
Труды ИСП РАН, том 37, вып. 5, 2025 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

157

 DOI: 10.15514/ISPRAS-2025-37(5)-12

Improving Image Analysis
and Processing Performance

on the RISC-V Platform with Lichee Pi 4A

N.I. Cherepanov, ORCID: 0009-0001-9135-9654 <cherepanov.ni@edu.spbstu.ru>

N.O. Stepina, ORCID: 0009-0001-4740-637X <gubenko_no@spbstu.ru>

I.V. Nikiforov, ORCID: 0000-0003-0198-1886 <nikiforov_iv@spbstu.ru>

Peter the Great St. Petersburg Polytechnic University,

29, Polytechnicheskaya st., St. Petersburg, 195251, Russia.

Abstract. The study explores optimization methods for improving image processing performance on the

RISC-V platform with Lichee Pi 4A. The research focuses on real-time video processing within a microservice-

based self-service system. Several existing optimization strategies are considered and evaluated, including

neural network model optimization, hardware acceleration using RVV vector instructions and leveraging the

built-in Neural Processing Unit (NPU). The profiling results on existing strategies indicate that object detection

and feature extraction consume the most computation resources. In order to eliminate the performance gap, the

model quantization to INT8 format is implemented, that allows to reduce memory usage and inference latency.

Additionally, a modified ONNX Runtime version is deployed to support NPU acceleration. These

improvements led to 75% reduction in model size and a 35% decrease in inference latency. The study concludes

that hardware-aware optimizations significantly enchase performance on the RISC-V (Lichee Pi 4A) platform.

The main issue encountered is the low processing speed on Lichee Pi 4A, with a current frame rate of only 0.05

FPS, which in unsuitable for practical usage.

Keywords: RISC-V; Lichee Pi 4A; image processing; neural network; vectorization; NPU; ONNX Runtime;

performance optimization; real-time processing.

For citation: Cherepanov N. I., Stepina N. O., Nikiforov I. V. Improving image analysis and

processing performance on the RISC-V platform with Lichee Pi 4A, Proceedings of the Institute for

System Programming of the RAS, vol. 37, issue 5, 2025, pp. 157-172. DOI: 10.15514/ISPRAS-

2025-37(5)-12.

mailto:nikiforov_iv@spbstu.ru

Cherepanov N. I., Stepina N. O., Nikiforov I. V. Improving image analysis and processing performance on the RISC-V platform with Lichee

Pi 4A, Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 157-172.

158

Повышение производительности анализа и обработки
изображений на платформе RISC-V с помощью Lichee Pi 4A

Н.И. Черепанов, ORCID: 0009-0001-9135-9654 <cherepanov.ni@edu.spbstu.ru>

Н.О. Степина, ORCID: 0009-0001-4740-637X <gubenko_no@spbstu.ru>

И.В. Никифоров, ORCID: 0000-0003-0198-1886 <nikiforov_iv@spbstu.ru>

Санкт-Петербургский политехнический университет Петра Великого,

195251, Россия, Санкт-Петербург, Политехническая улица, д. 29.

Аннотация. В исследовании изучаются методы оптимизации для повышения производительности

обработки изображений на платформе RISC-V с использованием Lichee Pi 4A. Исследование

сосредоточено на обработке видео в режиме реального времени для системы самообслуживания,

которая реализована в виде микросервисного приложения. Рассматриваются и оцениваются стратегии

оптимизации, включая оптимизацию модели нейронной сети, аппаратное ускорение с использованием

векторных инструкций RVV и использование встроенного ускорителя для нейронных сетей (NPU).

Результаты профилирования существующих стратегий показывают, что обнаружение объектов и

извлечение признаков потребляют большую часть вычислительных ресурсов. Чтобы устранить разрыв

в производительности, реализовано квантование модели в формат INT8, что позволяет сократить

использование памяти и задержку вывода. Кроме того, развернута модифицированная версия ONNX

Runtime для поддержки ускорения NPU. Эти улучшения привели к уменьшению размера модели на 75%

и уменьшению задержки вывода на 35%. В исследовании делается вывод, что аппаратно-

ориентированные оптимизации значительно повышают производительность на платформе RISC-V

(Lichee Pi 4A). А также определена основная проблема практического применения разработанного

решения на Lichee Pi 4A, связанная с низкой скоростью обработки данных: текущая частота кадров

составляет всего 0,05 FPS.

Ключевые слова: RISC-V; Lichee Pi 4A; обработка изображений; нейронная сеть; векторизация; NPU;

ONNX Runtime; оптимизация производительности; обработка в реальном времени.

Для цитирования: Черепанов Н. И., Степина Н. О., Никифоров И. В. Повышение производительности

анализа и обработки изображений на платформе RISC-V с помощью Lichee Pi 4A, Труды ИСП РАН,

том 37, вып. 5, 2025 г., стр. 157–172 (на английском языке). DOI: 10.15514/ISPRAS–2025–37(5)–12.

1. Introduction

Modern and young open RISC-V [1] architecture is widely used in embedded systems and high-

performance computing. However, when it comes to computer vision [2] and image processing, the

platforms, that implements the RISC-V architecture, face several challenges. Well-established

architectures such as x86 and ARM [3] are free of those challenges because of years of development

and thousands of researchers and developers involved.

One of the main challenges of using RISC-V (especially on Lichee Pi 4A) for image and video

processing is low framerate (FPS) when processing video streams, which is critical for object

detection and classification.

