
Труды ИСП РАН, том 37, вып. 4, часть 1, 2025 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025

97

DOI: 10.15514/ISPRAS-2025-37(4)-6

Extraction of Functionality from Binary Code

1,2 A.A. Ilina, ORCID: 0009-0002-6727-8050 <ilina@ispras.ru>
1 Sh.F. Kurmangaleev, ORCID: 0000-0002-0558-2850 <kursh@ispras.ru>

1 Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

2 Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia.

Abstract. Semantic code analysis is an important but time-consuming process used in many areas of program-

ming. The purpose of this work is to study a method for automating the semantic analysis of binary code, which

is based on dividing software into semantic kernels using partial traces of execution or subgraph extraction

from call graph and highlighting their functionality.

Keywords: semantic analysis; static analysis; large language models.

For citation: Ilina A.A., Kurmangaleev Sh.F. Extraction of Functionality from Binary Code. Trudy ISP

RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025, pp. 97-110. DOI: 10.15514/ISPRAS-2025-37(4)-6.

Извлечение функциональности

из бинарного кода

1,2 А.А. Ильина, ORCID: 0009-0002-6727-8050 <ilina@ispras.ru>
1 Ш.Ф. Курмангалеев, ORCID: 0000-0002-0558-2850 <kursh@ispras.ru>
1 Институт системного программирования им. В.П. Иванникова РАН,

Россия, 109004, г. Москва, ул. А. Солженицына, д. 25.
2 Московский государственный университет имени М.В. Ломоносова,

Россия, 119991, Москва, Ленинские горы, д. 1.

Аннотация. Семантический анализ кода – важный, но трудоемкий процесс, используемый во многих

областях программирования. Целью данной работы является изучение метода автоматизации семанти-

ческого анализа бинарного кода, который основан на разделении программ на семантические ядра с

использованием частичных трасс выполнения или выделения подграфов графа вызовов и выделении их

функциональности.

Ключевые слова: семантический анализ; статический анализ; большие языковые модели.

Для цитирования: Ильина А.А., Курмангалеев Ш.Ф. Извлечение функциональности из бинарного

кода. Труды ИСП РАН, том 37, вып. 4, часть 1, 2025 г., стр. 97–110 (на английском языке). DOI:

10.15514/ISPRAS–2025–37(4)–6.

Ilina A.A., Kurmangaleev Sh.F. Extraction of Functionality from Binary Code. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025.

pp. 97-110.

98

1. Introduction

In the modern world, software audit for certification purposes is becoming increasingly important.

When conducting an audit on a large amount of code, it is essential to understand the functionality

of the software under study.

However, there are often limitations:

1. The customer may not be willing to provide access to the source code for analysis due to

the fact that sections of the code are proprietary.

2. Not all functionality of the code is documented.

Due to these limitations, code analysis can be time-consuming, and there is a need for automated

methods to extract program functionality. The constraints define the object of analysis: it is binary

code.
There are many different approaches to extracting a description of the functionality implemented in

binary code. These include semantic pattern mining, semantic code clone mining and methods based

on the application of neural networks. However, existing methods have limitations due to the need

to keep databases of patterns or programs up to date for comparison, the need for debugging infor-

mation or other facilities, and the amount of time required.

This paper will investigate a method based on static and dynamic code analysis and the use of large

language models, which will allow the extraction of functionality from binary code without the need

for debugging information or pattern bases. The following sections will provide a more detailed

description of existing solutions, an overview of the method, comparison with analogues, experi-

mental results, and applicability of the method to real-world problems.

2. Related Work

One method of extracting functionality from binary code involves the identification of semantic

patterns. CAPA [1] is a well-known tool for identifying malicious code that relies on a similar data-

base of patterns referred to as "rules". CAPA facilitates the identification of the semantic character-

istics and functionality of binary code without necessitating full reverse-engineering. The tool em-

ploys a mapping process that translates low-level code attributes into high-level actions, such as

