Tpyowr UCIT PAH, mom 37, evin. 4, uacme 1, 2025 2. /| Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025

DOI: 10.15514/ISPRAS-2025-37(4)-4 tOC-EH

Detection of Dead Function Calls as Source Code
Defects through Static Analysis

12V.1. Vasileva, ORCID: 0009-0008-8542-6276 <veravasilieval4@ispras.ru=
L AE. Borodin, ORCID: 0000-0003-3183-9821 <alexey.borodin@ispras.ru=>
LAE. Volkov, ORCID: 0000-0002-6043-5095 <volkov@ispras.ru>

YInstitute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

2 Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia.

Abstract. Detection of dead code (i.e. the code which is executed, but does not affect an observable program
behavior) is commonly used by compilers as a part of optimization techniques for redundant code elimination.
At the same time dead function calls might be seen as a kind of program source code defects, which may point
to serious program logic faults. We describe a new detector for this kind of issues developed as a part of SVACE
static defect detection tool, as well as the specific cases, which should be filtered out for practical detection of
dead functions calls as program errors in contrast to their formal definition.

Keywords: static analysis; software defects; dead code; useless code; side effects; SvAce; C/C++ programming
languages; Go programming language; symbolic execution; data-flow analysis; live variable analysis;
interprocedural analysis.

For citation: Vasileva V.l., Borodin A.E., Volkov A.E. Detection of Dead Function Calls as Source Code
Defects through Static Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025. pp. 65-78. DOI:
10.15514/ISPRAS-2025-37(4)-4.

65

Vasileva V.1., Borodin A.E., Volkov A.E. Detection of Dead Function Calls as Source Code Defects through Static Analysis. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025. pp. 65-78.

NMounck MEPTBbIX BbI3OBOB (pYHKLMW KaK AedeKToOB UCXOQHOro Koaa
MeToAamMMm cTaTMYeCcKOro aHanumsa

12 B.U. Bacunvesa, ORCID: 0009-0008-8542-6276 <veravasilieval4@ispras.ru>
Y A.E. Bopooun, ORCID: 0000-0003-3183-9821 <alexey.borodin@ispras.ru>
L A.E. Bonkos, ORCID: 0000-0002-6043-5095 <volkov@ispras.ru=

! Huemumym cucmemmozo npozpavmuposanus PAH,
Poccus, 109004, . Mockea, yn. A. Comrcenuyvina, 0. 25.

2 Mockoeckuii 2ocyoapcmeennuiii ynusepcumem umenu M.B. Jlomonocosa,
Poccus, 119991, 2. Mockea, Jlenunckue coput, 0. 1.

Annotamus. O6HapykeHre MEPTBOTO KOJIa TPAJHIIMOHHO HCIIOJIB3YEeTCsl B KOMIMIIATOPAX Kak OHH U3 BUIOB
ONTHMH3ALK C IETbI0 ero ynaneHns. MEpTBbIE BBI30BBI (YHKIMH MOTYT paccMaTpHBaThCS M KaK BUJ
IIPOTPaMMHEIX JIepeKTOB, KOTOpBIE MOTYT YKa3blBaTh Ha CEpbE3HBIE OINMOKM B peann3aluyl JIOTHKH
IporpaMMel. B cTaThe onmchIBaeTCs peann3anus HOBOTO JETEKTOPa, pa3paboTaHHOTO KaK 4acTh HHCTPYMEHTA
CTATUYECKOTO aHalM3a SVACE, a TakkKe HCCHelyloTcs crenuduueckue ciydad MEPTBBIX BBI3OBOB,
JIEMOHCTPHPYIOINE OCOOEHHOCTH 3a/1aull IOMCKA TAKUX CHUTYalUi B KauecTBE IPOTPAMMHBIX OIIHOOK IO
CPaBHEHHMIO ¢ OPMATBHBIM ONIPEAEICHHEM MEPTBOTO KOJA.

KnroueBble cioBa: cratmueckuili aHamm3; Ae(eKTBl INPOTPaMMHOTO OOecredeHHs; MEPTBBIA KO
Gecrone3nslit koa; mobouHsle 3(dEKThI; aHanU3aTop SVACE; s3bIkHM TporpammupoBanus C/C++; si3bIk
nporpaMmupoBanus GO; CHMBOJIBHOE BBIIIOJHEHHE, aHAIU3 IOTOKA JaHHBIX; aHAJIHM3 JKUBBIX IEPEMEHHBIX;
MEXKIIPOLIEAYPHbIN aHAIIH3.

s nurupoanusi: BacuiseBa B.U., boponun A.E., Bonkos A.E. [Touck MEPTBBIX BEI30BOB (DYHKIMI Kak
neeKToB UCXOAHOrO KoJa MeToaaMu craTudeckoro ananusa. Tpyast UCIT PAH, tom 37, Bein. 4, wacts 1,
2025 r., ctp. 65-78 (na anrnumiickom s3eike). DOI: 10.15514/ISPRAS-2025-37(4)—4.

