted chart
types

The use of standard libraries (for example, Matplotlib, Pandas) prevents the creation
of non-standard visual forms, which forces users to refine low-level code manually

Limited creative
design support

Customization options rarely go beyond chart type, color palette, and basic
annotations; detailed control over layout, styling, and individual visual elements
remain largely unsupported

Lack of domain
specific expertise

Open models trained on broad web data struggle with specialized terminology and
industry standards, leading to misinterpretation of subject-area concepts 0

While current LLMs cannot fully replace human expertise and still require robust verification and
fine-tuning frameworks, they hold significant potential for accelerating code generation in data-
analysis and visualization workflows.

This research develops and integrates a natural language script generation method into a broader
knowledge-driven data visualization platform. The Al-assistant allows users to describe their
charting requirements in natural language, automatically generates and runs the corresponding
Python scripts, and uses a multifaceted ontology to audit user queries and facilitate the reuse of
generated code across similar scenarios. The platform’s library extension subsystem is designed to
further train the model on custom visualization packages, empowering it to tackle domain specific,
non-standard plotting tasks.

3. Data Visualization Technique Based on Knowledge and Generative Al

3.1 Proposed Approach to Data Visualization

The proposed methodology categorizes tasks of data visualization into two distinct types: standard
and non-standard. For standard tasks, a code-generation approach based on prompts within a visual
environment is employed, which facilitates the automatic creation and execution of scripts. In
contrast, non-standard tasks are handled by extending existing libraries with user-defined packages.
The language-oriented approach effectively unifies both categories: for standard tasks, users work
with pre-existing DSLs and adjust parameters as necessary, whereas for non-standard tasks, users
develop new DSLs. This development process is streamlined through the automated mapping of the
domain ontology onto the metamodel of a base language, as described in [5-7].
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The system architecture design follows a knowledge-driven approach, where the core of the platform
is a multifaceted ontology. This ontology stores essential knowledge across the platform and is
organized into six primary groups:

1. Data sources ontology includes information on the structure, types of data, etc.

2. Domain ontology contains the subjective knowledge of the expert community: concepts of
the subject area, their relationships, and limitations (including rules).

3. DSM-knowledge ontology encompasses models, visualization languages, subject domains,
rules for the transformation and generation of DSLs, etc.

4. Scripts ontology captures information regarding prompts, generation outcomes, and relevant
metadata.

5. Packages ontology contains detailed descriptions of user-defined visualization packages.

6. User task repository is an ontology of user tasks and applied methods. Using this ontology
facilitates search and reusable deployment of established models.

The system’s overall architecture is shown in Fig. 1.

Multifaceted ontology

—
Domains
ontology

Data sources
ontology

Domain ontology

¥

Studying the documentation Library extension {I New package Datieee
subsystem ontology
Al model update
Scripts
ontology

——
User task.
repository

ey —
knowledge
ontology

@ Transmitting a {I
User interface text request Sc“pl‘ ST Generated script L —
Data source Metamofel of Domain
base DSL ontology|
Data source Metamodel of
Data source new DSL
integration module Data source
xisx l
Data sources
Assembling models, creating new DSLs @
DSLs subsystem =

Fig. 1. Generalized structure of the data visualization tools prototype

In addition to the ontology, the system consists of the following components:

1. User interface is implemented as a single-entry point: the Ul unifies three isolated,
specialized interfaces (visualization library management, script generation, and DSM-
platform interaction) behind a Facade pattern that provides seamless navigation between
sections without exposing their internal logic.

2. Library extension subsystem is responsible for creating new packages atop existing
visualization libraries (e.g., Matplotlib, Seaborn, D3, etc.) and for training the language
model to understand and leverage these extended libraries.

3. Script generation subsystem automatically generates and executes visualization scripts based
on user input.

4. DSLs subsystem constitutes the DSM-platform (language toolkit), manages both the
utilization of preexisting DSLs and the creation of new ones through an automated mapping
of the domain ontology onto the metamodel of a base language.
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5. Data source integration module provides connections to CSV and XLSX data stores. It uses
the Data sources ontology to automatically save metadata about any dataset uploaded to the
system.