'makes a network connection', 'performs encryption' and 'code injection'. The primary benefit of this

approach is that it enables lightweight analysis of the program. However, the approach is inherently

limited by the finite size of the rule base and the laborious process of creating such rules for complex

algorithms.
Another method of functionality extraction is the search for semantic code clones. By comparing

the program under study with code that has been shown to have known functionality, the semantics

of program fragments can be determined. Modern methods for finding semantic clones of binary

code include various approaches such as symbolic execution, graph methods, use of intermediate

representations (IR), as well as methods based on vector representations and machine learning. Tools

such as BinDiff [2] and BinHunt [3] leverage heuristics and graph representation of code to compare

its structure; however, these tools often encounter challenges when dealing with high levels of code

optimization and obfuscation. In contrast, SAFE [4], which utilizes function vectorization, has ex-

hibited both high accuracy and expeditious execution times, particularly in the context of comparing

functions compiled with disparate compilers and on disparate architectures. However, even the most

advanced methods, such as Gemini [5] and Asm2Vec [6], encounter limitations when dealing with

heavily obfuscated code. The utilization of semantic code clone mining is warranted in scenarios

where the objective is the retrieval of particular functionalities; however, the limitations that emerge

in the context of a semantic pattern database also pertain to this approach.
The following discussion will proceed by way of a further examination of methodologies associated

with the implementation of neural networks. The article "How Far Have We Gone in Stripped Binary

Ильина А.А., Курмангалеев Ш.Ф. Извлечение функциональности из бинарного кода. Труды ИСП РАН, 2025, том 37 вып. 4, часть 1,

с. 97-110.

99

Code Understanding Using Large Language Models" [7] reviews tools intended for semantic anal-

ysis of binary code using large language models and also creates a dataset to test the quality of these

tools' performance. The article describes the sequence of steps most commonly used in the studied

tools, which includes disassembling, decompiling, and neural network analysis stages. The authors

note that the most common tasks in semantic analysis at the moment include function name recovery

(tools for this task include NERO [8], NFRE [9], and SymLM [10]), and natural language generation

for binary code segments (BinT5 [11] and HexT5 [12]). As outlined in the aforementioned article,

all methods described involve a decompilation process. The employment of large language models

on decompiled code has been demonstrated to yield results that surpass the accuracy of alternative

methods by 10%. The utilization of language models on decompiled code demonstrates considerable

promise for the purpose of learning binary code. However, the granularity of the current tasks (tools

performing function-level analysis) may not be sufficient in some cases. Many binary files contain

several thousand functions, and even with correctly recovered function names and generated de-

scriptions, analyzing a binary file can take a long time. As a result, it is necessary to select semantic

kernels (code areas) that implement a certain functionality in the binary code being studied.
The authors of the tool XRefer [13, 14] perform Gemini-powered cluster analysis for the binary file

based on the metrics contained in the code. Like CAPA, XRefer is designed to analyze malware. It

is based on the use of large language models and no longer has the constraints of a rule base. The

tool can highlight any functionality. But, as mentioned, XRefer uses code metrics to analyze seman-

tics, which may not be enough to recover functionality.
This article will delve into the process of cluster analysis which is equivalent to semantic kernels

analysis, focusing on the method applied to decompiled code.

3. Method Overview

The proposed methodology in this paper is designed to determine the functionality of binary code

by dividing it into sections called semantic kernels. The method is comprised of the following

phases: first, sources for semantic kernels (functions in callgraph) are selected; second, semantic

kernels are extracted and decompiled; third, a query is sent to a large language model for all kernels;

and fourth, the functionality of the kernels is determined. The sequence of steps and the tools utilized

in each step are illustrated in Fig. 1.

Fig. 1. General scheme of the method.

Ilina A.A., Kurmangaleev Sh.F. Extraction of Functionality from Binary Code. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025.

pp. 97-110.

100

3.1 Code Division into Semantic Kernels

The goal of this stage is to reduce the number of objects required for binary code analysis by dividing

the software into parts that implement specific semantics called semantic kernels. We use two types

of semantic kernels.
Let’s introduce their definitions:

1) Semantic kernel is the tree of fixed depth extracted from program’s call graph, whose

vertex is selected function.

2) Semantic kernel is the set of tracelets (partial traces of executions) that start from selected

function.

In order to accomplish code division, it is necessary to select sources from which semantic kernels

will be created. The selection of these sources is typically determined heuristically. Functions can

be utilized as initial points for the generation of semantic kernels. In this context, semantic kernels

can be considered as subgraphs of the call graph, with the vertices representing the selected sources.
Fig. 2 shows semantic kernels highlighted in different colors, each with a specific functionality. For

example, kernel 1 may be responsible for implementing a network protocol, kernel 2 may be respon-

sible for reading files of a certain format, kernel 3 may be responsible for error handling, etc.
In this paper, we choose large functions with a large number of branches, strings, and comparisons

as sources for semantic kernels. These functions often contain user data processing and are seman-

tically independent from each other.

We use the Ghidra disassembler [15] to compute the metrics required for source selection.