1. Introduction

In imperative programs, functions can be used both in a functional-like paradigm to calculate a return
value, and like subroutines (procedures) to perform actions that will lead to some observable effects
of a function call, i.e., aiming the use of their side effects.

If a function has no side effects, but is called in a way that the result of its calculations is not used,
such a call is useless or has no effect. Since it wastes computational resources, a useless call itself is
a sort of a source code defects, but what is more crucial, this code issue may indicate a serious fault
in the program logic implementation.

Let's consider an example in Listing 1 which is based on a case we observed on an open-source
projects (binutils).

As one can suppose, macro name TO_NEXT _ID might have misled the programmer, so the macro
was used in the way like it would change the value of its argument, but in fact this code does not
change it, despite the possible expectations of its author.

Dead function call is one of the possible kinds of dead code, and the detection of it for the purpose
of its elimination is one of the common compiler optimization techniques [1, 2].

In order to avoid any terminological ambiguity, we would like to point out that use of the term dead
code is often not quite consistent between the area of program static analysis algorithms (as well as
compiler techniques) and source code defects descriptions. In this paper we use the term dead code
to refer to the code that has no impact on the observable program behavior (which corresponds to
its use for program static analysis). This meaning of dead code differs from the one for unreachable
code and is a part of more general classes of useless or redundant code. In contrast, CWE? provides

1 CWE™ — Common Weakness Enumeration
66

Bacunsesa B.U., bopoauu A.E., Bonkos A. E. ITonck MEPTBBIX BEI30BOB (YHKIHI KaK 1e()EKTOB HCXOAHOTO KOa METOAAMU CTATHIECKOTO
ananusa. Tpyowr UCII PAH, 2025, Tom 37 Bem. 4, 9acts 1, c. 65-78.

the following description in the related entry 'CWE-561: Dead Code' [3], quote: "Dead code is code
that can never be executed in a running program. The surrounding code makes it impossible for a
section of code to ever be executed".

In this paper we do not follow the latter definition and treat the issue described in CWE-561 as
unreachable code.

int getNextId(int id) {
if (id < 0 || id >= 256)

return -1;
return id + 1;

#define TO NEXT ID(x) getNextId(x)

QO ~J o U b w N
—

O

void processId(int id,

10 void (*acceptId) (int)) {

11 TO_NEXT ID(id); // dead call to getNextId
12 acceptId(id);

13 |}

Listing 1. Example of a dead call pointing to an erroneous program logic.

The key point of our work is to consider dead function calls as potential source code defects and we
describe an implementation of a detector to search such defect issues using static analysis methods.
Our experience with the detector we implemented for finding such cases demonstrates that not all
the dead calls should be considered valuable as source code defects: very often the calls which are
dead in formal sense and could be eliminated by the compiler during optimization, might appear due
to idiomatic usage of certain programming language constructs (such as C++ templates) or specific
architectural decisions (different function body implementations depending on compilation
settings). Moreover, software developers might rely on the fact that these constructions will be
optimized by the compiler, so an analysis that would provide warnings relevant to the programmer's
perspective needs to be more specific in contrast to dead calls detection in general.

Thus, the essential feature of a detector for dead calls reported as errors is its ability to filter out the
calls, which are dead formally, but have a questionable interest for the programmer (we refer to these
issues as the issues, which are true formally only).

For this purpose, we will use an interprocedural analysis based on summaries, in which the
determination of side effects occurs flow-insensitively. We will check that the return value of a
function is not used using liveness analysis.

A detector for finding such erroneous issues we implemented as a new analyzer within the
framework of SVACE [4, 5] static analysis tool. Our detector supports analysis of the programs
written in C/C++ and Go.

