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Abstract. The study explores optimization methods for improving image processing performance on the
RISC-V platform with Lichee Pi 4A. The research focuses on real-time video processing within a microservice-
based self-service system. Several existing optimization strategies are considered and evaluated, including
neural network model optimization, hardware acceleration using RVV vector instructions and leveraging the
built-in Neural Processing Unit (NPU). The profiling results on existing strategies indicate that object detection
and feature extraction consume the most computation resources. In order to eliminate the performance gap, the
model quantization to INT8 format is implemented, that allows to reduce memory usage and inference latency.
Additionally, a modified ONNX Runtime version is deployed to support NPU acceleration. These
improvements led to 75% reduction in model size and a 35% decrease in inference latency. The study concludes
that hardware-aware optimizations significantly enchase performance on the RISC-V (Lichee Pi 4A) platform.
The main issue encountered is the low processing speed on Lichee Pi 4A, with a current frame rate of only 0.05
FPS, which in unsuitable for practical usage.
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AHHOTanus. B uccnenoBaHMM W3y4alOTCS METOJbl ONTUMHU3ALMU JUIS MOBBILICHHUS IPOU3BOAUTEIBHOCTH
obpaborku u3o0paxenuii Ha mwiarpopme RISC-V ¢ wucnomb3oBanmem Lichee Pi 4A. Hccnenosanue
COCpPEeIOTOYEeHO Ha 00paboTKe BHIEO B PEXHMME pEalbHOTO BPEMEHH ISl CHCTEMBI CaMOOOCTY>KHBaHW,
KOTOpasi peajn30BaHa B BUAE MUKPOCEPBUCHOTO IIPHIIOKEHHUS. PaccMaTpHUBalOTCS M OLCHUBAIOTCS CTPATCTHU
OINTUMH3ALMH, BKIIFOYAs ONTHMH3ALHIO0 MOJICIN HEHPOHHON CETH, allapaTHoe YCKOPEHHE C UCIIONB30BaHHEM
BEKTOPHBIX MHCTPYKIMit RVV 1 ucnonb3oBaHue BCTPOCHHOrO ycKopuTens miis HelpoHHbIX cereit (NPU).
Pesynbrathl MpOGHINPOBaHKS CYIIECTBYIOUIMX CTPATErHil MOKAa3bIBAIOT, 4TO OOHApYXCHHE OOBEKTOB M
U3BJICYCHUE TIPU3HAKOB MOTPEOISIOT GOJIBIIYIO YaCTh BBIYHCIUTEIBHBIX PecypcoB. UTOOB! YyCTPaHUTD Pa3phiB
B MIPOM3BOJHUTEIBHOCTH, Pealn30BaHO KBaHTOBaHuWe Mojend B ¢opmar INT8, 4ro mo3BoiseT COKpaTuTh
HCIIOIb30BaHKE MAMSTH U 33/IepXKy BbiBoga. Kpome Toro, pasBepuyra momuduimposannas Bepcus ONNX
Runtime ms nomnepskku yckopenus NPU. DT ynydiieHust MPUBEIH K YMEHBIICHHIO pa3Mepa Moieiu Ha 75%
U YMCHBIICHUIO 3aJep)KKM BbIBoma Ha 35%. B wmccnenoBaHmm JenmaeTcst BBIBOJ, YTO —arIapaTHO-
OpPHEHTHUPOBAaHHBIE ONTHMH3AIMU 3HAYUTEIHHO IMOBBIIAIOT MIPOM3BOJUTENBHOCTh Ha Imatdopme RISC-V
(Lichee Pi 4A). A raxxe ompenesieHa OCHOBHas MpoOiieMa MPaKTHYECKOro MPUMEHEHHUs pa3paboTaHHOro
petenust Ha Lichee Pi 4A, cBsi3aHHas ¢ HU3KOM CKOPOCTHIO OOPaOOTKH JAHHBIX: TEKYIIAss 9acTOTa KaJpoB
cocrasiseT Bcero 0,05 FPS.

Kmouessie cioa: RISC-V; Lichee Pi 4A; 06pa6oTka n3o0paxenuii; HelipoHHas ceTh; Bekropusamus; NPU;
ONNX Runtime; ontuMu3anust IPOM3BOIUTEILHOCTH; 00pabOTKa B peaIbHOM BPEMEHH.