3.2 Al-assistant Architectural Layers and Component Responsibilities

The Al-assistant is presented as a Script generation subsystem, that integrates semantic technologies
with LLMs to automate visualization code generation, while maintaining an ontology-grounded
history of user interactions. The system adheres to layered architecture (Fig. 2), decoupling
presentation, business logic, and data management concerns to ensure extensibility and
maintainability.

A prototype of knowledge-driven data visualization twols |

Script generation subsystem
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<<LLM backend>> {I
AlModelManager { LibraryExtensionSubsysten
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IStateStorage
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] ChatComponent [ ChatService

IChatLogic

1DntologyGraph

[ <<knowledge base>> —= |
#‘ onts 5'(-]#}@_@ pinae
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Presentation Layer Components ( | Business Logic Layer Components { | Data Layer Companents External Components
N ~

D Provided interface - l:‘ Required interface :

Fig. 2. Script generation subsystem (Al-assistant) architecture

The presentation layer follows a reactive programming model, with Dash callbacks mediating
between user actions and backend services. The DashComponent serves as the root container,
implementing the user interface via the Dash framework. It orchestrates three subcomponents:

1. ChatComponent manages real-time chat interactions through the IChatLogic interface,
rendering message history and propagating user inputs.

2. GraphComponent handles visualization outputs by coordinating dependencies through three
critical interfaces: IDataParser — for structured data ingestion; |1AIResponse — for displaying
the generated LLM response; IVisualizationExecutor — for dynamic code execution. It also
implements the IUserRequest interface to expose user-entered queries.

3. dcc.Store acts as an in-browser, client-side state container. It provides the IStateStorage
interface for any Ul component to read or write transient JSON data (e.g., current query,
graph parameters, or intermediate results). This component eliminates unnecessary server
roundtrips by keeping frequently accessed state in the browser.
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Five components of the business logic layer implement domain specific processing:

1.

FileUploadParser (IDataParser) implements CSV/Excel parsing via Pandas, extracting
columnar data.

ChatService (IChatLogic) manages chat session state, enforcing conversation context
persistence.

AlModelManager (IAIResponse) utilizes LangChain pipelines with the ChatGrog API
(LIama3-70B) to generate Plotly visualization code, conditioned by uploaded data
(IDataParser) and user request (IUserRequest).

VisualizationExecutor (IVisualizationExecutor) safely executes generated Python code in
sandboxed environments.

OntologyManager maintains the RDFlib knowledge graph, implementing ontology
operations (prompt/script entity creation, model versioning, etc.) through 10ntologyGraph.

The Ontology component of the data layer, exposed through the 10ntologyGraph interface, acts as
the system’s persistent knowledge base.

The Script generation subsystem interacts with external components (third-party prototype
components):

1.

The PlatformUIComponent is the core user interface of the platform. It integrates the
DashComponent to display visualization and chat interactions via linked interface 1Dash.
The LibraryExtensionSubsystem is responsible for developing and publishing new
visualization packages. It implements the IModelUpdater interface, through which the
AlModelManager component initiates an update or selection of the LLM model version.
When preparing a query to a language model, the AIModelManager switches the context to
the latest trained model via IModelUpdater if necessary.

When a new file is uploaded to the system, the SourcelntegrationModule passes it to the
FileUploadParser component via the IDataSource interface for further processing.

3.3 User-System Interaction Workflow

The data visualization assistant operates through a multistage process (Fig. 3), which is initiated
once a user uploads a data file. This workflow can be summarized as follows:

1.

File upload and data parsing. After the user uploads a data file (CSV or Excel), the system
validates the file to confirm compatibility with supported data types. Then it converts the
contents into a structured representation suitable for subsequent processing and displays an
interactive preview, allowing users to inspect and verify the data before proceeding.
User request processing. When a visualization request is submitted, the application
constructs a context-aware prompt to provide the system with sufficient details for generating
suitable visualization. This information is passed on to the generative model, which produces
an executable script tailored to the user’s stated objective.
Code execution and visualization. The generated script undergoes a basic sanitization process
to ensure compliance with the application’s requirements. Subsequently, it is executed in a
contained environment. The visualization output is then rendered within the application
interface, enabling users to explore the data interactively. Errors or inconsistencies within the
script are handled gracefully, with feedback provided to the user as needed.
Semantic metadata persistence. All pertinent data from each session (including user prompts,
the resulting scripts, and associated metadata) are stored in a semantic repository.
Chat history and interface updates. The human—Al interactions are appended to a session-
specific chat history, formatted with distinct styling for human—Al messages. The interface
dynamically refreshes to display both the visualization and code snippet, ensuring
transparency in the AI’s output.
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Fig. 3. User-system interaction workflow