2. Analysis Input Language (Internal Representation)

The low-level language we use as an internal representation for the input programs is the one of
SSA-form?. Its instruction kinds cover different needs, such are, for instance, some programming
languages built-in intrinsics. For clarity purposes we list below only the instructions kinds, which
are relevant to our paper:

2 SSA — Static Single-Assignment Form: a program representation where each variable is assigned
exactly once [6].
67

Vasileva V.1., Borodin A.E., Volkov A.E. Detection of Dead Function Calls as Source Code Defects through Static Analysis. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025. pp. 65-78.

r := alloca() —allocate memory on program's call stack, write the pointer to the allocated
memory to r;

r := load p - read a value from the memory pointed by p, store this value to r;
store v, p — write the value v to the memory pointed by p;

r := vy op vz —apply operation op to arguments v and vy, write its result to r, where op
is one of the following: +, -, *, /, ==, 1=, >, <, >=, <=;

r := call func(vs, ..., va) — call function func and pass the values of the arguments
Vv1...Vn, Where func is either a function name, or a variable (pointer-to-function);

goto L —unconditional jump to label L;

if (vi op v2) { codeirue } else { coderaise } — if bool_expr yields true, then execute
coderre, else execute coderaise, Where op is one of the operations: ==, 1=, >, <, >=, <=,
and codere and coderaise are instruction lists;

return v —terminate the current function execution and return the value of v to the caller's
context.

Listing 2 demonstrates the representation of the program from the example in Listing 1.

1 | def getNextId(id) {

2 tl := alloca()

3 store id, tl

4 t2 := load tl

5 if (0 > t2) {

6 return -1

7 } else {

8 if (256 <= t2) {
9 return -1

10 } else {

11 £t3 = t2 + 1
12 return t3

13 }

14 }

15 |}

16

17 | def processId(id, acceptId) {
18 tl := alloca()

19 t2 := alloca()
20 store id, tl
21 store acceptld, t2
22 t3 := load tl
23 td := load t2
24 call getNextId(t3)
25 call t4(t3)
26 return
27 |}

Listing 2. Example of program representation used for analysis.

3. Analysis for Dead Call Issues

3.1 Analysis Algorithm Overview

If a function execution modifies its local environment only (i.e., has no side effects), the only impact

it may produce on the program execution is its return value, if it has one.

68

Bacunsesa B.U., bopoauu A.E., Bonkos A. E. ITonck MEPTBBIX BEI30BOB (YHKIHI KaK 1e()EKTOB HCXOAHOTO KOa METOAAMU CTATHIECKOTO
ananusa. Tpyowr UCII PAH, 2025, Tom 37 Bem. 4, 9acts 1, c. 65-78.

A dead function call (potentially useless from the perspective of a detector user) is a function call
that has no side effects and whose result is not used further.

We will use a summary-based approach for interprocedural analysis implementation. It analyzes the
functions behavior in the order of a call graph (CG) traversal and starts from its leaf nodes, i.e., the
functions that do not call other functions. As a result of each function analysis, it creates its summary,
which reflects relevant properties of the function's behavior. These summaries are used subsequently
while processing calls to the analyzed functions.

During the CG traversal the engine runs side effect analysis, live variable analysis, and then the dead
call issues detector for each processed function. The latter uses the results of the first two listed
analyses to identify and report redundant calls.

3.2 Function Side Effects vs Function Call Side Effects

If a function has side effects, a particular call to it may have or (in contrast) may have no side effects
as well. The latter can occur as a result of the conditions combination in the callee and the caller
function context. We illustrate it in Listing 3.

A call to xlog function may have (line 12) or may have no (line 13) side effects. This fact depends
on the value passed as verbosity argument and the actual definition of LOG_LEVEL macro
(which is defined in this example explicitly, but may come from the compiler options in projects).
In addition, this example demonstrates a case, where a true dead call issue might not be treated like
a valuable defect issue. That is why in the current implementation we build our analysis to consider
just the called function side effects for any call to it in a context-insensitive way.

1 | enum { NONE=0, ERROR=1, WARNING=2, INFO=3 };
2

3 | #define LOG LEVEL WARNING

4

5 | void xlog(int verbosity, int eventCode) {
6 if (verbosity <= LOG_LEVEL) {

7 printf ("LOG: %d\n", eventCode);
8 }

911

10

11 | void demo () {

12 xlog (ERROR, 123); // live call

13 xlog (INFO, 456); // dead call

14 |}

Listing 3. Calls with and without side effects to the same function.

3.3 Dead Call Analysis
The following cases may occur while analyzing a call to a function without side effects:
e The function does not have a return value. In this case the call is dead.
e The function has a return value, but it is not assigned to any variable. In this case the call is
dead.
e The return value is assigned to an SSA variable. In this case use of live variable analysis
results allows to check, if the variable is used anywhere, and if not, the call is dead.
The implemented detector identifies dead call as above, which are subject to report after additional
checks to filter out issues that are irrelevant from the perspective of source code defects.