Jst mutupoBanus: Yepenanos H. U., Crenmua H. O., Hukudopos . B. IToBblnieHre npon3BoIUTEILHOCTH
aHanm3a U 00paboTku u3oOpaxenuil Ha wiarpopme RISC-V ¢ momompro Lichee Pi 4A, Tpyast UCIT PAH,
tom 37, Beim. 5, 2025 1., ctp. 157-172 (Ha anrmuiickoM si3bike). DOL: 10.15514/ISPRAS-2025-37(5)-12.

1. Introduction

Modern and young open RISC-V [1] architecture is widely used in embedded systems and high-
performance computing. However, when it comes to computer vision [2] and image processing, the
platforms, that implements the RISC-V architecture, face several challenges. Well-established
architectures such as x86 and ARM [3] are free of those challenges because of years of development
and thousands of researchers and developers involved.

One of the main challenges of using RISC-V (especially on Lichee Pi 4A) for image and video
processing is low framerate (FPS) when processing video streams, which is critical for object
detection and classification.

For production lines and environments, where, for example, robotic arms are used, that are equipped
with vision systems, video processing plays a crucial role in object recognition (Fig. 1). Computer
vision relies heavily on video stream processing [4] as working with dynamic scenes requires real-
time object recognition and rapid system response to changes. This is particularly important in fields
such as retail, medical diagnostics and autonomous systems, where the accuracy and speed of frame
analysis directly impact decision-making. Transitioning from standard processors to RISC-V
platforms could significantly reduce manufacturing costs due to their open-source nature and
hardware flexibility in comparison to traditional hardware and software design.
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Fig. 1. Testing environment - computer vision system.

There are the following existing implementations of RISC-V on the market: Lichee Pi 4A, Mango
pi MPI-MQ1, Milk-V Pioneer, Banana Pi BPI-K1, VisionFive 2, GiFive Unmatched. Each of these
platforms varied in terms of performance, available features and suitability for machine vision
applications (Table 1).

The Lichee Pi 4A board served as the hardware platform for this project, following a task proposed
by an industrial partner. The goal of the work includes evaluation of the performance characteristics
and evaluating if Lichee Pi 4A is suitable for practical applicability of this specific RISC-V
implementation in real-time machine vision scenarios. Compares to other boards, Lichee Pi 4A
offered a balanced combination of high CPU frequency, a powerful GPU and a dedicated NPU,
making it suitable for neural inference tasks such feature extraction.

Table 1. Comparison of characteristics of single RISC-V Boards.

Model CPU CPU Freq. GPU NPU RAM Price
. Allwinner D1
Mango Pi (C906, RISC-V) 1.0GHz - - 1GB DDR3 $20
. . |T-Head TH1520 Imagination up to 16GB | _
Lichee Pi (4xC910) 2.0GHz BXM-4-64 | TOPS| | 'boDRAX $119
SOPHON
Mikl-Vv SG2042 up to 2Ghz - - up tgééﬁGB ~$1000
(64xC920)
.| SpacemiT K1 up tol6 GB | _
Banana Pi (6xX60) - IMG BXE-2-32 |2 TOPS LPDDRA $100
T StarFive JH7110 upto8GB | _
VisionFive 2 (4xUT4) 15GHz |IMG NXE-4-32 - L PDDR3 $70
SiFive U740
HiFive (4xU74 1.2GHz - - 16GB DDR4 | ~$665
+S7 core)

As a result of the testing and evaluating the performance in the article it is concluded that Lichee Pi
4A lags in performance, especially in real-time processing. This is not due to RISC-V flaws in the
architecture itself, but rather its relative novelty: high-performance chips are still in development
and many essential software tools have not been ported yet.

As far as there is no direct access to industrial systems, article authors created a development
environment for retail domain. There is a microservise application [5] developed, where video
processing serves as the functionality. Based on this system, various optimization approaches are
considered and evaluating. The system consists of three main microservices [6]:

e backend service - responsible for video stream processing, object detection and managing
the consumers requests;
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o frontend service - provides the user interface and displays the video stream;

o database service - stores product data, including names, prices and categories.
The main goal of testing system, that is used for performance evaluation, is to automatically identify
the products taken by the customer and generate a shopping cart for checkout. However, its current
implementation, the video processing speed is only 0.05 FPS, making the system unsuitable for
practical use. To ensure successful, the processing speed must reach 30 FPS [7].
Thus, the key objective of this study is to increase the performance of the computer vision system
on the Lichee Pi 4A platform to 30 FPS. To achieve this, the following steps are necessary [8]:

e optimizing the neural network model for object detection;

e improving frame processing while considering the capabilities of the RISC-V platform;

e utilizing hardware accelerators such as NPU, SIMD and RISC-V Vector Extensions

(RVV) [9].