Fig. 2. Example of dividing the code into semantic kernels.

Code division into kernels is achieved in two ways as it listed before:

1. Trees of fixed depth (ranging from 2 to 3) are chosen from the call graph, whose vertices

are the selected sources.

Ильина А.А., Курмангалеев Ш.Ф. Извлечение функциональности из бинарного кода. Труды ИСП РАН, 2025, том 37 вып. 4, часть 1,

с. 97-110.

101

2. Angr [16] is used to generate artificial execution traces starting at the selected sources.

The process of generating trails is as follows. First, the entry point of the selected function

is taken to create a semantic kernel. Then instructions are taken for this entry point, which

can be executed next in the control flow. The procedure is then continued for the

instructions received in the previous step. Thus, the result is a set of possible execution

paths starting in the function.

These techniques are employed due to limitations related to the context size of the models, as an

entire call graph or large subgraphs cannot be processed by a single query.

3.2 Defining the Functionality of Semantic Kernels

The next step in the method is to define the functionality of extracted semantic kernels using a large

language model. The semantic kernels obtained in the previous step are represented as binary code.

In order to simplify the processing of kernels, decompilation is performed using the Ghidra. The

presence of debugging information is not necessary for the proposed method to function.

A language model was chosen based on the following criteria:

1. Benchmark results. Models that successfully analyze code are of interest.

2. Local execution. This criterion ensures the security of data transmitted to the model, as it

reduces the likelihood of sensitive information being leaked.

3. Output in required format. Since the tool requires an automated run and output generation,

it needs the ability to convert model output into a specific format (JSON was chosen).

4. Training on data containing code samples. Given that the task involved analyzing code

sections, a natural criterion was the choice of models trained on source code datasets.

According to the listed conditions, the Qwen 2.5 Coder model [17] was selected and run locally.
To determine the functionality included in the semantic kernel, algorithms are extracted from de-

compiled code, allowing us to understand the basic semantics of the investigated code snippet. When

generating a query for the model, it was necessary to determine the level of detail in the query.

Common types of queries, such as "Analyze given code snippets and identify all algorithms imple-

mented: {CODE SNIPPET}" led to uninformative answers. A very detailed query listing a large

number of algorithm types led to a longer response time, which was inefficient and unacceptable for

the large number of objects being investigated. The most appropriate query is shown in Fig. 3.

3.3 Working Process

Fig. 4 presents the pseudo-code of the algorithm proposed in the paper.

4. Results

4.1 Quality Assessment of the Functionality Extraction

To evaluate the proposed method, we used TheAlgorithms repository [18], which contains imple-

mentations of various well-known algorithms in C and C++. The corresponding binary files for the

algorithms were obtained from the repository. To ensure the purity of the experiment, we removed

debugging information from the binary files. The algorithms in the repository were categorized. The

distribution of algorithms in repository by category is presented in Fig. 5. Categories with fewer

than two algorithms were excluded from consideration. For all binary files from selected categories,

we performed division into semantic kernels in two ways: by extracting execution traces and by

extracting subtrees from the call graph of binary. The resulting decompiled kernels were sent to a

language model. The names of the algorithms in the model's answer may not exactly match the

names of the algorithms whose implementations are presented in binary files. To speed up the testing

process, we compare the lists of algorithms in the model output with the expected answer using st-

Ilina A.A., Kurmangaleev Sh.F. Extraction of Functionality from Binary Code. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025.

pp. 97-110.

102

codesearch-distilroberta-base [19] embeddings. The testing procedure is illustrated in Fig. 6. After

the results were filtered based on the threshold value, a manual validation was performed and the

True Positive rate was calculated. The results for semantic kernels extracted using angr (Table 1).

The best results of the method were achieved for the categories client server, hash, and searching

and sorting. In most cases, the algorithms were recognized correctly.

However, the minimum TP percentages (for math and misc) are related to the limitations of the angr:

the generated execution traces were not long enough to fully detect the algorithms.

Fig. 3. Prompt for model.

Fig. 4. Pseudocode of proposed method.

Ильина А.А., Курмангалеев Ш.Ф. Извлечение функциональности из бинарного кода. Труды ИСП РАН, 2025, том 37 вып. 4, часть 1,

с. 97-110.

103

Fig. 5. TheAlgorithms repository structure.

Fig. 6. Testing scheme.

Table 1. Results of using angr for semantic kernels extraction.