3.4 Side Effect Analysis

To determine if a function has no side effects we use a flow-insensitive analysis. A function does
not have side effects, if all its instructions do not have side effects. The following instructions may
have side effects:

69

Vasileva V.1., Borodin A.E., Volkov A.E. Detection of Dead Function Calls as Source Code Defects through Static Analysis. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025. pp. 65-78.

e Function call (non-virtual). To determine if a function has side effects, the analysis uses the
called function summary. If the summary does not specify the absence of side effects, the
call is considered a one with side effects.

e Function call-by-pointer and virtual function calls. SVACE resolves these calls where it is
possible to do [7]. In such cases, SVACE changes call instruction to the one with the resolved
callee, thus the algorithm designed for direct function calls will be used then. In other cases,
analysis conservatively considers these calls as the ones with side effects.

e Use of store instruction to write to memory. The instruction has a side effect, if the write
occurs not to the function's local memory, i.e., memory that is not allocated by the alloca
instruction. SVACE tracks variable aliases [8], this information is used to determine that
variable is local. For cases, where it is not clear, variables are considered as non-locals.

4. Implementation

We implemented the algorithms described in the previous sections as a part of SVACE static analysis
tool. SVACE supports summary-based analysis and provides a data-flow analysis engine [9], which
is used to implements live variable analysis.

SVACE uses SVACE IR —an internal representation (IR) which is the same for all the supported input
source code languages, the key features of SVACE IR were described in Section 2.

An important analysis feature is trace building, especially in the case of interprocedural analysis,
otherwise the defects reported as its result might be unclear to users, and treated as false reports. In
the case of the implemented detector, it might be not obvious, why a function does not have side
effects, if it calls other functions.

The Listing 4 and the Listing 5 illustrate this and demonstrate a dead call issue reported by the
implemented detector on BINUTILS (v2.22) project.

The implemented detector generates a warning as shown in Listing 6, which refers not only to the
reported dead call itself at line 5, but contains information about the called functions.

1 | static void

2 | create obj attrs section (void)

31 {

4 e

5 frag now fix (); // dead call

6 e

T

Listing 4. Dead call at as.c from binutils.

1 | #define obstack next free(h) ((h)->next free)

2

3 | addressT

4 | frag now fix octets (void)

514

6 if (now_seg == absolute section)

7 return abs section offset;

8 return ((char *) obstack next free (&frchain now->frch obstack)
9 - frag now->fr literal);
10 | }
11
12 | addressT
13 | frag now fix (void)
14 | {
15 return frag now fix octets () / OCTETS PER BYTE;
16 | }

Listing 5. Interprocedural side effects absence at frags.c from binutils.

70

Bacunsesa B.U., bopoauu A.E., Bonkos A. E. ITonck MEPTBBIX BEI30BOB (YHKIHI KaK 1e()EKTOB HCXOAHOTO KOa METOAAMU CTATHIECKOTO
ananusa. Tpyowr UCII PAH, 2025, Tom 37 Bem. 4, 9acts 1, c. 65-78.

NO_EFFECT.CALL:
Call to function: 'frag now fix' has no effect at as.c:5.
Function 'frag now fix' has no side effects at frags.c:16

Call to 'frag now fix octets' at frags.c:15

Function 'frag now fix octets' has no side effects at frags.c:10
Listing 6. An example of warning report

Examining the initial detector's results on open-source projects showed us that a big amount of the
detected dead function calls are just the calls to functions with empty and trivial bodies — i.e., the
functions which has no instructions in the body at all or only a single return instruction that returns
a constant or value of one of the formal arguments. Very often these functions look like intended
stubs; their execution obviously consumes almost no computational resources and, above all, the
programmers most likely expect that these calls will be eliminated by the compiler optimizations.
In the case of C/C++ these functions quite often are the result of conditional preprocessing (see
Section 4.2). Thus, reporting these cases as program defects is of a questionable practical interest.
Consequently, we developed additional checks in the detector to filter out the cases mentioned above
in order not to report them. We devote two subsections below to the specifics of the languages
supported in the current implementation of the detector. The specific we described demonstrates that
though the basic detection algorithms are the same, but some language-specific constructions and
widely used idioms of their use, require some additional support, that is why the current
implementations does not yet cover all the languages supported by SvACE.

4.1 Go-specific Support

Go language has channel data type as a built-in language feature. It simplifies implementations
related to goroutines® communications.

Go provides read and write operations (<-) for channels and select statement, which allows a
goroutine to wait for multiple channel read/write operations. For Go-specific support we extend the
Exemplary Language described in Section 2 with the corresponding instructions go_send,
go_receive,and chan_select.

Consider the representation of these instructions in an exemplary language in Listing 7 and Listing 8.

1 | func receive(c chan int) int {

2 return <-c

301

4

5 | func send(c chan int, value int) {
6 c <- value

711

8

9 | func answer (in, out chan int) int {
10 select {
11 case t := <-in:
12 return t
13 case <-out:
14 return 0
15 default:
16 return -1
17 }
18 |}

Listing 7. Example of channels use in Go programming language.