For production lines and environments, where, for example, robotic arms are used, that are equipped

with vision systems, video processing plays a crucial role in object recognition (Fig. 1). Computer

vision relies heavily on video stream processing [4] as working with dynamic scenes requires real-

time object recognition and rapid system response to changes. This is particularly important in fields

such as retail, medical diagnostics and autonomous systems, where the accuracy and speed of frame

analysis directly impact decision-making. Transitioning from standard processors to RISC-V

platforms could significantly reduce manufacturing costs due to their open-source nature and

hardware flexibility in comparison to traditional hardware and software design.

mailto:cherepanov.ni@edu.spbstu.ru
mailto:nikiforov_iv@spbstu.ru

Черепанов Н. И., Степина Н. О., Никифоров И. В. Повышение производительности анализа и обработки изображений на платформе

RISC-V с помощью Lichee Pi 4A, Труды ИСП РАН, 2025, том 37 вып. 5, с. 157-172.

159

Fig. 1. Testing environment - computer vision system.

There are the following existing implementations of RISC-V on the market: Lichee Pi 4A, Mango

pi MPI-MQ1, Milk-V Pioneer, Banana Pi BPI-K1, VisionFive 2, GiFive Unmatched. Each of these

platforms varied in terms of performance, available features and suitability for machine vision

applications (Table 1).

The Lichee Pi 4A board served as the hardware platform for this project, following a task proposed

by an industrial partner. The goal of the work includes evaluation of the performance characteristics

and evaluating if Lichee Pi 4A is suitable for practical applicability of this specific RISC-V

implementation in real-time machine vision scenarios. Compares to other boards, Lichee Pi 4A

offered a balanced combination of high CPU frequency, a powerful GPU and a dedicated NPU,

making it suitable for neural inference tasks such feature extraction.

Table 1. Comparison of characteristics of single RISC-V Boards.

Model CPU CPU Freq. GPU NPU RAM Price

Mango Pi
Allwinner D1

(C906, RISC-V)
1.0GHz - - 1GB DDR3 ~$20

Lichee Pi
T-Head TH1520

(4xC910)
2.0GHz

Imagination

BXM-4-64
4 TOPS

up to 16GB

LPDDR4X
~$119

Mikl-V

SOPHON

SG2042

(64xC920)

up to 2Ghz - -
up to 128GB

DDR4
~$1000

Banana Pi
SpacemiT K1

(6xX60)
- IMG BXE-2-32 2 TOPS

up to16 GB

LPDDR4
~$100

VisionFive 2
StarFive JH7110

(4xU74)
1.5GHz IMG NXE-4-32 -

up to 8GB

LPDDR3
~$70

HiFive

SiFive U740

(4xU74

+S7 core)

1.2GHz - - 16GB DDR4 ~$665

As a result of the testing and evaluating the performance in the article it is concluded that Lichee Pi

4A lags in performance, especially in real-time processing. This is not due to RISC-V flaws in the

architecture itself, but rather its relative novelty: high-performance chips are still in development

and many essential software tools have not been ported yet.

As far as there is no direct access to industrial systems, article authors created a development

environment for retail domain. There is a microservise application [5] developed, where video

processing serves as the functionality. Based on this system, various optimization approaches are

considered and evaluating. The system consists of three main microservices [6]:

 backend service - responsible for video stream processing, object detection and managing

the consumers requests;

Cherepanov N. I., Stepina N. O., Nikiforov I. V. Improving image analysis and processing performance on the RISC-V platform with Lichee

Pi 4A, Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 157-172.

160

 frontend service - provides the user interface and displays the video stream;

 database service - stores product data, including names, prices and categories.

The main goal of testing system, that is used for performance evaluation, is to automatically identify

the products taken by the customer and generate a shopping cart for checkout. However, its current

implementation, the video processing speed is only 0.05 FPS, making the system unsuitable for

practical use. To ensure successful, the processing speed must reach 30 FPS [7].

Thus, the key objective of this study is to increase the performance of the computer vision system

on the Lichee Pi 4A platform to 30 FPS. To achieve this, the following steps are necessary [8]:

 optimizing the neural network model for object detection;

 improving frame processing while considering the capabilities of the RISC-V platform;

 utilizing hardware accelerators such as NPU, SIMD and RISC-V Vector Extensions

(RVV) [9].

To evaluate the system’s real-time performance, the frames per second (FPS) metric is measured

using Python high-resolution timer. The procedure includes the following steps:

 at the beginning of each frame-processing cycle, the start timestamp is recorder;

 the frame undergoes all stags of processing, including acquisition, processing, neural

network inference and postprocessing;

 upon completion, the end timestamp is recorded;

 the time taken for a single frame is computed as the difference between the end and start

time;

 instantaneous FPS is calculated as the reciprocal of the frame time;

 this process is repeated for a large number of frames and the average FPS is derived by

averaging the collected values.

To assess the computational load of operations, CPU usage is analyzed at each stage of processing.

The 15-20% allocation for preprocessing is determined by comparing the total processing time with

the time spent specifically on this stage across several experiments.

In order to understand hardware and software design (co-design) of the experiment stand, that is

critical for performance evaluation, let’s consider every part separately.

2. Research

Modern research it the field of image processing on the RISC-V platform demonstrates a growing

interest in optimizing performance and energy efficiency, especially for embedded systems and

devices with limited resources. This chapter examines the key work on this topic, as well as

highlights their main achievements and limitations.

In [10], a hardware accelerator for YOLOv3-Tiny using RISC-V SoC was proposed. The authors

achieve a bandwidth of 21.6 GOPS/s, but note limitations associated with frequent memory access.

The article [11] compares various models (SOLO, SSD, Faster RUN) on the SiFive U540 platform.