To evaluate the system’s real-time performance, the frames per second (FPS) metric is measured
using Python high-resolution timer. The procedure includes the following steps:

e at the beginning of each frame-processing cycle, the start timestamp is recorder;

o the frame undergoes all stags of processing, including acquisition, processing, neural
network inference and postprocessing;

e upon completion, the end timestamp is recorded;

o the time taken for a single frame is computed as the difference between the end and start
time;

¢ instantaneous FPS is calculated as the reciprocal of the frame time;

o this process is repeated for a large number of frames and the average FPS is derived by
averaging the collected values.

To assess the computational load of operations, CPU usage is analyzed at each stage of processing.
The 15-20% allocation for preprocessing is determined by comparing the total processing time with
the time spent specifically on this stage across several experiments.

In order to understand hardware and software design (co-design) of the experiment stand, that is
critical for performance evaluation, let’s consider every part separately.

2. Research

Modern research it the field of image processing on the RISC-V platform demonstrates a growing
interest in optimizing performance and energy efficiency, especially for embedded systems and
devices with limited resources. This chapter examines the key work on this topic, as well as
highlights their main achievements and limitations.

In [10], a hardware accelerator for YOLOvV3-Tiny using RISC-V SoC was proposed. The authors
achieve a bandwidth of 21.6 GOPS/s, but note limitations associated with frequent memory access.
The article [11] compares various models (SOLO, SSD, Faster RUN) on the SiFive U540 platform.
YOLOvV3 and SSD-MobileNet showed the best results, which confirms the importance of choosing
a model for a specific hardware platform.

The work [12] demonstrates the advantages of vector instructions to speed up CNN operations. The
authors note that increasing the length of the vector (VLEN) does not always lead to a proportional
increase in performance due to memory limitations.

In [13], the use of TVM for quantized RISC-V models with the P extension is investigated. The
results show an acceleration of 2.7 — 7.0 times compared to FP32, which highlights the potential of
quantization for RISC-V.
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3. Platform’s hardware equipment

The project is implemented using the Lichee Pi 4A - a single-board computer based on the T-Head
TH1520 processor. Its key specifications include:

e processor —4-core RISC-V C920 (up to 1.85 GHz) with SIMD and RVV 0.7.1 support;

e graphics — 50 GFLOPS Imagination BXM-4-64 GPU (supports OpenGL ES 3.x and
Vulcan);

o NPU -4 TOPS performance for accelerating Al computations;
e RAM —upto 16 GB LPDDRA4/4x.

The T-Head TH1520 processor, developed by Alibaba Group’s semiconductor division, is designed
for embedded systems with high computational demands. It features an optimized L1 and L2 cache
hierarchy, which plays a crucial role in processor performance. The L1 cache is split into separate
instruction and data caches, allowing for faster access to frequently used data and reducing latency.
The L2 cache, being larger and shared among cores, helps mitigate memory bottlenecks by storing
recently accessed data, reducing the need for frequent main memory accesses. This cache structure
significantly improves processing speed, particularly in image analysis and video processing tasks,
where rapid data retrieval is essential. The BXM-4-64 GPU provides hardware-accelerated
rendering and supports 4K displays. However, for machine learning tasks and other algorithms that
require massive parallel computing, it is recommended to use NPU, since its performance higher
than the GPU capabilities in similar workloads.

4, Software architecture

ONNX Runtime is a high-performance inference engine designed to execute machine learning
models in the ONNX (Open Neural Network Exchange) format [14]. It provides hardware
acceleration and optimization techniques, making it suitable for deployment across various
platforms, including CPU, GPU and specialized accelerators.

The project uses ONNX Runtime for model execution because TensorFlow, PyTorch and other
major ML libraries are not officially ported to RISC-V. TensorFlow Lite for Microcontrollers has
been ported to RISC-V architecture, but this is just a lightweight version. Porting the full version of
TensorFlow to RISC-V requires the use of cross-compilers and additional settings, which is
confirmed by the documentation of the RISE project. PyTorch also has no official support for the
RISC-V architecture. There are initiatives to port PyTorch to RISC-V, such as the pythorch-riscv64
project, which provides pre-built packages for RISC-V. However, these solutions are experimental
and are not part of the official PyTorch release. In addition, discussions on the PyTorch forums
confirm that official support for RISC-V is in plans but has not yet been implemented. Since there
is no built-in support for these platforms in RISC-V, ONNX provides a universal solution that allows
you to export models trained in various environments (for example, PyTorch or TensorFlow) to
ONNX format and then efficiently execute them on RISC-V hardware.