3 Goroutine — a lightweight execution thread
71

Vasileva V.1., Borodin A.E., Volkov A.E. Detection of Dead Function Calls as Source Code Defects through Static Analysis. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025. pp. 65-78.

1 | def receive(c) {
2 tl := go_receive (c)
3 return tl
41}
5
6 | def send(c, value) {
7 go_send(c, value)
8 return;
91}
10
11 | def answer (in, out) {
12 t0 := chan_select(in, out)
13 tl := extract(t0, 0)
14 if (0 !'= tl1) {
15 if (1 == t1) {
16 t2 := extract(t0, 2)
17 return 0
18 } else {
19 return -1
20 }
21 } else {
22 t3 := extract(t0, 1)
23 return t3
24 }
25 | }

Listing 8. IR for the example of Go program with channels use.

Any interaction with channels obviously produces a side effect, so our detector considers the related
instructions of the internal representation (go_send, go_receive, and chan_select) as the ones
with side effects.

Also Go allows to define anonymous functions inside another functions and allows the inner
function to refer to local variables of its enclosing function, which forms a (closure). The captured
variables used in these inner functions are considered as non-local.

4.2 C/C++-specific Support

C/C++ macros and certain idioms macros use introduce their own specifics to dead call issues
detection.

SVACE analyzes the IR built after the source code preprocessing, therefore only a part of the actual
source code might be analyzed because of conditional compilation. So, the calls detected as dead
since the called function has no side effects might be not dead under other compilation conditions,
when the same function produces side effects (see Listing 9). Reporting these dead calls as defect
issues is undesirable. A partial solution for this problem is filtering out dummy functions with empty
bodies, as we mentioned earlier in this paper.

In addition, the C++ language has templates which can be instantiated with different data types. It
may happen that not all of the instantiations of a function body, which has a call to another function,
but only a part of them result to a formally dead call. The analysis, which analyses the IR produced
for each function body instantiation, detects only that a call in a particular instantiation is dead.
However, when a call in a particular template function instantiation to another template function is
dead, some other instantiation may result for the same call invocation of another instantiation of the
called function, which in turn has side effects. So, a dead call in a particular instantiation does not
mean a true defect issue in terms of source code in this case. Therefore, warnings about unnecessary
function calls are not generated by the detector inside templates.

We illustrate the case like described above in Listing 10.

72

Bacunsesa B.U., bopoauu A.E., Bonkos A. E. ITonck MEPTBBIX BEI30BOB (YHKIHI KaK 1e()EKTOB HCXOAHOTO KOa METOAAMU CTATHIECKOTO
ananusa. Tpyowr UCII PAH, 2025, Tom 37 Bem. 4, 9acts 1, c. 65-78.

1 | PRStatus

2 | nssArena_Shutdown (void)

34

4 PRStatus rv = PR SUCCESS;

5 | #ifdef DEBUG

6 rv = nssPointerTracker finalize(&arena pointer tracker);
7 | #endif

8 return rv;

911
10
11

12 | SECStatus
13 | nss_Shutdown (void)

14 {

15 I

16 nssArena Shutdown(); // questionable dead call defect
17

18 |}

Listing 9. Questionable dead call defect because of conditional compilation in nss project.

1| class A {

2 static int field;

3 | public:

4 int foo() {

5 return ++field;

6 }

T}

8

9 | class B {

10 static int field;

11 | public:

12 int foo() {

13 return field + 1;
14 }

15 | };

16

17 | template <typename T>

18 | void bar (T t) {

19 t.foo(); // dead call for T=B instantiation only
20 | }
21
22 | void demo () {
23 A a;
24 B b;
25 bar (a); // live call
26 bar (b) ; // dead call
27 |}

Listing 10. Dead calls to a template function.

Method foo() of class A has side effects, since it changes variable A::field, in contrast to method
foo() of class B. SVACE traverses both template function bar instantiations: bar<A> instantiated
for T=A and bar for T=B. The call t.foo() is dead inside the bar<A> instantiation, but not
inside bar instantiation. So a warning for the call t.foo() at line 19 though true for T=B, but
false for T=A, thus false in general as a defect report.

73

Vasileva V.1., Borodin A.E., Volkov A.E. Detection of Dead Function Calls as Source Code Defects through Static Analysis. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025. pp. 65-78.

5. Similar Works

Most of the static analysis tools (as well as SVACE) provide detectors for a similar from the user
perspective, but different problem: unused (or ignored) return values for a specified set of functions.
The list of the functions to consider is either predefined in the detector, or a tool may provide a
mechanism to specify them: configuration files to describe functions behavior or source code
annotations (through syntax-supported attributes, comments, etc.)

