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Abstract. Semantic code analysis is an important but time-consuming process used in many areas of program-

ming. The purpose of this work is to study a method for automating the semantic analysis of binary code, which 

is based on dividing software into semantic kernels using partial traces of execution or subgraph extraction 

from call graph and highlighting their functionality. 
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1. Introduction 

In the modern world, software audit for certification purposes is becoming increasingly important. 

When conducting an audit on a large amount of code, it is essential to understand the functionality 

of the software under study. 

However, there are often limitations:  

1. The customer may not be willing to provide access to the source code for analysis due to 

the fact that sections of the code are proprietary. 

2. Not all functionality of the code is documented. 

Due to these limitations, code analysis can be time-consuming, and there is a need for automated 

methods to extract program functionality. The constraints define the object of analysis: it is binary 

code. 
There are many different approaches to extracting a description of the functionality implemented in 

binary code. These include semantic pattern mining, semantic code clone mining and methods based 

on the application of neural networks. However, existing methods have limitations due to the need 

to keep databases of patterns or programs up to date for comparison, the need for debugging infor-

mation or other facilities, and the amount of time required. 

This paper will investigate a method based on static and dynamic code analysis and the use of large 

language models, which will allow the extraction of functionality from binary code without the need 

for debugging information or pattern bases. The following sections will provide a more detailed 

description of existing solutions, an overview of the method, comparison with analogues, experi-

mental results, and applicability of the method to real-world problems. 

2. Related Work 

One method of extracting functionality from binary code involves the identification of semantic 

patterns. CAPA [1] is a well-known tool for identifying malicious code that relies on a similar data-

base of patterns referred to as "rules". CAPA facilitates the identification of the semantic character-

istics and functionality of binary code without necessitating full reverse-engineering. The tool em-

ploys a mapping process that translates low-level code attributes into high-level actions, such as 

'makes a network connection', 'performs encryption' and 'code injection'. The primary benefit of this 

approach is that it enables lightweight analysis of the program. However, the approach is inherently 

limited by the finite size of the rule base and the laborious process of creating such rules for complex 

algorithms. 
Another method of functionality extraction is the search for semantic code clones. By comparing 

the program under study with code that has been shown to have known functionality, the semantics 

of program fragments can be determined. Modern methods for finding semantic clones of binary 

code include various approaches such as symbolic execution, graph methods, use of intermediate 

representations (IR), as well as methods based on vector representations and machine learning. Tools 

such as BinDiff [2] and BinHunt [3] leverage heuristics and graph representation of code to compare 

its structure; however, these tools often encounter challenges when dealing with high levels of code 

optimization and obfuscation. In contrast, SAFE [4], which utilizes function vectorization, has ex-

hibited both high accuracy and expeditious execution times, particularly in the context of comparing 

functions compiled with disparate compilers and on disparate architectures. However, even the most 

advanced methods, such as Gemini [5] and Asm2Vec [6], encounter limitations when dealing with 

heavily obfuscated code. The utilization of semantic code clone mining is warranted in scenarios 

where the objective is the retrieval of particular functionalities; however, the limitations that emerge 

in the context of a semantic pattern database also pertain to this approach. 
The following discussion will proceed by way of a further examination of methodologies associated 

with the implementation of neural networks. The article "How Far Have We Gone in Stripped Binary 
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Code Understanding Using Large Language Models" [7] reviews tools intended for semantic anal-

ysis of binary code using large language models and also creates a dataset to test the quality of these 

tools' performance. The article describes the sequence of steps most commonly used in the studied 

tools, which includes disassembling, decompiling, and neural network analysis stages. The authors 

note that the most common tasks in semantic analysis at the moment include function name recovery 