Key reasons for choosing ONNX on Lichee Pi 4A are listed below.
1. Cross-platform compatibility — ONNX models can be exported from multiple ML
frameworks.

2. Hardware acceleration — ONNX Runtime optimizes inference through quantization,
graph optimizations and hardware-specific execution provides.

3. Lack for TensorFlow/PyTorch support — since these frameworks are not available on
RISC-V, ONNX is the best alternative.

4. Support for custom execution providers — while ONNX Runtime does not native support
TH1520 NPU, it allows experimentation with custom providers like
ShlExecutionProvider for potential acceleration.
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YOLOvV8N (You Only Look Once, version 8, nano model) is a deep learning model designed for
real-time object detection [15]. It balances accuracy and speed, making it suitable for embedded
systems like the Lichee Pi 4A. The model is exported in ONNX format for compatibility with ONNX
Runtime.
Key features of YOLOv8n:
e single-stage detection — the model predicts object location and classifications in a single
pass, ensuring fast inference;
e optimized for edge devices — the “small” version is designed for efficiency, making it
suitable for resource — limit platforms;

o flexibility — it can be quantized to INT8 for acceleration on NPU, though additional steps
are needed for TH1520 support.

YOLOv8n followed a CSP-based architecture [16] and included three main components:

o backbone (C2f + CBS) — extracted features at multiple scales using convolutional layers
with residual connections;

¢ neck (PAN-FPN) — aggregated multi-scale feature maps using anchor-free detection;

e head — prediction object classes and bounding boxes directly from feature maps using
anchor-free detection.

This lightweight design allowed the model to maintain good detection accuracy with reduced latency
and memory usage.

To train the object detection model, a custom dataset is created. The dataset consists of N products
categories, each containing 500 images, a total of 2800 images are used for training and validation
of the model, approximately 85MB on disk, collected from various online sources [17]. The dataset
is prepared in the YOLO format, which includes:

e images — the raw images containing objects of interest;

e annotation files — each image has a corresponding text file with bounding box coordinates
and class labels in YOLO format.

The annotation process involved:

e collecting images — downloading diverse product images to cover different angles,
lighting conditions, and backgrounds;

e manually labeling objects — using Laballmg and other annotation tools to draw bounding
boxes around objects and assign category labels.

The dataset images vary in resolution. All images are stored in 24-bit RGB color format with a DPI
of 72. This dataset is used to train YOLOvV8n, optimizing it for real-world object detection in the
system.

As the metrics below show, this amount of data is enough to detect objects, but for more important
tasks, for example in the field to medicine, where accuracy should be close to 1, an order magnitude
more images are needed [18].

After training, the model achieved high accuracy. The average reached 0.993, indicating an almost
perfect match between predicated and actual objects.

On the Precision-Recall Curve [19] (Fig. 2), the curve for most classes stayed close to the upper-
right corner, confirming high precision along with excellent recall.

On the Recall-Confidence Curve [20] (Fig. 3), all classes maintained high recall up to a confidence
threshold of 0.85-0.9, meaning the model detected almost all object even at high confidence levels.
The system follows a structured pipeline for image processing and object detection, that is described
step by step below.
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1. Preprocessing — normalization, resizing, and noise reduction.

2. Embedding extraction — converting the image into a vector representation.
3. Inference — running the neural network for detection and classification.

4. Postprocessing — interpreting and visualizing the results.

Precision-Recall Curve
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s - product 3: 0.005
0.951 s - product 4: 0.995
s - product 5: 0.988
g mmmmm - product 6: 0.995
‘509 s - 211 product: 0.993
£
0.851
0.8 >

0.8 085 09 0.95 1.0
Recall

Fig. 2. Precision-Recall Curve for testing dataset of object recognition.
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Fig. 3. Recall-Confidence Curve for testing dataset of object recognition.

5. Bottleneck analysis

Let’s consider video processing steps and how they are implemented.