For example, KLOCWORK (proprietary) checks (SV.RVT.RETVAL_NOTTESTED issue kind
[10]) for ignored return value of socket, recv and a subset of pthread-family functions.
Another tool SONARSOURCE [11] (open source) has, for example, rule RSPEC-5308 for C:
“Return value of “setuid” family of functions should always be checked” and rule RSPEC-5277
for C++: “Return value of “nodiscard” functions should not be ignored”.

An open-source SPLINT [12] covers C/C++ cases, documented as: “8.4.1 Statements with No
Effects” and “8.4.2 Ignored Return Values” (in “8.4 Suspicious Statements™). Their approach is
based on source code attributes — ‘pure” attribute in particular.

Note, that a tool may cover this kind of issues not for all the supported languages. For example,
SONARSOURCE (already mentioned above) has a rule very close to the logic of the detector we
implemented: RSPEC-2201: “Methods without side effects should not have their return values
ignored”, but for C# only.

All this makes any noteworthy tools comparison quite complicated.

The closest analog for the detector described in this paper is most likely the one implemented in
COVERITYSCAN. Though it is a proprietary static analysis tool and COVERITY does not provide a free
access even to the list of the defect kinds, which their tool is able to detect, one of the success stories
they published online [13] gives evidence of a USELESS_CALL issue detected by
COVERITYSCAN on ScummV M project (file tattoo_journal.cpp), we quote a tiny part of it in
Listing 11.

Commit95884c¢3 inproject ScummV M [14] with the message “SHERLOCK RT: Actually, clear
screen instead of a useless call. CID 13080977, which fixes this problem, is shown in Listing 12.

<<< CID 1308097: Incorrect expression USELESS CALL

<<< Calling "screen->empty()" is only useful for its return value,
which is ignored.

screen.empty () ;

Listing 11. USELESS_CALL reported by COVERITY.

It is one more example from the open-source projects, which demonstrates that a dead code issue
may indicate more serious logic faults of the analyzed program.

6. Results and Discussion

We tested the detector we have developed on the source code of open-source projects. Our
measurements showed that the contribution of the new detector almost does not affect the total
SVACE analysis time (it is just comparable to measurements precision).

6.1 Results on Go Projects

For the testing on Go projects we used a collection of relatively small- to medium-size projects. The
detector reported 14 issues, 71% are true issues and are potential candidates to fix, while the rest is
most likely of low interest for a programmer though still indicate true dead calls.

74

Bacunsesa B.U., bopoauu A.E., Bonkos A. E. ITonck MEPTBBIX BEI30BOB (YHKIHI KaK 1e()EKTOB HCXOAHOTO KOa METOAAMU CTATHIECKOTO
ananusa. Tpyowr UCII PAH, 2025, Tom 37 Bem. 4, 9acts 1, c. 65-78.

The detailed results for Go projects are displayed in Table 1. The size listed in the table includes the
lines of code of analyzed dependencies (dependency libraries/projects) and for technical reasons is
calculated by SVACE as a total size only.

An example of an actual dead call defect found by the detector in xgb project is shown in Listing 13.
The call to Pad() method at line 12 is dead.

engines/sherlock/tattoo/tattoo_journal.cpp
@@ -66,7 +66,7 Q@ void TattooJournal::show() {

// Set screen to black, and set background
screen. backBufferl.SHblitFrom((* journallImages) [0], Common::
Point (0, 0)); B
- screen.empty () ;
+ screen.clear();

screen.setPalette (palette);

if (_journal.empty()) {

Listing 12. Fix of USELESS_CALL in ScummVM project.

1 | func Pad(n int) int {

2 return (n + 3) & "3

31}

4

5 | func changeGCRequest (¢ *xgb.Conn, Gc Gcontext, ValueMask uint32,
6 ValueList []uint32) []byte {

7 size := xgb.Pad((8 + (4 + xgb.Pad((4

8 * xgb.PopCount (int (ValueMask)))))))
9 b :=0
10 buf := make([]byte, size)
11 .
12 b = xgb.Pad(b) // detected dead call
13 return buf
14 |}

Listing 13. Dead call detected in xgb project.

Table 1. Reports on Go project.

poper | el | el | e |
oakmound/oak 1 0 0
tikv/tikv 0 2 0
pingcap/tidb 1 0 0
xgb 0 8 0
jaeger-client-go 1 0 0
go-redis 1 0 0

Total: 4 10 0 >3929

75

Vasileva V.1., Borodin A.E., Volkov A.E. Detection of Dead Function Calls as Source Code Defects through Static Analysis. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025. pp. 65-78.