Category of algorithms True Positive (%)

client_server 77,78

conversions 56,25

games 50

hash 80

math 45

misc 45,45

numerical_methods 50

searching 77,78

sorting 81,48

Similar testing was also conducted to extract semantic kernels using fixed-depth trees. The results

are presented in Table 2. In some cases, the language model did not recognize the expected algo-

rithms. However, in most cases, the low percentages are due to the fact that the names of the expected

algorithms have a specific look (such as remote_command_exec_udp_server). And the response of

Ilina A.A., Kurmangaleev Sh.F. Extraction of Functionality from Binary Code. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025.

pp. 97-110.

104

the model (UDP, for example) turned out to be not similar enough to the response string to be in-

cluded in True positive.

Table 2. Results of using subtrees for semantic kernels extraction.

Category of algorithms True Positive (%)

client_server 50

conversions 57,14

games 66,67

hash 83,33

math 52,17

misc 68,75

numerical_methods 44,44

searching 100

sorting 97,06

4.2 Application to Large Code Volume Analysis

As part of our research, we tested our tool on binary file of Microsoft Access 97 DBMS [20] con-

taining 10,539 functions with no debugging information. The size of the binary is 2.9 Mb.
The analysis by the Ghidra took 5 hours, the analysis using a large language model lasted an hour.

This resulted in the formation of 256 clusters, each with their own functionality:

1) Work with databases: configuration, query processing, search, and indexes.

2) User interface.

Additionally, we found a cluster containing the "Magic Eight Ball" game, which was embedded as

an "easter egg" by the software creators.

It was found after a series of additional prompts. The first prompt was used to extract algorithms

from the software documentation. After that, the second prompt was used to compare the results of

our tool with the expected algorithms in the documentation, creating a difference. This process re-

sulted in 30 clusters being extracted. Some of these clusters contained false positives, but some also

had undocumented features. To reduce the number of false positive clusters, a third prompt was used

to check the generated answers. After filtering, only 5 clusters remained. These clusters were then

manually checked. The remaining clusters are shown in Fig. 7.

Thus, functionality was found that was not typical for the software under study. In the future, the

search for undocumented features can also be automated using queries to large language models.

Fig. 8 shows the button that trigger the "Magic Eight Ball" game launch. Fig. 9 shows a function

that contains a decompiled implementation of the game.

4.3 Limitations

When processing large sequences or a high volume of queries, the quality of responses may decrease.

This can occur if the model loses context or is unable to process large amounts of information ef-

fectively, leading to incomplete responses. False positives may also arise as a result of hallucina-

tions. Choosing a specialized model with a larger context size or pre-training may help reduce errors.

4.4 Comparison to Other Language Models

As mentioned earlier, the model selection criteria included the ability to run the model locally and

whether the output matched the specified format in the query. We used TheAlgorithms sample to

compare models that met the requirements, resulting in true positive values (see Table 3).

Ильина А.А., Курмангалеев Ш.Ф. Извлечение функциональности из бинарного кода. Труды ИСП РАН, 2025, том 37 вып. 4, часть 1,

с. 97-110.

105

The testing process was performed on model CodeLlama [21] too. The output of CodeLlama for a

large number of queries was not in the expected format. Qwen2.5_Coder_32B_Instruct proved to be

the most suitable model for the task.

Fig. 7. Prompt sequence for undocumented features extraction.

Fig. 8. “Magic Eight Ball” in Microsoft Access 97.

4.5 Comparison to XRefer

As previously stated, XRefer employs code metrics to analyze clusters. In cases where these metrics

contain sufficient information to describe the clusters (e.g., functions with numerous string constants

reflecting the semantics of the code under study), cluster analysis yields satisfactory results. For

Ilina A.A., Kurmangaleev Sh.F. Extraction of Functionality from Binary Code. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025.

pp. 97-110.

106

instance, the vlandhcpd [23] analysis resulted in the following set of clusters that effectively demon-

strate the program semantics (see Fig. 10, DHCP Packet Processor functionality is detected). How-

ever, when the code contains few string constants but consists of a set of mathematical operations,

the method is less applicable. This is demonstrated in the example of the code implementing the

calculation of factorial, where XRefer did not reveal the expected functionality. As illustrated in Fig.

11, the function responsible for factorial computation does not contain string constants, leading to

the failure of XRefer to recognize any functionality.

Fig. 9. Function from cluster with “Magic Eight Ball” in Ghidra.

Table 3. Model comparison.

Model True Positive (%)

Phi3min_f16 [22] 55,56

Qwen2.5_Coder_32B_Instruct 77,78

The method proposed in the paper identified the required functionality in both vlandhcpd and

factorial computation examples. This was due to analyzing the code in decompiled form. This form

allows us to find code patterns that are not tied to specific metrics.