YOLOv3 and SSD-MobileNet showed the best results, which confirms the importance of choosing

a model for a specific hardware platform.

The work [12] demonstrates the advantages of vector instructions to speed up CNN operations. The

authors note that increasing the length of the vector (VLEN) does not always lead to a proportional

increase in performance due to memory limitations.

In [13], the use of TVM for quantized RISC-V models with the P extension is investigated. The

results show an acceleration of 2.7 – 7.0 times compared to FP32, which highlights the potential of

quantization for RISC-V.

Черепанов Н. И., Степина Н. О., Никифоров И. В. Повышение производительности анализа и обработки изображений на платформе

RISC-V с помощью Lichee Pi 4A, Труды ИСП РАН, 2025, том 37 вып. 5, с. 157-172.

161

 3. Platform’s hardware equipment

The project is implemented using the Lichee Pi 4A - a single-board computer based on the T-Head

TH1520 processor. Its key specifications include:

 processor – 4-core RISC-V C920 (up to 1.85 GHz) with SIMD and RVV 0.7.1 support;

 graphics – 50 GFLOPS Imagination BXM-4-64 GPU (supports OpenGL ES 3.x and

Vulcan);

 NPU – 4 TOPS performance for accelerating AI computations;

 RAM – up to 16 GB LPDDR4/4x.

The T-Head TH1520 processor, developed by Alibaba Group’s semiconductor division, is designed

for embedded systems with high computational demands. It features an optimized L1 and L2 cache

hierarchy, which plays a crucial role in processor performance. The L1 cache is split into separate

instruction and data caches, allowing for faster access to frequently used data and reducing latency.

The L2 cache, being larger and shared among cores, helps mitigate memory bottlenecks by storing

recently accessed data, reducing the need for frequent main memory accesses. This cache structure

significantly improves processing speed, particularly in image analysis and video processing tasks,

where rapid data retrieval is essential. The BXM-4-64 GPU provides hardware-accelerated

rendering and supports 4K displays. However, for machine learning tasks and other algorithms that

require massive parallel computing, it is recommended to use NPU, since its performance higher

than the GPU capabilities in similar workloads.

 4. Software architecture

ONNX Runtime is a high-performance inference engine designed to execute machine learning

models in the ONNX (Open Neural Network Exchange) format [14]. It provides hardware

acceleration and optimization techniques, making it suitable for deployment across various

platforms, including CPU, GPU and specialized accelerators.

The project uses ONNX Runtime for model execution because TensorFlow, PyTorch and other

major ML libraries are not officially ported to RISC-V. TensorFlow Lite for Microcontrollers has

been ported to RISC-V architecture, but this is just a lightweight version. Porting the full version of

TensorFlow to RISC-V requires the use of cross-compilers and additional settings, which is

confirmed by the documentation of the RISE project. PyTorch also has no official support for the

RISC-V architecture. There are initiatives to port PyTorch to RISC-V, such as the pythorch-riscv64

project, which provides pre-built packages for RISC-V. However, these solutions are experimental

and are not part of the official PyTorch release. In addition, discussions on the PyTorch forums

confirm that official support for RISC-V is in plans but has not yet been implemented. Since there

is no built-in support for these platforms in RISC-V, ONNX provides a universal solution that allows

you to export models trained in various environments (for example, PyTorch or TensorFlow) to

ONNX format and then efficiently execute them on RISC-V hardware.

Key reasons for choosing ONNX on Lichee Pi 4A are listed below.

1. Cross-platform compatibility – ONNX models can be exported from multiple ML

frameworks.

2. Hardware acceleration – ONNX Runtime optimizes inference through quantization,

graph optimizations and hardware-specific execution provides.

3. Lack for TensorFlow/PyTorch support – since these frameworks are not available on

RISC-V, ONNX is the best alternative.

4. Support for custom execution providers – while ONNX Runtime does not native support

TH1520 NPU, it allows experimentation with custom providers like

ShlExecutionProvider for potential acceleration.

Cherepanov N. I., Stepina N. O., Nikiforov I. V. Improving image analysis and processing performance on the RISC-V platform with Lichee

Pi 4A, Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 157-172.

162

YOLOv8n (You Only Look Once, version 8, nano model) is a deep learning model designed for

real-time object detection [15]. It balances accuracy and speed, making it suitable for embedded

systems like the Lichee Pi 4A. The model is exported in ONNX format for compatibility with ONNX

Runtime.

Key features of YOLOv8n:

 single-stage detection – the model predicts object location and classifications in a single

pass, ensuring fast inference;

 optimized for edge devices – the “small” version is designed for efficiency, making it

suitable for resource – limit platforms;

 flexibility – it can be quantized to INT8 for acceleration on NPU, though additional steps

are needed for TH1520 support.

YOLOv8n followed a CSP-based architecture [16] and included three main components:

 backbone (C2f + CBS) – extracted features at multiple scales using convolutional layers

with residual connections;

 neck (PAN-FPN) – aggregated multi-scale feature maps using anchor-free detection;

 head – prediction object classes and bounding boxes directly from feature maps using

anchor-free detection.

This lightweight design allowed the model to maintain good detection accuracy with reduced latency

and memory usage.

To train the object detection model, a custom dataset is created. The dataset consists of N products

categories, each containing 500 images, a total of 2800 images are used for training and validation

of the model, approximately 85MB on disk, collected from various online sources [17]. The dataset

is prepared in the YOLO format, which includes:

 images – the raw images containing objects of interest;

 annotation files – each image has a corresponding text file with bounding box coordinates

and class labels in YOLO format.