(tools for this task include NERO [8], NFRE [9], and SymLM [10]), and natural language generation 

for binary code segments (BinT5 [11] and HexT5 [12]). As outlined in the aforementioned article, 

all methods described involve a decompilation process. The employment of large language models 

on decompiled code has been demonstrated to yield results that surpass the accuracy of alternative 

methods by 10%. The utilization of language models on decompiled code demonstrates considerable 

promise for the purpose of learning binary code. However, the granularity of the current tasks (tools 

performing function-level analysis) may not be sufficient in some cases. Many binary files contain 

several thousand functions, and even with correctly recovered function names and generated de-

scriptions, analyzing a binary file can take a long time. As a result, it is necessary to select semantic 

kernels (code areas) that implement a certain functionality in the binary code being studied. 
The authors of the tool XRefer [13, 14] perform Gemini-powered cluster analysis for the binary file 

based on the metrics contained in the code. Like CAPA, XRefer is designed to analyze malware. It 

is based on the use of large language models and no longer has the constraints of a rule base. The 

tool can highlight any functionality. But, as mentioned, XRefer uses code metrics to analyze seman-

tics, which may not be enough to recover functionality. 
This article will delve into the process of cluster analysis which is equivalent to semantic kernels 

analysis, focusing on the method applied to decompiled code. 

3. Method Overview 

The proposed methodology in this paper is designed to determine the functionality of binary code 

by dividing it into sections called semantic kernels. The method is comprised of the following 

phases: first, sources for semantic kernels (functions in callgraph) are selected; second, semantic 

kernels are extracted and decompiled; third, a query is sent to a large language model for all kernels; 

and fourth, the functionality of the kernels is determined. The sequence of steps and the tools utilized 

in each step are illustrated in Fig. 1. 

 

Fig. 1. General scheme of the method. 
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3.1 Code Division into Semantic Kernels 

The goal of this stage is to reduce the number of objects required for binary code analysis by dividing 

the software into parts that implement specific semantics called semantic kernels. We use two types 

of semantic kernels. 
Let’s introduce their definitions: 

1) Semantic kernel is the tree of fixed depth extracted from program’s call graph, whose 

vertex is selected function. 

2) Semantic kernel is the set of tracelets (partial traces of executions) that start from selected 

function. 

In order to accomplish code division, it is necessary to select sources from which semantic kernels 

will be created. The selection of these sources is typically determined heuristically. Functions can 

be utilized as initial points for the generation of semantic kernels. In this context, semantic kernels 

can be considered as subgraphs of the call graph, with the vertices representing the selected sources. 
Fig. 2 shows semantic kernels highlighted in different colors, each with a specific functionality. For 

example, kernel 1 may be responsible for implementing a network protocol, kernel 2 may be respon-

sible for reading files of a certain format, kernel 3 may be responsible for error handling, etc. 
In this paper, we choose large functions with a large number of branches, strings, and comparisons 

as sources for semantic kernels. These functions often contain user data processing and are seman-

tically independent from each other. 

We use the Ghidra disassembler [15] to compute the metrics required for source selection. 

Fig. 2. Example of dividing the code into semantic kernels. 

Code division into kernels is achieved in two ways as it listed before: 

1. Trees of fixed depth (ranging from 2 to 3) are chosen from the call graph, whose vertices 

are the selected sources. 
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2. Angr [16] is used to generate artificial execution traces starting at the selected sources. 

The process of generating trails is as follows. First, the entry point of the selected function 

is taken to create a semantic kernel. Then instructions are taken for this entry point, which 

can be executed next in the control flow. The procedure is then continued for the 

instructions received in the previous step. Thus, the result is a set of possible execution 

paths starting in the function. 

These techniques are employed due to limitations related to the context size of the models, as an 

entire call graph or large subgraphs cannot be processed by a single query. 

3.2 Defining the Functionality of Semantic Kernels 

The next step in the method is to define the functionality of extracted semantic kernels using a large 

language model. The semantic kernels obtained in the previous step are represented as binary code. 

In order to simplify the processing of kernels, decompilation is performed using the Ghidra. The 

presence of debugging information is not necessary for the proposed method to function. 