This workflow emphasizes automation, reproducibility, and semantic traceability by integrating
interactive visualization with knowledge graph technologies. The ontology facilitates long-term
analytics on Al-generated artifacts, thereby adhering to FAIR (Findable, Accessible, Interoperable,
and Reusable) data principles 0.

4. Prototype Development

4.1 Selection of Development Tools

Programming language Python with Plotly visualization library was selected for its versatility and
extensive support across data analytics and visualization domains. Plotly, in particular, was chosen
due to its capabilities for interactive visualization and its comprehensive suite of supported chart
types.

The ontological framework was developed using Protégé ontology editor. This framework enables
the persistence of necessary data within an RDF-based ontology managed via the Python library
RDFlib.

The user interface is implemented using Dash — a Python framework designed for building
interactive web applications.

Al integration for natural language processing and prompt management is implemented with the
Grog API in conjunction with the llama3-70b-8192 model. This configuration provides an 8192-
token context window, supporting extensive natural language input without limitations on maximum
completion tokens or file size.

The system leverages the LangChain framework for the pipeline orchestration to orchestrate the
end-to-end process of generating Plotly-compatible Python code. LangChain facilitates prompt
formulation and task chaining. It ensures that the model adheres to predefined constraints (such as
omitting data-loading steps) and focuses solely on visualization logic (e.g., axis mapping and chart
type selection).

4.2 Ontology Development

The structure of the ontology comprises three core classes: Prompt, GeneratedScript, and Metadata,
interconnected via object properties to model provenance relationships (Table 2). Data properties
are defined to capture temporal, contextual, and technical attributes. The relationships are structured
as follows: “Prompt — (producedScript) — GeneratedScript — (hasMetadata) — Metadata”. The
ontology was serialized in RDF/XML to ensure interoperability with semantic web tools.
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Table 2. Ontology entities

Properties

Class
Data properties Object properties

hasCodeContent (string)
Generated_scripts hasLanguage (string) hasMetadata
hasTimestamp (dateTime)

hasFileName (string)
Metadata hasModelVersion (string) }

hasContent (string)
Prompts hasSessionID (string) producedScript
hasTimestamp (dateTime)

4.3 Interface Design
The interface features a dual-panel layout (Fig. 4). Left Panel (GraphComponent) combines data
upload functionality, visualization controls, and code display. Key components are:

e adrag-and-drop file uploader supporting CSV/Excel formats;

e an interactive grid (Dash AG Grid) for real-time data preview;

o atext area for natural language queries and a button to trigger Al processing;

o dynamic rendering of Plotly graphs and generated code snippets.
Right Panel (ChatComponent) displays a session-specific chat history with distinct styling for user
inputs (blue background) and Al responses (grey background).

| €hCh @ O @ 1270078017 Dash P O 2 B

3aura or BpepoHoCksX porpamm oTkniouewa  Binowrs (@ x

Il Al-Assistant for creating graphs on Plotly Chat history

1. Upload a CSV or Excel file with data to visualize. There are no messages in the

history.

2. Enter a query to construct the graph (e.g: ‘Construct a graph of sales vs. time’);

Enter your request...

# Plot the graph

Fig. 4. Al-assistant interface

4.4 Prompt Formation

When a visualization request is submitted, the application constructs a context-aware prompt using
LangChain’s ChatPromptTemplate. The prompt integrates the following elements: the original
filename; the first five rows of the dataset as a CSV string; historical chat messages (if available) to
maintain conversational continuity; a user request.

After the prompt is generated, it is processed by the Grog API using the llama model.