The OpenCV library is utilized for video stream capture and preprocessing [21], providing user-
friendly interfaces for handling video sources and image processing. Object detection is performed
using the ONNX version of YOLO [22], executed via ONNX Runtime.

Video acquisition is handled using OpenCV through the cv2.VideoCapture object. The resolution
parameters for the video stream are defined this loop as listing 1:
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Listing 1. Loop video stream capture

cap = cv2.VideoCapture(1)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)

This configuration allows capturing frames at a resolution of 640x480 pixels in real time. The value
1 in VideoCapture(1) specifies that an external camera is being used. However, the resolution of
640x480 indicated in the article formally falls under the category of “low” according to GOST
51558-2014, where the threshold is considered to be a resolution of up to 756x576 pixels. In
addition, the choice of this resolution in the article is not due to an attempt to achieve an industrial
level of quality, but to the desire to demonstration the operability of the entire system at a prototype
level with low hardware capabilities. For industrial implementation, the solution can be adapted to
a higher camera resolution that meets requirements of GOST with more efficient hardware at the
same time. With our current experiment we see, that even for low picture resolution the recognition
speed is not enough for industrial tasks.

Obiject detection is performed using YOLO model in ONNX format. The ONNX Runtime library in
used for inference and preprocessing steps include below items.

1. Conversion to a Pillow object.
2. Resizing to 640x640 pixels (matching the YOLO model input format).
3. Pixel value normalization and array reshaping.
A typical video processing pipeline consists of the following key stages [23] listed below.
1. Video capture (from a camera or disk).
2. Preprocessing (video pipeline).
3. Object detection (detector).
4. Main data processing (post processing).
5. Database search (search).

Analyzing the workload at each stage helps identify the most resource-intensive operations and
determine bottlenecks that affect system performance. The percentage values in the table are
obtained through profiling and benchmarking of each processing stage. These are relative values
from the total time. The time share is measured by running the video processing pipeline on the
Lichee Pi 4A and recording the execution time for each step. Profiling and logging tools are used to
analyze performance bottlenecks, and running tests multiple times ensures consistency of the results
shown in Table 2.

Table 2. Time distribution and main limitations for video processing stages.

Processing stage Time share Main limitations
Video capture 0.10% Depends on camera /O speed
Preprocessing 36.27% Resize, normalization CPU-bound
Obiject detection 61.24% Low CPU processing speed
Main data processing 1.80% Decode CPU-bound
Database search 0.04% Scale with database size

To identify bottleneck in system performance, a detailed analysis is conducted using the gprof tool.
The primary focus is on the following aspects:

o function execution time — measuring the time spent on key image processing stages;
e CPU and NPU workload distribution — analyzing hardware accelerator utilization;
¢ cache efficiency — evaluating the impact of caching on data processing speed.
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Profiling is performed on real video streams with a resolution of 640x480 pixels. The backend
service used for testing is ran on the Lichee Pi 4A.

5.1. Video capture and pre-processing

The video capture and pre-processing stage involves reading and decoding the video stream [24].
The main workload comes from continuous data writing and reading, which can quickly fill the
cache memory. A limited cache size may cause additional delays due to frequent access to RAM.

5.2. Object detection

Detection is the first stage where neural network algorithms are applied [25]. It runs faster on a GPU,
but if GPU acceleration is unavailable, the CPU must handle the workload, creating significant
pressure on processor cores. On the Lichee Pi 4A, the built-in IPU can be used, but integrating it
with ONNX Runtime presents certain challenges:

e manual model conversion and low-level integration are required;
e hardware support is limited,;
o the lack of documentation and stable tools (HHB, SDK) complicates debugging.

5.3. Inference

This stage involves running deep neural network models [26]. The main workload is typically
handled by the GPU, but on the RISC-V platform with RVV, some vector processing operations can
be offloaded to hardware, reducing dependence on the GPU. However, the lack of stable
OpenCL/Vulkan drivers for the GPU remains an issue.

5.4. Vectorization and embedding

After inference, feature extraction is required. This stage demands intensive computation. The use
of SIMD and RVV vector instructions could speed up the process [27], but current implementations
do not always take full advantage of these capabilities.

5.5. Database search

This stage places a load on memory and storage. If the database is stored on a device with limited
memory, frequent disk access can cause delays. However, in the current project, this is not a critical
issue that needs immediate resolution.

Future following improvements are possible:
¢ implementation of multi-level caching;
o use of memory-mapped files;
e optimization of data structures for RISC-V architecture;
e vector quantization to reduce memory footprint.