The annotation process involved:

 collecting images – downloading diverse product images to cover different angles,

lighting conditions, and backgrounds;

 manually labeling objects – using LabalImg and other annotation tools to draw bounding

boxes around objects and assign category labels.

The dataset images vary in resolution. All images are stored in 24-bit RGB color format with a DPI

of 72. This dataset is used to train YOLOv8n, optimizing it for real-world object detection in the

system.

As the metrics below show, this amount of data is enough to detect objects, but for more important

tasks, for example in the field to medicine, where accuracy should be close to 1, an order magnitude

more images are needed [18].

After training, the model achieved high accuracy. The average reached 0.993, indicating an almost

perfect match between predicated and actual objects.

On the Precision-Recall Curve [19] (Fig. 2), the curve for most classes stayed close to the upper-

right corner, confirming high precision along with excellent recall.

On the Recall-Confidence Curve [20] (Fig. 3), all classes maintained high recall up to a confidence

threshold of 0.85-0.9, meaning the model detected almost all object even at high confidence levels.

The system follows a structured pipeline for image processing and object detection, that is described

step by step below.

Черепанов Н. И., Степина Н. О., Никифоров И. В. Повышение производительности анализа и обработки изображений на платформе

RISC-V с помощью Lichee Pi 4A, Труды ИСП РАН, 2025, том 37 вып. 5, с. 157-172.

163

1. Preprocessing – normalization, resizing, and noise reduction.

2. Embedding extraction – converting the image into a vector representation.

3. Inference – running the neural network for detection and classification.

4. Postprocessing – interpreting and visualizing the results.

Fig. 2. Precision-Recall Curve for testing dataset of object recognition.

Fig. 3. Recall-Confidence Curve for testing dataset of object recognition.

 5. Bottleneck analysis

Let’s consider video processing steps and how they are implemented.

The OpenCV library is utilized for video stream capture and preprocessing [21], providing user-

friendly interfaces for handling video sources and image processing. Object detection is performed

using the ONNX version of YOLO [22], executed via ONNX Runtime.

Video acquisition is handled using OpenCV through the cv2.VideoCapture object. The resolution

parameters for the video stream are defined this loop as listing 1:

Cherepanov N. I., Stepina N. O., Nikiforov I. V. Improving image analysis and processing performance on the RISC-V platform with Lichee

Pi 4A, Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 157-172.

164

Listing 1. Loop video stream capture

cap = cv2.VideoCapture(1)

cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)

cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)

This configuration allows capturing frames at a resolution of 640x480 pixels in real time. The value

1 in VideoCapture(1) specifies that an external camera is being used. However, the resolution of

640x480 indicated in the article formally falls under the category of “low” according to GOST

51558-2014, where the threshold is considered to be a resolution of up to 756x576 pixels. In

addition, the choice of this resolution in the article is not due to an attempt to achieve an industrial

level of quality, but to the desire to demonstration the operability of the entire system at a prototype

level with low hardware capabilities. For industrial implementation, the solution can be adapted to

a higher camera resolution that meets requirements of GOST with more efficient hardware at the

same time. With our current experiment we see, that even for low picture resolution the recognition

speed is not enough for industrial tasks.

Object detection is performed using YOLO model in ONNX format. The ONNX Runtime library in

used for inference and preprocessing steps include below items.

1. Conversion to a Pillow object.

2. Resizing to 640x640 pixels (matching the YOLO model input format).

3. Pixel value normalization and array reshaping.

A typical video processing pipeline consists of the following key stages [23] listed below.

1. Video capture (from a camera or disk).

2. Preprocessing (video pipeline).

3. Object detection (detector).

4. Main data processing (post processing).

5. Database search (search).

Analyzing the workload at each stage helps identify the most resource-intensive operations and

determine bottlenecks that affect system performance. The percentage values in the table are

obtained through profiling and benchmarking of each processing stage. These are relative values

from the total time. The time share is measured by running the video processing pipeline on the

Lichee Pi 4A and recording the execution time for each step. Profiling and logging tools are used to

analyze performance bottlenecks, and running tests multiple times ensures consistency of the results

shown in Table 2.

Table 2. Time distribution and main limitations for video processing stages.

Processing stage Time share Main limitations

Video capture 0.10% Depends on camera I/O speed

Preprocessing 36.27% Resize, normalization CPU-bound

Object detection 61.24% Low CPU processing speed

Main data processing 1.80% Decode CPU-bound

Database search 0.04% Scale with database size

To identify bottleneck in system performance, a detailed analysis is conducted using the gprof tool.

The primary focus is on the following aspects:

 function execution time – measuring the time spent on key image processing stages;

 CPU and NPU workload distribution – analyzing hardware accelerator utilization;

 cache efficiency – evaluating the impact of caching on data processing speed.

Черепанов Н. И., Степина Н. О., Никифоров И. В. Повышение производительности анализа и обработки изображений на платформе

RISC-V с помощью Lichee Pi 4A, Труды ИСП РАН, 2025, том 37 вып. 5, с. 157-172.

165

Profiling is performed on real video streams with a resolution of 640x480 pixels. The backend

service used for testing is ran on the Lichee Pi 4A.

5.1. Video capture and pre-processing

The video capture and pre-processing stage involves reading and decoding the video stream [24].

The main workload comes from continuous data writing and reading, which can quickly fill the

cache memory. A limited cache size may cause additional delays due to frequent access to RAM.