5. Conclusion

The use of large language models for semantic analysis of binary code can significantly speed up

the process of understanding the functionality of a program under study. By transitioning to the level

of decompiled code, large language models can help with this process. This method can be used for

extracting semantic kernels from binary code, which can then be applied in software certification

tasks, as well as for studying large volumes of binary code.

Ильина А.А., Курмангалеев Ш.Ф. Извлечение функциональности из бинарного кода. Труды ИСП РАН, 2025, том 37 вып. 4, часть 1,

с. 97-110.

107

Fig. 10. Cluster analysis by XRefer on vlandhcpd.

Fig. 11. Cluster analysis by XRefer on factorial computation.

References
[1]. capa: Automatically Identify Malware Capabilities. Mandiant. Google Cloud Blog. [Online]. Available at:

https://cloud.google.com/blog/topics/threat-intelligence/capa-automatically-identify-malware-capabili-

ties, accessed 07.04.2025.

[2]. zynamics.com – BinDiff. [Online]. Available at: https://www.zynamics.com/bindiff.html, accessed

07.04.2025.

[3]. D. Gao, M. K. Reiter, and D. Song, BinHunt: Automatically Finding Semantic Differences in Binary Pro-

grams in Information and Communications Security, vol. 5308, L. Chen, M. D. Ryan, and G. Wang, Eds.

In Lecture Notes in Computer Science, vol. 5308. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,

pp. 238–255. doi: 10.1007/978-3-540-88625-9_16.

https://cloud.google.com/blog/topics/threat-intelligence/capa-automatically-identify-malware-capabilities
https://cloud.google.com/blog/topics/threat-intelligence/capa-automatically-identify-malware-capabilities
https://www.zynamics.com/bindiff.html

Ilina A.A., Kurmangaleev Sh.F. Extraction of Functionality from Binary Code. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025.

pp. 97-110.

108

[4]. L. Massarelli, G. A. D. Luna, F. Petroni, L. Querzoni, and R. Baldoni, SAFE: Self-Attentive Function

Embeddings for Binary Similarity, Dec. 19, 2019, arXiv: arXiv:1811.05296. doi:

10.48550/arXiv.1811.05296.

[5]. X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, Neural Network-based Graph Embedding for Cross-

Platform Binary Code Similarity Detection. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, Oct. 2017, pp. 363–376. doi: 10.1145/3133956.3134018.

[6]. S. H. H. Ding, B. C. M. Fung, and P. Charland, Asm2Vec: Boosting Static Representation Robustness for

Binary Clone Search against Code Obfuscation and Compiler Optimization. In 2019 IEEE Symposium on

Security and Privacy (SP), San Francisco, CA, USA: IEEE, May 2019, pp. 472–489. doi:

10.1109/SP.2019.00003.

[7]. X. Shang et al., How Far Have We Gone in Binary Code Understanding Using Large Language Models.

In 2024 IEEE International Conference on Software Maintenance and Evolution (ICSME), Flagstaff, AZ,

USA: IEEE, Oct. 2024, pp. 1–12. doi: 10.1109/ICSME58944.2024.00012.

[8]. Y. David, U. Alon, and E. Yahav, Neural Reverse Engineering of Stripped Binaries using Augmented

Control Flow Graphs. Proc. ACM Program. Lang., vol. 4, no. OOPSLA, pp. 1–28, Nov. 2020, doi:

10.1145/3428293.

[9]. H. Gao, S. Cheng, Y. Xue, and W. Zhang, A lightweight framework for function name reassignment based

on large-scale stripped binaries. In Proceedings of the 30th ACM SIGSOFT International Symposium on

Software Testing and Analysis, Virtual Denmark: ACM, Jul. 2021, pp. 607–619. doi:

10.1145/3460319.3464804.

[10]. X. Jin, K. Pei, J. Y. Won, and Z. Lin, SymLM: Predicting Function Names in Stripped Binaries via Con-

text-Sensitive Execution-Aware Code Embeddings. In Proceedings of the 2022 ACM SIGSAC Confer-

ence on Computer and Communications Security, Los Angeles CA USA: ACM, Nov. 2022, pp. 1631–

1645. doi: 10.1145/3548606.3560612.

[11]. A. Al-Kaswan, T. Ahmed, M. Izadi, A. A. Sawant, P. Devanbu, and A. van Deursen, Extending Source

Code Pre-Trained Language Models to Summarise Decompiled Binaries. 2023, arXiv. doi:

10.48550/ARXIV.2301.01701.