5.5. Diaghosing problems

Video processing challenges on the Lichee Pi 4A stem from both hardware limitations and software
inefficiencies. Optimizations such as SIMD/RVV utilization, hardware NPU acceleration, and
advanced memory management algorithms can significantly improve system performance.
Diagnostics can be performed at different levels:

o hardware level —the Lichee Pi 4A is based on a relatively new architecture and its

processor implementation differs from more established platforms. This leads to potential
inefficiencies due to immature compiler optimizations, incomplete hardware support, and
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limited documentation;

o software level — many libraries and frameworks have not yet been fully ported to RISC-V,
leading to compatibility issues and suboptimal performance. Additionally, the software
stack itself can often be optimized further, reducing redundant computations and
improving overall efficiency.

6. Optimization methods

Optimizing image processing is an important aspect that helps reduce computation time [28], lower
CPU load and improve overall system performance. This section discusses various optimization
techniques, from using hardware instructions to implementing multithreaded data processing.

6.1. Using RVV for preprocessing and preprocessing

The RVV vector instruction extension enables parallel computing (Fig. 4), which is particularly
useful for matrix and tensor operations is neural network models [29] This method significantly
speeds up tasks involving large amounts of data, such as image transformation, normalization, and
convolution.

The vector VADD command adds two arrays A and B

. call
preparation  p————m—o
. : ! time to receive a single result
reading [ t I }
reading I } + +
record + + +
record F + }

Fig. 4. Time diagram of vector addition of two arrays.

Applying RVV (RISC-V Vector Extension) can notably accelerate both data preprocessing (such as
normalization, filtering and image transformations) and the inference stage of deep learning models.
For example, operations like matrix multiplication within convolutional layers benefit greatly from
vectorized execution [30]. Unlike scalar processing (Fig. 5), which handles data elements one at a
time, vector registers in RVV enable simultaneous execution of multiple operations within a single
CPU cycle. It allows you to load a bunch of values into a vector register and simultaneously perform
operations on them.

The scalar ADD command adds two arrays A and B

reading FH—+—

reading —t—

addition A

record —
increment-verification )

time to receive a single result
Fig. 5. Time diagram of vector addition of two arrays.
Since the analysis of the video processing pipeline from section IV showed that it is necessary to

speed up the work of not only the inference model, but also postprocessing and preprocessing, since
they also significantly load the system. To do this, we use vectorization of calculations. On Fig. 6
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the color of rectangle represents the load factor of the module. Green color — is low level of load,
yellow color — is medium load and red color — is the highest loaded modules, that requires a lot of
hardware resources.

fffffffff

IMAGE POST

PROCESSING
(decods)

medium load

Fig. 6. Video processing pipeline.

To apply RVV in an experimental application, functions for preprocessing and postprocessing are
written in C using an intrinsic. An important clarification is that the Lichee Pi 4A has the RVV 0.7.1
standard, which does not have auto-vectoring. Therefore, the RVV code is cross compiled into an
executable file and functions are inserted into Python code using the Cpython library.
At the preprocessing stage (Fig. 7), image scaling, normalization and formatting operations are
performed to feed into the neural network model. These steps include:

e resizing the image (cv2.resize);

o normalization of pixel values to the range [0.0, 0.1];

e channel rearrangement (CHW).

Using RVV allows to vectorize channel normalization and transformation operations. Instead of
sequentially processing each pixel, RVV loads a vector of pixels and applies division and transpose
operations in parallel.

I Input: BGR image (uint8 t*) |

| Step 1: Setup scale = 1/255.0, vl = vsetvl() |

Step 2: Load B, G, R vectors (vlev 8 v)
!

| Step 3: Class determination (vrgather + vmv.x for argmax) |

|
I Step 4: Normalize (vfmul) I

| Step 5: Store to CHW format |

!
[ Output: Float CHW array |

Fig. 7. Block diagram of the preprocessing function.

Postprocessing includes (Fig. 8) processing the output tensor of the model: threshold filtering,
coordinate recalculation and preparation on the final list of objects. RVV is used to vectorize the
following operations:

e extracting and converting coordinates of boxes (x1, X2y, x2, y2);
o calculation of confidence (np.max);
o finding the class (np.argmax);
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o filtering by threshold;
e converting coordinates to pixels.

| Input: Model output tensor |

| Step 1: Extract coordinates (x1, y1, x2, y2) with RVV |

I Step 2: Vectorized conﬁdencel

I Step 3: Class determination (vrgather + vmv.x for argmax) |

i

I Step 4: Threshold filtering (vmseq + vcompress) I

I Step 5: Pixel conversion (vfmacc + scaling factors) |

!