5.2. Object detection

Detection is the first stage where neural network algorithms are applied [25]. It runs faster on a GPU,

but if GPU acceleration is unavailable, the CPU must handle the workload, creating significant

pressure on processor cores. On the Lichee Pi 4A, the built-in IPU can be used, but integrating it

with ONNX Runtime presents certain challenges:

 manual model conversion and low-level integration are required;

 hardware support is limited;

 the lack of documentation and stable tools (HHB, SDK) complicates debugging.

5.3. Inference

This stage involves running deep neural network models [26]. The main workload is typically

handled by the GPU, but on the RISC-V platform with RVV, some vector processing operations can

be offloaded to hardware, reducing dependence on the GPU. However, the lack of stable

OpenCL/Vulkan drivers for the GPU remains an issue.

5.4. Vectorization and embedding

After inference, feature extraction is required. This stage demands intensive computation. The use

of SIMD and RVV vector instructions could speed up the process [27], but current implementations

do not always take full advantage of these capabilities.

5.5. Database search

This stage places a load on memory and storage. If the database is stored on a device with limited

memory, frequent disk access can cause delays. However, in the current project, this is not a critical

issue that needs immediate resolution.

Future following improvements are possible:

 implementation of multi-level caching;

 use of memory-mapped files;

 optimization of data structures for RISC-V architecture;

 vector quantization to reduce memory footprint.

5.5. Diagnosing problems

Video processing challenges on the Lichee Pi 4A stem from both hardware limitations and software

inefficiencies. Optimizations such as SIMD/RVV utilization, hardware NPU acceleration, and

advanced memory management algorithms can significantly improve system performance.

Diagnostics can be performed at different levels:

 hardware level – the Lichee Pi 4A is based on a relatively new architecture and its

processor implementation differs from more established platforms. This leads to potential

inefficiencies due to immature compiler optimizations, incomplete hardware support, and

Cherepanov N. I., Stepina N. O., Nikiforov I. V. Improving image analysis and processing performance on the RISC-V platform with Lichee

Pi 4A, Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 157-172.

166

limited documentation;

 software level – many libraries and frameworks have not yet been fully ported to RISC-V,

leading to compatibility issues and suboptimal performance. Additionally, the software

stack itself can often be optimized further, reducing redundant computations and

improving overall efficiency.

 6. Optimization methods

Optimizing image processing is an important aspect that helps reduce computation time [28], lower

CPU load and improve overall system performance. This section discusses various optimization

techniques, from using hardware instructions to implementing multithreaded data processing.

6.1. Using RVV for preprocessing and preprocessing

The RVV vector instruction extension enables parallel computing (Fig. 4), which is particularly

useful for matrix and tensor operations is neural network models [29] This method significantly

speeds up tasks involving large amounts of data, such as image transformation, normalization, and

convolution.

Fig. 4. Time diagram of vector addition of two arrays.

Applying RVV (RISC-V Vector Extension) can notably accelerate both data preprocessing (such as

normalization, filtering and image transformations) and the inference stage of deep learning models.

For example, operations like matrix multiplication within convolutional layers benefit greatly from

vectorized execution [30]. Unlike scalar processing (Fig. 5), which handles data elements one at a

time, vector registers in RVV enable simultaneous execution of multiple operations within a single

CPU cycle. It allows you to load a bunch of values into a vector register and simultaneously perform

operations on them.

Fig. 5. Time diagram of vector addition of two arrays.

Since the analysis of the video processing pipeline from section IV showed that it is necessary to

speed up the work of not only the inference model, but also postprocessing and preprocessing, since

they also significantly load the system. To do this, we use vectorization of calculations. On Fig. 6

Черепанов Н. И., Степина Н. О., Никифоров И. В. Повышение производительности анализа и обработки изображений на платформе

RISC-V с помощью Lichee Pi 4A, Труды ИСП РАН, 2025, том 37 вып. 5, с. 157-172.

167

the color of rectangle represents the load factor of the module. Green color – is low level of load,

yellow color – is medium load and red color – is the highest loaded modules, that requires a lot of

hardware resources.

Fig. 6. Video processing pipeline.

To apply RVV in an experimental application, functions for preprocessing and postprocessing are

written in C using an intrinsic. An important clarification is that the Lichee Pi 4A has the RVV 0.7.1

standard, which does not have auto-vectoring. Therefore, the RVV code is cross compiled into an

executable file and functions are inserted into Python code using the Cpython library.

At the preprocessing stage (Fig. 7), image scaling, normalization and formatting operations are

performed to feed into the neural network model. These steps include:

 resizing the image (cv2.resize);

 normalization of pixel values to the range [0.0, 0.1];

 channel rearrangement (CHW).

Using RVV allows to vectorize channel normalization and transformation operations. Instead of

sequentially processing each pixel, RVV loads a vector of pixels and applies division and transpose

operations in parallel.

Fig. 7. Block diagram of the preprocessing function.

Postprocessing includes (Fig. 8) processing the output tensor of the model: threshold filtering,

coordinate recalculation and preparation on the final list of objects. RVV is used to vectorize the

following operations:

 extracting and converting coordinates of boxes (x1, x2y, x2, y2);

 calculation of confidence (np.max);

 finding the class (np.argmax);

Cherepanov N. I., Stepina N. O., Nikiforov I. V. Improving image analysis and processing performance on the RISC-V platform with Lichee

Pi 4A, Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 157-172.

168

 filtering by threshold;

 converting coordinates to pixels.

Fig. 8. Block diagram of the postprocessing function.