6.2 Results on C/C++ Projects

The detector emitted 125 warnings on the analyzed C/C++ projects. 13 of them are true, 6 are false
positives. Others though true in formal sense, but are of questionable interest for the users.

The warnings that are true formally only, relate to calls to functions, which definitions use macros
and depend on conditional compilation.

False issue reports are the result of the current internal representation specifics for some built-in
functions that lacks some details for them. These details are of no importance for other analysises,
but are crucial in this case for ours. Thus, 6 false reports are caused by live variable analysis which
does not get information to determine that the variables passed to __builtin_alloca are live. We
plan to extend the representation used in SVACE in order to fix it.

The detailed results for C/C++ projects are shown in “Table 2”.

An example of an actual dead call defect found by the detector in binutils (v2.22) project is shown
in Listing 14. The call to _bfd_mips_elf_sign_extend() at line 19 is dead.

One more example was shown in Listing 4 in Section 4.

Table 2. Reports on C/C++ projects.

. true true fix size
project formally candidates false (KLOC)
only

binutils 8 2 0 1078.6
gnupg 3 0 0 157.5
gst-plugins-good 32 0 0 566.2
openssl 1 0 366.7
Xorg-server 2 1 0 602.4
libxml 60 0 0 303.4
nss 0 0 617.6
gtk+ 1 0 915.9
gcc 18 8 6 5390.2
Total: 125 13 6 9998.5

7. Conclusion and Future Work

As the result of our work, we developed a new detector which is a part of SVACE static analysis tool.
The detector is able to find dead call issues relevant as potential source code defects. The introduced
analysis has no observable impact on the overall SVACE analysis time.

We studied the results of the initial implementation versions of our detector and discovered the cases
which are true in the sense of dead call definition, but are of questionable interest for software
developers. Subsequently, as a significant part of the current version of the detector we implemented
the algorithms to exclude the most rubbish cases from the detector output. An important part of these
cases is language-specific and covers now C/C++ and Go languages. The rest of the discovered dead
call cases, which are detected by the current implementation of the detector, but are of low interest
as source code defect issues are the subject for the related future work and the detector
improvements. In addition to that we plan to adjust the detector for other languages supported by
SVACE, since their particular features and use of certain language idioms require specific support as
our preliminary experiments have demonstrated to us.

76

Bacunsesa B.U., bopoauu A.E., Bonkos A. E. ITonck MEPTBBIX BEI30BOB (YHKIHI KaK 1e()EKTOB HCXOAHOTO KOa METOAAMU CTATHIECKOTO
ananusa. Tpyowr UCII PAH, 2025, Tom 37 Bem. 4, 9acts 1, c. 65-78.

1 | bfd vma

2 | bfd mips elf sign extend (bfd vma value, int bits)
3]

4 if (value & ((bfd vma) 1 << (bits - 1)))

5 /* VALUE is negative. */

6 value |= ((bfd vma) - 1) << bits;

7 return value;

81}

9
10 | bfd reloc status type
11 | bfd mips elf gprell6 with gp (bfd *abfd, asymbol *symbol,
12 arelent *reloc entry, asection *input section,
13 bfd boolean relocatable, void *data, bfd vma gp)
14 | {

15 bfd vma relocation;

16 bfd signed vma val;

17

18 val = reloc entry->addend;

19 _bfd mips elf sign extend (val, 16); // detected dead call
20
21
22
23 return bfd reloc ok;
24 |}

Listing 14. Dead call detected in binutils.

References

[1]. Aho A. V., Lam M. S., Sethi R., Ullman J. D. Compilers: Principles, techniques, and tools (2 ed.). Addison
Wesley, Boston, 2007, p. 535.

[2]. [gcc.git] / gee / tree-call-cdce.cc: Conditional Dead Call Elimination pass for the GNU compiler. Available
at: https://gcc.gnu.org/git/?p=gcc.qgit;f=gcc/tree-call-cdce.cc;hb=refs/heads/master, accessed 19.02.2024.

[3]. Common Weakness Enumeration (CWE™) - CWE-561: Dead Code. Available at:
https://cwe.mitre.org/data/definitions/561.html, accessed 19.02.2024.

[4]. Belevantsev A., Borodin A., Dudina I., Ignatiev V., Izbyshev A., Polyakov S., Zhurikhin D. Design and
Development of Svace Static Analyzers. In 2018 lvannikov Memorial Workshop (IVMEM), 2018, pp. 3- 9.

[5]. Borodin A.E., Belevancev A.A. A static analysis tool Svace as a collection of analyzers with various
complexity levels. Proceedings of the Institute for System Programming of the RAS, 2015, vol. 27, issue
6, pp. 111-134.