A language model was chosen based on the following criteria: 

1. Benchmark results. Models that successfully analyze code are of interest. 

2. Local execution. This criterion ensures the security of data transmitted to the model, as it 

reduces the likelihood of sensitive information being leaked. 

3. Output in required format. Since the tool requires an automated run and output generation, 

it needs the ability to convert model output into a specific format (JSON was chosen). 

4. Training on data containing code samples. Given that the task involved analyzing code 

sections, a natural criterion was the choice of models trained on source code datasets. 

According to the listed conditions, the Qwen 2.5 Coder model [17] was selected and run locally. 
To determine the functionality included in the semantic kernel, algorithms are extracted from de-

compiled code, allowing us to understand the basic semantics of the investigated code snippet. When 

generating a query for the model, it was necessary to determine the level of detail in the query. 

Common types of queries, such as "Analyze given code snippets and identify all algorithms imple-

mented: {CODE SNIPPET}" led to uninformative answers. A very detailed query listing a large 

number of algorithm types led to a longer response time, which was inefficient and unacceptable for 

the large number of objects being investigated. The most appropriate query is shown in Fig. 3. 

3.3 Working Process 

Fig. 4 presents the pseudo-code of the algorithm proposed in the paper. 

4. Results 

4.1 Quality Assessment of the Functionality Extraction  

To evaluate the proposed method, we used TheAlgorithms repository [18], which contains imple-

mentations of various well-known algorithms in C and C++. The corresponding binary files for the 

algorithms were obtained from the repository. To ensure the purity of the experiment, we removed 

debugging information from the binary files. The algorithms in the repository were categorized. The 

distribution of algorithms in repository by category is presented in Fig. 5. Categories with fewer 

than two algorithms were excluded from consideration. For all binary files from selected categories, 

we performed division into semantic kernels in two ways: by extracting execution traces and by 

extracting subtrees from the call graph of binary. The resulting decompiled kernels were sent to a 

language model. The names of the algorithms in the model's answer may not exactly match the 

names of the algorithms whose implementations are presented in binary files. To speed up the testing 

process, we compare the lists of algorithms in the model output with the expected answer using st-
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codesearch-distilroberta-base [19] embeddings. The testing procedure is illustrated in Fig. 6. After 

the results were filtered based on the threshold value, a manual validation was performed and the 

True Positive rate was calculated. The results for semantic kernels extracted using angr (Table 1). 

The best results of the method were achieved for the categories client server, hash, and searching 

and sorting. In most cases, the algorithms were recognized correctly. 

However, the minimum TP percentages (for math and misc) are related to the limitations of the angr: 

the generated execution traces were not long enough to fully detect the algorithms. 

 
Fig. 3. Prompt for model. 

 
Fig. 4. Pseudocode of proposed method. 
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Fig. 5. TheAlgorithms repository structure. 

 

Fig. 6. Testing scheme. 

Table 1. Results of using angr for semantic kernels extraction. 

Category of algorithms True Positive (%) 

client_server 77,78 

conversions 56,25 

games 50 

hash 80 

math 45 

misc 45,45 

numerical_methods 50 

searching 77,78 

sorting 81,48 

Similar testing was also conducted to extract semantic kernels using fixed-depth trees. The results 

are presented in Table 2. In some cases, the language model did not recognize the expected algo-

rithms. However, in most cases, the low percentages are due to the fact that the names of the expected 

algorithms have a specific look (such as remote_command_exec_udp_server). And the response of 
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the model (UDP, for example) turned out to be not similar enough to the response string to be in-

cluded in True positive. 

Table 2. Results of using subtrees for semantic kernels extraction. 

Category of algorithms True Positive (%) 

client_server 50 

conversions 57,14 

games 66,67 

hash 83,33 

math 52,17 

misc 68,75 

numerical_methods 44,44 

searching 100 

sorting 97,06 

4.2 Application to Large Code Volume Analysis  

As part of our research, we tested our tool on binary file of Microsoft Access 97 DBMS [20] con-

taining 10,539 functions with no debugging information. The size of the binary is 2.9 Mb. 
The analysis by the Ghidra took 5 hours, the analysis using a large language model lasted an hour. 