The following RVV intrinsics were used:

 vsetvl_e32m4 – sets the length of the vector for operations with 32-bit elements using 4

registers (m4). Automatically determining the maximum possible length for the remaining

data.

 vsle_v_u8m1 – page loading of 8-bit unsigned integers in 3-byre increments. Allows you

to load color components from an alternating format.

 vwaddu_vx_u16m2/vwaddu_vx_u32m4 – is an unsigned bit depth extension with a zero

extension. What you need to convert to float.

 vfcvt_f_xu_v_f_32m4 – conversion of unsigned 32-bit integers to float32. It is necessary

to maintain accuracy during normalization.

 vfmul_vf_32m4 – vector multiplication for normalization. Multiplies each element of the

vector by 1/255 in one operation.

 vse_v_f32m4 – batch saving of 32-bit float values. This is necessary for the correct

location of the data in the CHW format.

The postprocessing function has been optimized in a similar way.

By applying RVV instruction image processing, it was possible to achieve some speed

improvements (Table 3). Thus, RVV becomes an excellent optimization tool both for processing the

data preparation stages before launching the neural network and for subsequent processing of the

results. Moreover, compared OpenCV vector methods the speed increases by about 2 times after

using RVV. And by an order of magnitude compared to scalar methods.

Table 3. RVV application results.

 Time using OpenCV

scalar functions

(sec)

Time using OpenCV

vector functions

(sec)

Out optimization

option

(sec)

Preprocessing 45.4798 0.0437 0.0222

Postprocessing 0.0093 0.0026 0.0005

Черепанов Н. И., Степина Н. О., Никифоров И. В. Повышение производительности анализа и обработки изображений на платформе

RISC-V с помощью Lichee Pi 4A, Труды ИСП РАН, 2025, том 37 вып. 5, с. 157-172.

169

6.2. Optimizing Inference Using NPU

The Neural Processing Unit (NPU) is designed for operations related to neural networks. Using the

NPU can significantly speed up inference by offloading computations from the CPU and running

them in a dedicated hardware block, which is especially useful for real-time processing of large

datasets [31].

However, not all models automatically support hardware acceleration, requiring adaptation.

Optimization includes replacing unsupported operations with equivalent ones that work efficiently

on the NPU and using quantized models to reduce computational load [32].

To use the NPU, follow these steps:

 environment preparation;

 converting the trained model to onnx format;

 quantification of the model in INT8 format, using special HHB tool;

 cross-compilation of the model into an executable program on the CPU/NPU.

This method efficiently processes images, leveraging parallel computing to accelerate embedding

extraction.

Using multithreading to distribute computational tasks across CPU cores can improve image

processing performance [33]. For example, separate threads can handle preprocessing and inference,

allowing them to run un parallel. After using the NPU, good improvements were obtained (Table 4).

The launches were carried out on the CPU and NPU.

Table 4. Comparison of data processing time on a neuroprocessor and a central processing unit.

Device Time using (sec)

NPU 0.063

CPU 67

As one can see from the results, running the model without using an NPU has no practical

application, since the execution speed will be too low. Using an NPU significantly speeds up

execution.

 6. Conclusion

The highest computational load in image processing in our experimental stand comes from the

inference and image processing. Therefore, these should be rewritten in C using RVV instructions

and, if possible, the NPU accelerator. Using optimized libraries and multithreading can also

significantly improve performance.

After applying the NPU, we got quite good improvements (Table 5). For comparison, another

YOLOv5n model was used, which is optimized for our NPU. The launches were carried out on the

CPU and NPU.

Table 5. Comparing the performance and accuracy of YOLO models on different computing devices.

Model Device FPS Accuracy

YOLOv8n NPU 5-10 0.967

YOLOv8n CPU <1 0.993

YOLOv5n NPU >30 0.962

YOLOv5n CPU <1 0.991

As one can see from the lest results, the speed increased significantly. Running the model without a
NPU does not make sense, since the processing speed will be too low for practical use. But these
results do not give us an accurate understanding of whether this board can be used for industrial

Cherepanov N. I., Stepina N. O., Nikiforov I. V. Improving image analysis and processing performance on the RISC-V platform with Lichee

Pi 4A, Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 157-172.

170

applications, since all the steps taken have a lot of pitfalls. However, after solving the problems
associated with the development of software tools, it will give a better understanding.

References
[1]. Cui E., Li T. Wei Q. RISC-V instruction set architecture extensions. A survey. IEEE Access 11, 2023,

24696–24711. DOI: 10.1109/ACCESS.2023.3246491.

[2]. Shen Y. Computer Vision: Technologies and Applications. Applied and Computational Engineering, vol.

163, no. 1, pp. 35–41, Jun. 2025, DOI: 10.54254/2755-2721/2025.23817.

[3]. Ali W. Exploring Instruction Set Architectural Variations: x86, ARM, and RISC-V in Compute-Intensive

Applications, Aug. 2023, DOI: 10.36227/techrxiv.24026736.

[4]. Han C., Chang C., Srivastava S., Lu Y. Scalable Complex Event Processing on Video Streams. Proc. ACM

on Management of Data, vol. 3, no. 3, pp. 1–29, Jun. 2025, DOI: 10.1145/3725419.

[5]. Borysenko V., Borysenko T. Modern approaches of design software applications based on microservice

architecture in computer and information systems and technologies. Apr. 2020,

DOI: 10.30837/IVcsitic2020201441.

[6]. Bhatnagar S., Mahant R. Designing Microservices in The Art of Decoding Microservices: An In-Depth

Exploration of Modern Software Architecture. Launch IT, 2025, pp. 135-192.

[7]. Domenech-Asensi G., Garrigos J., Lopez P., Brea V., Cabello D. Real time architectures for the Scale

Invariant Feature Transform algorithm. CNNA 2016; 15th International Workshop on Cellular Nanoscale

Networks and their Applications. Dresden, Germany, 2016, pp. 1-2.