4.5 Code Extraction and Visualization Execution

The VisualizationExecutor component orchestrates the transformation of Al-generated code into
executable visualization workflows.
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Regular expression patterns for the code transformation:

1™ (?:[Pplython) ?(.*?)™ 1)
rdf\s*=\s*pd\.read_\w+\(.*?\)’ 2
r'(?m)Ms*ig\.show\(\)\s*$' 3)

Upon receiving the model’s raw output, a regular expression pattern (1) identifies and extracts
Python code blocks. The sanitization phase removes non-essential operations, including: redundant
data loading — predefined DataFrame declarations (pd.read_csv() / pd.read_excel()) are stripped (2),
as the dataset is already cached client-side; rendering commands — calls to fig.show() are omitted (3)
to prevent runtime conflicts within Dash’s callback architecture.

The purified code is executed dynamically via Python’s function exec() within a sandboxed
environment.

4.6 Chat History Management
The ChatService component ensures conversational continuity by persisting user-Al interactions in
a JSON-serializable format. Key features include the following functions:
e message typing: messages are classified as HumanMessage (user queries) or AlMessage
(model outputs), each with timestamped metadata;

e state preservation: the dcc.Store component caches chat history client-side, enabling
seamless navigation during active sessions;

¢ dynamic rendering: messages are displayed in chronological order with auto-scrolling to
the latest entry.

4.7 Ontology-to-Prototype Integration
The integration of semantic knowledge representation with application logic is facilitated by a
dedicated OntologyManager component. This component orchestrates the following processes:

1. Ontology Initialization:

o the component loads an existing RDF/XML file or initializes a new RDF graph;
e custom namespace (“MY”) is bound to ensure Uniform Resource ldentifier (URI)
consistency across entities, adhering to semantic web standards.
2. Individuals Generation:
o the add_prompt(content, session_id) method generates unique prompt individuals,
assigning Universally Unique Identifiers (UUIDs), user provided content, and optional
session identifiers to enable cross-request traceability;

o the add_generated_script(code_content, language = “Python”) function encapsulates
generated code snhippets, programming language specifications (default: Python), and
timestamps to record the exact time of code synthesis;

e the add_metadata(file_name, model_version) method associates scripts with technical
metadata, including the source filename and Al model version, ensuring reproducibility.

3. Semantic Relationship Mapping:

o RDF triples are dynamically constructed using object properties producedScript and
hasMetadata;

o the methods link_promt_to_script (prompt_uri, script_uri) and link_script_to_metadata
(script_uri, metadata_uri) formalize these connections within the ontology, establishing
a provenance chain from user requests to technical execution parameters.
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5. A Case of Data Visualization Generation

5.1 Dataset Description

To demonstrate the functionality of the prototype, the Sleep_health_and_lifestyle_dataset.csv was
used. This dataset contains 400 entries and 13 variables, encompassing demographic, behavioral,
and physiological factors related to sleep health, such as age, gender, occupation, sleep duration and
quality, physical activity, stress, BMI category, blood pressure, heart rate, daily steps, and the
presence of sleep disorders.

5.2 Experiments with Generating Data Visualizations

After uploading the dataset, the system displays the data in a tabular format, allowing users to filter
and sort columns (Fig. 5). At this initial stage, the message history is empty.

Rt @ ¢ @ 127.001:8017 Dash

3aweTa oT EpeAcHOCHHIX NRoTpaMM oTkioveHa  Brmownte (D) x

Il Al-Assistant for creating graphs on Plotly

1. Upload a CSV or Excel file with data to visualize.

........................................................................................................................................

Sleep_health_and lifestyle_dataset.csv

Person ID Gender Age Occupation Sleep Duration Quality Of Sleep Physical Activity Level Stress Level EMI Category
v v v v v v v v
1 Male 27 Software Engin... 6.1 6 42 6 Overweight
2 Male 28 Doctor 6.2 6 60 8 Normal
3 Male 28 Doctor 6.2 6 60 8 Normal
4 Male 28 Sales Represent... 59 4 30 8 Obese
5 Male 28 Sales Represent... 59 4 30 8 Obese
6 Male 28 Software Engin... 59 4 30 8 Obese
7 Male 29 Teacher 63 3 40 7 Obese -

Fig. 5. Display of loaded data in the system

5.2.1 Step 1 “No Chart Type, Only Concept”
Task: “Build a visualization of the top 10 professions with the highest stress level”.