[6]. Cytron R., Ferrante J., Rosen B. K., Wegman M. N., Zadeck F. K. An efficient method of computing static
single assignment form. In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 1989, pp. 25-35.

[7]. Galustov A., Borodin A., Belevantsev A. Devirtualization for static analysis with low level intermediate
representation. In 2022 Ivannikov Ispras Open Conference (ISPRAS), 2022, pp. 18-23. DOI:
10.1109/ISPRAS57371.2022.10076859.

[8]. Borodin, A.E., Dudina, I.A. Intraprocedural Analysis Based on Symbolic Execution for Bug Detection.
Programming and Computer Software, 2021, vol. 47, issue 8, pp. 858-865.

[9]. Mulyukov, R.R., Borodin, A.E. Using unreachable code analysis in static analysis tool for finding defects
in source code. Proceedings of the Institute for System Programming of the RAS, 2016, vol. 28, issue 5,
pp. 145-158.

[10]. Klocwork Documentation — C and C++ checker reference — SV.RVT.RETVAL_NOTTESTED: Ignored
return value. Available at: https://help.klocwork.com/current/en-us/reference/sv.rvt.retval_nottested.htm,
accessed 19.02.2024.

[11]. SonarSource: Static Analysis Rules. Available at: https://rules.sonarsource.com, accessed 19.02.2024.

[12]. Splint Manual. 8.4 Suspicious Statements. 8.4.1 Statements with No Effects. 8.4.2 Ignored Return Values.

Available at: https://splint.org/manual/manual.html#control, accessed 19.02.2024.

77

Vasileva V.1., Borodin A.E., Volkov A.E. Detection of Dead Function Calls as Source Code Defects through Static Analysis. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025. pp. 65-78.

[13]. Coverity Scan — Success Stories: Sample of Defects found and fixed — ScummVM: USELESS_CAL.
Auvailable at: https://scan.coverity.com/o/oss_success_stories/86, accessed 19.02.2024.

[14]. GitHub: ScummVM repository — commit 95884c3. Available at:
https://github.com/scummvm/scummvm/commit/95884¢c396b667e048af933292f40fc18da2cefd1,
accessed 19.02.2024.

Ungpopmayusi 06 aemopax / Information about authors

Bepa HWropesna BACHJIBEBA yuurcs Ha (axynbTeTe BBIYUCIUTEIBHON MaTeMaTHKH |
kubepuetnkn MI'Y mmenu M. B. JlomoHOCOBa, omHOBpeMeHHO paboTtas B THCTUTYTE CHCTEMHOTO
nporpammupoBanust PAH. Cdepa HaydHBIX HWHTEPECOB: KOMITWIIATOPHBIE TEXHOJIOTHH,
CTaTHYECKHH aHaJIN3 MCXOAHOTO KOJa MporpamMM, OOHApyKEHHE OIIMOOK MPOrpaMMHOTO
obecrieueHws.

Vera lgorevna VASILEVA — student at the Faculty of Computational Mathematics and Cybernetics
of Moscow State University (MSU), employee of Institute for System Programming of the RAS.
Her research interests: compiler technologies, program source code static analysis, software defects
detection.

Anexcannp EdumoBnu BOJIKOB — crapmmii Hay4HbId CcOTpyAHMK VIHCTHUTyTa CHCTEMHOTO
nporpammupoBanust PAH. Cdepa HaydHbIX HWHTEpECOB: KOMIWISTOPHBIE TEXHOJIOTHH,
CTaTMYECKMH aHaJln3 MCXOJHOIO KoJa NporpamM, OOHapyXeHHe OIIMOOK MPOrpaMMHOTO
obecrie4eHusI.

Alexander Efimovich VOLKOV - researcher of Institute for System Programming of the RAS since
2007. Research interests: compiler technologies, program source code static analysis, software
defects detection.

Anexceii EsrerseBna BOPOIVH — kanangat Gpu3nKo-MaTeMaTHIeCKUX HAyK, CTAPIINA HAyIHBIH
cotpynauk HWHeruryta cuctemHoro mnporpammupoBanus PAH. Cdepa HaydHBIX HHTEpPECOB:
KOMITWJISITOPHBIE TEXHOJIOTHH, CTAaTUYECKUH aHalM3 MCXOJIHOTO KoJa Mporpamm, oOHapykeHHe
OIMOOK MPOTPaMMHOT0 00ECTICYECHNS.

Alexey Evgenevich BORODIN — Cand. Sci. (Phys.-Math.), researcher of Institute for System
Programming of the RAS since 2007. Research interests: compiler technologies, program source
code static analysis, software defects detection.

78