[8]. Obukhov A., Dedov D., Volkov A., Rybachok M. Technology for Improving the Accuracy of Predicting

the Position and Speed of Human Movement Based on Machine Learning Models. Technologies, vol. 13,

no. 3, p. 101, Mar. 2025, DOI: 10.3390/technologies13030101.

[9]. Qin X., Liu X., Han J. A CNN Hardware Accelerator Designed for YOLO Algorithm Based on RISC-V

SoC. Proc. IEEE Int. Conf. ASIC, Kunming, China, 2021, pp. 1-4,

DOI: 10.1109/ASICON52560.2021.9620500.

[10]. Srivastava S. K, Srivastava A. K., Allam S., Lilaramani D. Comparative analysis on Deep Convolution

Neural Network models using Pytorch and OpenCV DNN frameworks for identifying optimum fruit

detection solution on RISC-V architecture. IEEE Mysore Sub Section International Conference

(MysuruCon), Hassan, India, 2021, pp. 738-743, DOI: 10.1109/MysuruCon52639.2021.9641594.

[11]. Chen Y.-R. Experiments and optimizations for TVM on RISC-V Architectures with P Extension.

International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 2020,

pp. 1-4, DOI: 10.1109/VLSI-DAT49148.2020.9196477.

[12]. Yu M.-S., Chang H.-C., Wang C.-T., Tien Y.-W. Optimizing computer vision algorithms with TVM on

VLIW architecture based on RVV. The Journal of Supercomputing, vol. 81, no. 1, Nov. 2024,

DOI: 10.1007/s11227-024-06530-x.

[13]. Jajal P, Jiang W, Tewari A, Kocinare E, Woo J, Sarraf A. Interoperability in deep learning: a user survey

and failure analysis of ONNX model converters. In: Proc. 33rd ACM SIGSOFT International Symposium

on Software Testing and Analysis. New York: ACM; 2024. p. 1466–1478,

DOI: 10.1145/3650212.3680374.

[14]. Fusaomi N., Shingo S., Ryoma A., Keigo W., Maki K. H. Evaluation of Interoperability of CNN Models

between MATLAB and Python Environments Using ONNX Runtime Model. AI, Computer Science and

Robotics Technology 3(1), 1–13. 2024, DOI: 10.5772/acrt.20240043.

[15]. Sohan M., Ram T. S., Ch V. R. R. A Review on YOLOv8 and Its Advancements. Data Intelligence and

Cognitive Informatics, Jan. 2024, pp. 529–545, DOI: 10.1007/978-981-99-7962-2_39.

[16]. Almeyda S., Davila A.: Process Improvement in Software Requirements Engineering: A Systematic

Mapping Study. Programming and Computer Software, 48, Aug. 2022, pp. 513–533.

DOI: 10.1134/S0361768822080084.

[17]. Lunev D., Poletykin S., Kudryavtsev D. Brain-computer interfaces: Technology overview and modern

solutions. Modern Innovations, Systems and Technologies, vol. 2, no. 3, Jul. 2022, pp. 0117-0126,

DOI: 10.47813/2782-2818-2022-2-3-01170126.

[18]. Tsekhmystro R., Rubel O., Prysiazhniuk O., Lukin V. V. Impact of distortions in UAV images on quality

and accuracy of object localization. radioelectronic and computer systems, Jan. 2025,

DOI: 10.32620/reks.2024.4.05.

[19]. Fischer L., Wollstadt P. Precision and Recall Reject Curves for Classification. Aug. 2023,

DOI: 10.48550/arXiv.2308.08381.

Черепанов Н. И., Степина Н. О., Никифоров И. В. Повышение производительности анализа и обработки изображений на платформе

RISC-V с помощью Lichee Pi 4A, Труды ИСП РАН, 2025, том 37 вып. 5, с. 157-172.

171

[20]. Boyd K., Eng K. H., Page C. D. Area under the Precision-Recall Curve: Point Estimates and Confidence

Intervals. Joint European Conference on Machine Learning and Knowledge Discovery in Databases,

Lecture Notes in Computer Science, vol. 8190, pp. 451–466, Sep. 2013, DOI: 10.1007/978-3-642-40994-

3_29.

[21]. Sinha E., Kumar A., Tyagi A. OpenCV for Computer Vision Applications. International Journal For

Multidisciplinary Research, vol. 7, no. 3, May 2025, DOI: 10.36948/ijfmr.2025.v07i03.44280.

[22]. Chinnaraju A. Benchmarking cross‑platform AI: Web Assembly, ONNX Runtime and TVM for

Real‑Time Web, Mobile, and IoT Deployment. World Journal of Advanced Research and Reviews, vol.

26, no. 2, pp. 1937–1963, May 2025, DOI: 10.30574/wjarr.2025.26.2.1832.

[23]. Yang S., Lu T. T3 SOC design flow case study: Design a video processing pipeline. ASIC, ASICON '07.

7th International Conference, Nov. 2007, DOI: 10.1109/ICASIC.2007.4415551.

[24]. Jindal K. Design and Implementation of an Embedded Image Processing System on Zynq ZedBoard: A

VLSI Perspective. International Journal for Research in Applied Science and Engineering Technology,

vol. 13, no. 5, pp. 5141–5145, May 2025, DOI: 10.22214/ijraset.2025.71372.

[25]. Smirnov E., Timoshenko D., Andrianov S. Comparison of Regularization Methods for ImageNet

Classification with Deep Convolutional Neural Networks. AASRI Procedia, vol. 6, pp. 89–94, Dec. 2014,

DOI: 10.1016/j.aasri.2014.05.013.