[12]. J. Xiong, G. Chen, K. Chen, H. Gao, S. Cheng, and W. Zhang, HexT5: Unified Pre-Training for Stripped

Binary Code Information Inference. In 2023 38th IEEE/ACM International Conference on Automated

Software Engineering (ASE), Luxembourg, Luxembourg: IEEE, Sep. 2023, pp. 774–786. doi:

10.1109/ASE56229.2023.00099.

[13]. mandiant/xrefer: FLARE Team’s Binary Navigator. [Online]. Available at: https://github.com/mandi-

ant/xrefer, accessed 21.02.2025.

[14]. XRefer: The Gemini-Assisted Binary Navigator | Google Cloud Blog. [Online]. Available at:

https://cloud.google.com/blog/topics/threat-intelligence/xrefer-gemini-assisted-binary-navigator, ac-

cessed 21.02.2025.

[15]. Ghidra Software Reverse Engineering Framework. Available at: https://github.com/NationalSecu-

rityAgency/ghidra, accessed 31.01.2025.

[16]. Y. Shoshitaishvili et al., SOK: (State of) The Art of War: Offensive Techniques in Binary Analysis. In

2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA: IEEE, May 2016, pp. 138–157. doi:

10.1109/SP.2016.17.

[17]. QwenLM/Qwen2.5: Qwen2.5 is the large language model series developed by Qwen team, Alibaba Cloud.

[Online]. Available at: https://github.com/QwenLM/Qwen2.5, accessed 21.02.2025.

[18]. The Algorithms. [Online]. Available at: https://github.com/TheAlgorithms, accessed 21.02.2025.

[19]. flax-sentence-embeddings/st-codesearch-distilroberta-base. Hugging Face. [Online]. Available at:

https://huggingface.co/flax-sentence-embeddings/st-codesearch-distilroberta-base, accessed 21.02.2025.

[20]. Microsoft Access – Wikipedia. [Online]. Available at: https://en.m.wikipedia.org/wiki/Microsoft_Access,

accessed 21.02.2025.

[21]. codellama/CodeLlama-13b-Instruct-hf. Hugging Face. [Online]. Available at: https://hugging-

face.co/codellama/CodeLlama-13b-Instruct-hf, accessed 21.02.2025.

[22]. microsoft/Phi-3-mini-4k-instruct. Hugging Face. [Online]. Available at: https://huggingface.co/mi-

crosoft/Phi-3-mini-4k-instruct, accessed 21.02.2025.

[23]. aheck/vlandhcpd: VLAN aware DHCP server which listens on a trunk port. [Online]. Available at:

https://github.com/aheck/vlandhcpd, accessed 21.02.2025.

https://github.com/mandiant/xrefer
https://github.com/mandiant/xrefer
https://cloud.google.com/blog/topics/threat-intelligence/xrefer-gemini-assisted-binary-navigator
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://github.com/QwenLM/Qwen2.5
https://github.com/TheAlgorithms
https://huggingface.co/flax-sentence-embeddings/st-codesearch-distilroberta-base
https://en.m.wikipedia.org/wiki/Microsoft_Access
https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf
https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
https://github.com/aheck/vlandhcpd

Ильина А.А., Курмангалеев Ш.Ф. Извлечение функциональности из бинарного кода. Труды ИСП РАН, 2025, том 37 вып. 4, часть 1,

с. 97-110.

109

Информация об авторах / Information about authors

Анна Александровна ИЛЬИНА – студентка магистратуры ВМК МГУ, лаборант ИСП РАН.

Сфера научных интересов: статический анализ бинарного кода, символьное выполнение,

применение больших языковых моделей.

Anna Aleksandrovna ILINA – a graduate student at the CMC MSU and a laboratory assistant at the

ISP RAS. Area of her scientific interests: static binary code analysis, symbolic execution, the use of

large language models.

Шамиль Фаимович КУРМАНГАЛЕЕВ – кандидат физико-математических наук,

руководитель направления разработки автономных систем и технологий для создания

безопасного ПО в ИСП РАН.

Shamil Faimovich KURMANGALEEV – Cand. Sci. (Phys.-Math.), head of the development of

autonomous systems and technologies for creating secure software at the ISP RAS.

Ilina A.A., Kurmangaleev Sh.F. Extraction of Functionality from Binary Code. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 1, 2025.

pp. 97-110.

110