This resulted in the formation of 256 clusters, each with their own functionality: 

1) Work with databases: configuration, query processing, search, and indexes. 

2) User interface. 

Additionally, we found a cluster containing the "Magic Eight Ball" game, which was embedded as 

an "easter egg" by the software creators. 

It was found after a series of additional prompts. The first prompt was used to extract algorithms 

from the software documentation. After that, the second prompt was used to compare the results of 

our tool with the expected algorithms in the documentation, creating a difference. This process re-

sulted in 30 clusters being extracted. Some of these clusters contained false positives, but some also 

had undocumented features. To reduce the number of false positive clusters, a third prompt was used 

to check the generated answers. After filtering, only 5 clusters remained. These clusters were then 

manually checked. The remaining clusters are shown in Fig. 7. 

Thus, functionality was found that was not typical for the software under study. In the future, the 

search for undocumented features can also be automated using queries to large language models. 

Fig. 8 shows the button that trigger the "Magic Eight Ball" game launch. Fig. 9 shows a function 

that contains a decompiled implementation of the game. 

4.3 Limitations 

When processing large sequences or a high volume of queries, the quality of responses may decrease. 

This can occur if the model loses context or is unable to process large amounts of information ef-

fectively, leading to incomplete responses. False positives may also arise as a result of hallucina-

tions. Choosing a specialized model with a larger context size or pre-training may help reduce errors. 

4.4 Comparison to Other Language Models 

As mentioned earlier, the model selection criteria included the ability to run the model locally and 

whether the output matched the specified format in the query. We used TheAlgorithms sample to 

compare models that met the requirements, resulting in true positive values (see Table 3). 
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The testing process was performed on model CodeLlama [21] too. The output of CodeLlama for a 

large number of queries was not in the expected format. Qwen2.5_Coder_32B_Instruct proved to be 

the most suitable model for the task. 

 

Fig. 7. Prompt sequence for undocumented features extraction. 

 

Fig. 8. “Magic Eight Ball” in Microsoft Access 97. 

4.5 Comparison to XRefer 

As previously stated, XRefer employs code metrics to analyze clusters. In cases where these metrics 

contain sufficient information to describe the clusters (e.g., functions with numerous string constants 

reflecting the semantics of the code under study), cluster analysis yields satisfactory results. For 
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instance, the vlandhcpd [23] analysis resulted in the following set of clusters that effectively demon-

strate the program semantics (see Fig. 10, DHCP Packet Processor functionality is detected). How-

ever, when the code contains few string constants but consists of a set of mathematical operations, 

the method is less applicable. This is demonstrated in the example of the code implementing the 

calculation of factorial, where XRefer did not reveal the expected functionality. As illustrated in Fig. 

11, the function responsible for factorial computation does not contain string constants, leading to 

the failure of XRefer to recognize any functionality. 

 

Fig. 9. Function from cluster with “Magic Eight Ball” in Ghidra. 

Table 3. Model comparison. 

Model True Positive (%) 

Phi3min_f16 [22] 55,56 

Qwen2.5_Coder_32B_Instruct 77,78 

The method proposed in the paper identified the required functionality in both vlandhcpd and 

factorial computation examples. This was due to analyzing the code in decompiled form. This form 

allows us to find code patterns that are not tied to specific metrics. 

5. Conclusion 

The use of large language models for semantic analysis of binary code can significantly speed up 

the process of understanding the functionality of a program under study. By transitioning to the level 

of decompiled code, large language models can help with this process. This method can be used for 

extracting semantic kernels from binary code, which can then be applied in software certification 

tasks, as well as for studying large volumes of binary code. 
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Fig. 10. Cluster analysis by XRefer on vlandhcpd. 

 

Fig. 11. Cluster analysis by XRefer on factorial computation. 
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