[26]. Pujari S. D., Pawar M. M., Wadekar M. Multi-Classification of Breast Histopathological Image Using

Xception: Deep Learning with Depthwise Separable Convolutions Model. Techno-Societal, pp. 539–546,

May 2021, DOI: 10.1007/978-3-030-69921-5_54.

[27]. Wang S., Wang X., Xu Z., Chen B. Optimizing CNN Computation Using RISC-V Custom Instruction

Sets for Edge Platforms. IEEE Trans. Comput, May 2024, pp. 1-14, DOI: 10.1109/TC.2024.3362060.

[28]. Titopoulos V., Alexakis G., Nicopoulos C., Dimitrakopoulos G. Efficient Implementation of RISC-V

Vector Permutation Instructions. arXiv:2505.07112, May 2025, DOI: 10.48550/arXiv.2505.07112.

[29]. Yuan T., Liu W., Han J., Lombardi F. High Performance CNN Accelerators Based on Hardware and

Algorithm Co-Optimization. IEEE Trans. Circuits Syst. I, Reg. Papers, Oct. 2020, pp. 1-14,

DOI: 10.1109/TCSI.2020.3030663.

[30]. Jin S., Qi S., Dai Y., Hu Y. Design of Convolutional Neural Network Accelerator Based on RISC-V. Proc.

10th Int. Conf. Appl. Tech. Cyber Intell. (ICATCI 2022), 2023, pp. 446-454. DOI: 10.1007/978-3-031-

29097-8_53.

[31]. Cono D’Elia D., Demetrescu C. Ball-Larus Path Profiling across Multiple Loop Iterations. SIGPLAN Not.

48, 10 (oct 2013), pp. 373-390, DOI :10.1145/2544173.2509521.

[32]. Agarwal R., Deshmukh R., Borhade P., Murarka S. Image Classification using Parallel CPU and GPU

Computing. Int. J. Eng. Adv. Technol., vol. 9, no. 4, Apr. 2020, pp. 5, DOI: 10.35940/ijeat.D7870.049420.

[33]. Shanthi M., Anthony Irudhayaraj A. Multithreading - An Efficient Technique for Enhancing Application

Performance. International Journal of Recent Trends in Engineering, Vol 2, No. 4, Nov. 2009, pp. 165-

167, DOI: 10.22146/ijccs.57594.

Информация об авторах / Information about authors

Никита Иванович ЧЕРЕПАНОВ– студент магистратуры высшей школы программной

инженерии Санкт-Петербургского политехнического университета Петра Великого. В 2025

получил квалификацию бакалавра в Санкт-Петербургском политехническом университете

Петра Великого по специальности "Технология разработки и сопровождения качественного

программного продукта". Сфера научных интересов: программные архитектуры, RISC-V,

машинное обучение, компьютерное зрение, искусственный интеллект.

Nikita Ivanovich CHEREPANOV is a master's student at the Higher School of Software

Engineering at Peter the Great St. Petersburg Polytechnic University. In 2025, he got bachelor

degree by graduating from Peter the Great St. Petersburg Polytechnic University with a specialty in

“Technology for developing and maintaining a high-quality software product”. Research interests:

software architectures, RISC-V, machine learning, computer vision, artificial intelligence.

Надежда Олеговна СТЕПИНА – ассистент высшей школы программной инженерии Санкт-

Петербургского политехнического университета Петра Великого. В 2023 году окончила

Санкт-Петербургский государственный политехнический университет по специальности

Cherepanov N. I., Stepina N. O., Nikiforov I. V. Improving image analysis and processing performance on the RISC-V platform with Lichee

Pi 4A, Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 157-172.

172

«Программная инженерия». В 2024 году стала аспирантом по специальности 05.13.11 –

«Математическое и программное обеспечение вычислительных машин, комплексов и

компьютерных сетей». Область научных интересов – разработка программного обеспечения,

машинное обучение, высокопроизводительные вычисления, IoT и embedded-системы.

Nadegda Olegovna STEPINA is an assistant at the Higher School of Software Engineering at Peter

the Great St. Petersburg Polytechnic University. In 2023, she graduated from the St. Petersburg State

Polytechnic University with a degree in Software Engineering. In 2024, she became a postgraduate

student in the field of Mathematical and Software Support for Computing Machines, Complexes,

and Computer Networks. Her research interests include software development, machine learning,

high-performance computing, IoT, and embedded systems.

Игорь Валерьевич НИКИФОРОВ – доцент высшей школы программной инженерии Санкт-

Петербургского политехнического университета Петра Великого. В 2011 году окончил

Санкт-Петербургский государственный политехнический университет по специальности

«Программное обеспечение вычислительной техники и автоматизированных систем». В 2014

году защитил диссертацию на соискание ученой степени кандидата технических наук по

специальности 05.13.11 – «Математическое и программное обеспечение вычислительных

машин, комплексов и компьютерных сетей». Является автором 100 научных публикаций.

Область научных интересов – разработка программного обеспечения, имитационное

моделирование, аналитика больших данных, распределенные вычисления.

Igor Valerievich NIKIFOROV. In 2011, he graduated from St. Petersburg State Polytechnic

University with a degree in «Computer Science and Automated Systems Software». He got his Cand.

Sci. (Tech.) degree in Mathematical and software support for computers, complexes and computer

networks in 2014. He is an Associate Professor at the Higher School of Software Engineering at

Peter the Great St. Petersburg Polytechnic University. He is the author of more than 100 scientific

publications. Research interests – software engineering, simulation modeling, big data analytics,

distributed computing.