Response and commentary: the system autonomously selected an appropriate visualization type — a
bar chart — to represent the data (Fig 6). The interactive graph displays tooltips upon hovering over
a bar. Examination of the code (Fig. 7) reveals that the process involves grouping by occupation,
computing the average stress level, and subsequently sorting the results to identify the top ten

professions.
Top 10 Professions with the Highest Stress Level

Sales Representative  Salesperson Scientist Seftware Engineer Accountant

Mean Stress Level
IS

0

Profession

Fig. 6. Experiment M2l — Generated visualization
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Here's the code to create a bar chart using Plotly to visualize the top 10 professions with the highest stress level:
“"python
import pandas as pd

import plotly.express as px

# Load the data
df = pd.read csv('Sleep_health_and_lifestyle dataset.csv')

# Group by Occupation and calculate the mean Stress Level

stress_by_profession = df.groupby('Occupation’)['Stress Level'].mean().reset_index()

# Sort the data by mean Stress Level in descending order

stress_by_profession = stress_by_profession.sort_values('Stress Level', ascending=False)

# Select the top 1@ professions with the highest stress level

top_10_stressful_professions = stress_by_profession.head(10)

# Create a bar chart using Plotly
fig = px.bar(top_10_stressful_professions, x='Occupation', y='Stress Level',
title='Top 10 Professions with the Highest Stress Level',

labels={'Occupation': 'Profession', 'Stress Level': 'Mean Stress Level'}
fig.show()

This code will generate a bar chart showing the top 10 professions with the highest mean stress level. The x-axis will display the profession, and the
y-axis will display the mean stress level.

Fig. 7. Experiment Mo 1 — Generated script

5.2.2 Step 2 “Customization of a Previously Created Chart”

Task: “Change the color of bars to yellow, set the title to “Professions with the highest stress level”,
and display only the top 5 professions”.

Response and commentary: the model successfully addressed all requirements, dynamically
updating the visualization (Fig. 8). The chat history is updated to document the changes and
interactions (Fig 9).

5.2.3 Step 3 “Complex Task with No Specified Chart Type”

Task: “Show me a visualization from which | can draw many conclusions ”.

Response and commentary: given the open-ended nature of the task, the model produced a scatter
plot (Fig. 10). This visualization illustrates the relationship between Sleep Duration, Physical
Activity Level, and Stress Level for each individual. The system further provides interpretative
questions (e.g., “Do individuals with higher Physical Activity Level tend to have lower Stress Levels
or higher Daily Steps?”, “Are there any clusters or patterns in the data that could indicate underlying
relationships between variables?”), thereby facilitating comprehensive analytical inquiry.

Professions with the highest stress level

Sales Representative Salesperson Sdentist Doctor Software Engineer

Profession

Fig. 8. Experiment M2 2 — Generated visualization
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User: Change color of bars to yellow. Set title as

"Professions with the highest stress level".

Demonstrate only top-5 professions.

Fig. 9. Experiment M2 2 — Chat history

Cemon. @ ¢ @ 1270018017 Dash Roewx 2 € O B g

2. Enter a query to construct the graph (e.g- Construct a graph of sales vs. time
Show me a visualization from which | can draw many conclusions. ‘

Relationship between Sleep Duration, Physical Activity Level, and Stress Level

G & ra|Exs @

5w e e . stress Levet
) .
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Sleep Duration (hours)

Mere's a coda snippat that creates a scatter plot using Plotly to visualize the relationship between Slesp Duration, Physical Activity Level, and
Strass Lavel for sach individual:

dmport pandas a5 pd

dmport plotly.express as px

# Losd the dats
4F = pd.resd_esul'Sleep_health_and_lifestyle_dataset.esv')

Fig. 10. Experiment M2 3 — Generated visualization
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5.2.4 Step 4 “Predefined Chart Type, No Specific Concept”

Task: “Construct a pie chart”.
Response and commentary: in response, the model generated a pie chart to display the distribution
of BMI categories within the dataset (Fig. 11).