I Output: Final object list |

Fig. 8. Block diagram of the postprocessing function.
The following RVV intrinsics were used:

o vsetvl_e32m4 — sets the length of the vector for operations with 32-bit elements using 4
registers (m4). Automatically determining the maximum possible length for the remaining
data.

e vsle_v_u8ml — page loading of 8-bit unsigned integers in 3-byre increments. Allows you
to load color components from an alternating format.

e vwaddu_vx_ul6ém2/vwaddu_vx_u32m4 — is an unsigned bit depth extension with a zero
extension. What you need to convert to float.

o vfcvt f xu_v_f 32m4 — conversion of unsigned 32-bit integers to float32. It is necessary
to maintain accuracy during normalization.

o vimul_vf_32m4 — vector multiplication for normalization. Multiplies each element of the
vector by 1/255 in one operation.

e vse_v_f32m4 — batch saving of 32-bit float values. This is necessary for the correct
location of the data in the CHW format.

The postprocessing function has been optimized in a similar way.

By applying RVV instruction image processing, it was possible to achieve some speed
improvements (Table 3). Thus, RVV becomes an excellent optimization tool both for processing the
data preparation stages before launching the neural network and for subsequent processing of the
results. Moreover, compared OpenCV vector methods the speed increases by about 2 times after
using RVV. And by an order of magnitude compared to scalar methods.

Table 3. RVV application results.

Time using OpenCV | Time using OpenCV | Out optimization
scalar functions vector functions option
(sec) (sec) (sec)
Preprocessing 45.4798 0.0437 0.0222
Postprocessing 0.0093 0.0026 0.0005
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6.2. Optimizing Inference Using NPU

The Neural Processing Unit (NPU) is designed for operations related to neural networks. Using the
NPU can significantly speed up inference by offloading computations from the CPU and running
them in a dedicated hardware block, which is especially useful for real-time processing of large
datasets [31].

However, not all models automatically support hardware acceleration, requiring adaptation.
Optimization includes replacing unsupported operations with equivalent ones that work efficiently
on the NPU and using quantized models to reduce computational load [32].

To use the NPU, follow these steps:
e environment preparation;
e converting the trained model to onnx format;
¢ quantification of the model in INT8 format, using special HHB tool;
e cross-compilation of the model into an executable program on the CPU/NPU.

This method efficiently processes images, leveraging parallel computing to accelerate embedding
extraction.

Using multithreading to distribute computational tasks across CPU cores can improve image
processing performance [33]. For example, separate threads can handle preprocessing and inference,
allowing them to run un parallel. After using the NPU, good improvements were obtained (Table 4).
The launches were carried out on the CPU and NPU.

Table 4. Comparison of data processing time on a neuroprocessor and a central processing unit.

Device Time using (sec)
NPU 0.063
CPU 67

As one can see from the results, running the model without using an NPU has no practical
application, since the execution speed will be too low. Using an NPU significantly speeds up
execution.

6. Conclusion

The highest computational load in image processing in our experimental stand comes from the
inference and image processing. Therefore, these should be rewritten in C using RVV instructions
and, if possible, the NPU accelerator. Using optimized libraries and multithreading can also
significantly improve performance.

After applying the NPU, we got quite good improvements (Table 5). For comparison, another
YOLOvV5n model was used, which is optimized for our NPU. The launches were carried out on the
CPU and NPU.

Table 5. Comparing the performance and accuracy of YOLO models on different computing devices.

Model Device FPS Accuracy
YOLOvV8n NPU 5-10 0.967
YOLOvV8n CPU <1 0.993
YOLOv5n NPU >30 0.962
YOLOvVbN CPU <1 0.991

As one can see from the lest results, the speed increased significantly. Running the model without a
NPU does not make sense, since the processing speed will be too low for practical use. But these
results do not give us an accurate understanding of whether this board can be used for industrial

169



Cherepanov N. 1., Stepina N. O., Nikiforov I. V. Improving image analysis and processing performance on the RISC-V platform with Lichee
Pi 4A, Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 157-172.

applications, since all the steps taken have a lot of pitfalls. However, after solving the problems
associated with the development of software tools, it will give a better understanding.
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