Distribution of BMI Categories

52.1%

&
&
o

2.67%

Fig. 11. Experiment M2 4 — Generated visualization

5.3 Results of the Experiments: Summary

Collectively, these examples demonstrate a fraction of the visualization capabilities achievable with
the Al-assistant. Moreover, an analysis of the ontology reveals that it has been dynamically updated
throughout these interactions. The sequence of relationships “prompt — generated script — metadata”
is preserved within the ontology individuals, confirming the robust integration of the knowledge-
driven framework (Fig. 12).

Annotations | Usags

2O P S PSR Annotations: ontology_of_generated_scriptsOcefd218-de5f-48e1-9012-4fbe83492d83

v @ owiThing Annotations
| » Ontolegy_of_generated_scripts N
i ontology_of_generated_scriptsGeneratedScript ontology_of_generated_scriptshasContent

ontology_of_generated_scriptsMetadata Build a visualization ofthe top 10 professions with the highest stress level

ontology_of_generated_scriptsPrompt

ontology_of_generated_scriptshasSessionlD
session_1

Indviduals JERIECA Rl IERER] ontology_of_generated_scriptshasTimestamp  [type: xsd:dateTime]

Direct instances: ontology_of_generated_s 210 5 E X 2025-04-10T00:23:37 8415655

+
¥ B ontology_of_generated_scriptsproducedScript
For: @ ontalogy_of_generated_scriptsPrompt @ ontology_of_gensrated_scripts?aBcdhes-16(6-4052-b42c-23b 8126826

@ ontology_of_generated_scripts018d1294-250d-45b7-96¢

Fig. 12. An example of Prompt class individual

6. Evaluation of the Al-assistant

The Al-assistant automates the creation and execution of Plotly scripts by transforming user’s
natural-language requests into ready-to-run code. During testing, it demonstrated strong
performance across a variety of tasks: from drawing basic bar charts to interpreting more abstract
specifications. It also simplifies choosing the most appropriate visualization for a given dataset or
analysis goal. By displaying the generated code, the assistant serves as a teaching aid for both Python
and Plotly.

The prototype’s architectural novelty lies in integration with two core components:

1. A multifaceted ontology that logs every user request and generated script, enabling scalable
knowledge accumulation, reuse of code templates across similar scenarios, and enhanced
collaborative analytics.

2. Alibrary extension subsystem that develops custom plugins atop existing libraries, trains the
model to invoke these domain-driven functions natively, and in future iterations will leverage
an AlModelManager to automatically select or update to the latest fine-tuned LLM version.
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However, generative models remain prone to “hallucinations”, inventing nonexistent methods,
producing syntactically incorrect code, or misinterpreting parameters, which can undermine script’s
reliability. To mitigate these risks, the interface displays a persistent footer reminder to verify the
assistant’s outputs and shows a clear “Error when generating the graph” notification if execution
fails.

Currently, users are responsible for validating the generated code via these error notifications,
because the system does not automatically check the accuracy of the model output against the user’s
intent. To address this issue, future work includes training the model on real data and implementing
performance criteria for effective visualizations. Derived from cognitive-visualization research [17,
18], these metrics will be formalized and embedded in the toolkit to enable automated compliance
checks of visualizations against best practices.

7. Conclusion

In conclusion, this study has designed and developed a data visualization assistant as a part of a
prototype of knowledge-driven data visualization tools. The innovative aspect of this approach lies
in the integration of an Al-assistant with an ontology-based framework, which facilitates scalable
knowledge accumulation. This integration significantly enhances collaborative analytics by
enabling the sharing of standardized scripts and domain specific insights among user communities,
thereby reducing redundancy and fostering robust reproducibility in data-driven workflows.

Future work will first expand the Plotly ecosystem with new custom packages and then train the
model on user-defined modules to better support atypical visualizations. Criteria for effective
visualizations [17, 18] will also be formalized and embedded into the platform to automatically
analyze the compliance of constructed diagrams with best practices and help users avoid common
mistakes.
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