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Аннотация. Методы выбора точки обзора для 3D сцен находят применение в компьютерном зрении, 

компьютерной графике и научной визуализации для того, чтобы получить ракурсы, наиболее 

подходящие для решаемой задачи. В данной работе предлагается метод для выбора точек обзора на 

основе обратного рендеринга в приложении к задаче реконструкции материалов. Предложенный метод 

решает задачу выбора произвольных ракурсов (то есть не из предопределенного набора) на основе 

различных оценок качества ракурсов, использующих геометрические характеристики целевого 3D 

объекта. Предложенный метод позволяет использовать реализацию обратного рендеринга как на основе 

дифференцируемого рендеринга, так и с помощью безградиентных методов оптимизации. 

Предложенный метод был протестирован на открытом наборе данных для 3D реконструкции. 

Тестирование показало прирост в качестве реконструкции при использовании предложенного метода с 

различными методами оценки качества ракурсов по сравнению с наивными стратегиями выбора точек 

обзора. 

Ключевые слова: обратный рендеринг; реконструкция материалов; выбор ракурсов. 

Для цитирования: Санжаров В.В., Фролов В.А., Галактионов В.А. Выбор ракурсов с помощью 

обратного рендеринга геометрических моделей для реконструкции материалов. Труды ИСП РАН, 

том 37, вып. 4, часть 2, 2025 г., стр. 85–102. DOI: 10.15514/ISPRAS–2025–37(4)–20. 

 



Sanzharov V.V., Frolov V.A., Galaktionov V.A. Viewpoint selection for material reconstruction using inverse rendering of geometric 

models. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 85-102. 

86 

Viewpoint Selection for Material Reconstruction Using Inverse 
Rendering of Geometric Models 

1 V.V. Sanzharov, ORCID: 0000-0001-6455-6444 <vadim.sanzharov@graphics.cs.msu.ru> 
1,2 V.A.Frolov, ORCID: 0000-0001-8829-9884 <vladimir.frolov@graphics.cs.msu.ru> 

2 V.A. Galaktionov, ORCID: 0000-0001-6460-7539 <vlgal@gin.keldysh.ru> 
1 Lomonosov Moscow State University, 

GSP-1, Leninskie Gory, Moscow, 119991, Russia. 
2 Keldysh Institute of Applied Mathematics RAS, 

Miusskaya sq., 4, Moscow, 125047, Russia 

Abstract. Viewpoint selection methods for 3D scenes are used in computer vision, computer graphics and 

scientific visualization to obtain views that are most suitable for the problem at hand. In this paper, a method 

for viewpoint selection based on inverse rendering is proposed for material reconstruction. The proposed 

method solves the problem of selecting arbitrary views (i.e., not from a predefined set) based on various view 

quality estimates using geometric characteristics of the target 3D object. The proposed method allows using 

both differentiable rendering-based and gradient-free optimization implementations of inverse rendering. The 

proposed method was tested on an open dataset for 3D reconstruction. Testing showed an increase in 

reconstruction quality when using the proposed method with various view quality estimates compared to naive 

viewpoint selection strategies. 
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1. Введение 

Суть задачи реконструции трехмерной сцены заключается в создании её описания в 

определённом формате на основе набора изображений реальной сцены. В случае 

представления описания 3D-сцены в «классическом» для компьютерной графики виде 

(полигональные сетки для геометрии, текстуры и скалярные значения для материалов и 

освещения) задачу можно разделить на реконструкцию её геометрического представления и 

реконструкцию информации об освещении. При использовании же полей освещённости 

(например, NeRF – neural radiance fields, нейронные поля освещенности) [1] или «gaussian 

splats» (GS) [2] обычно рассматривается совместное восстановление геометрии и освещения. 

Однако, такие представления сцены очень разнообразны и их трудно совмещать друг с 

другом, а также с классическими представлениями. Кроме того, такие решения обычно 

потребляют значительные объёмы памяти и вычислений при прямом рендеринге, что требует 

отдельного этапа оптимизации представления [3-4]. Существуют решения, которые 

одновременно восстанавливают поля освещенности, полигональные модели и модели 

материалов [5], однако их обучение требует значительных вычислительных ресурсов (авторы 

пишут о двух неделях обучения на 64-х H100 GPU). Поэтому, несмотря на бурное развитие 

различных представлений 3D сцен, классические модели компьютерной графики сохраняют 

свою актуальность. Следует отметить, что раздельная реконструкция геометрии и освещения 

с помощью обратного рендеринга также демонстрирует более высокое качество 

реконструкции [6]. Для работы с ними в задаче реконструкции используют методы обратного 

рендеринга, которые по своей сути решают задачу оптимизации параметров 3D сцены, чтобы 

изображение, полученное при прямом рендеринге, максимально совпадало с эталонной 

фотографией (рис. 1). 

Наибольшее распространение получили методы обратного рендеринга, основанные на 

градиентной оптимизации [7-8] и использовании автоматического дифференцирования. В 
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частности, метод «reverse mode», так как в обратном рендеринге обычно имеется большое 

количество входных значений (например, при реконструкции материалов – пиксели текстур, 

задающих оптические свойства поверхности) и одно выходное значение функции потерь. В 

этом смысле задача обратного дифференцируемого рендеринга похожа на задачу обучения 

нейросетевых моделей. Однако, алгоритм трассировки путей, являющийся основой 

фотореалистичного рендеринга, при применении обратного дифференцирования дает граф 

вычислений высокой сложности, что привело к необходимости создания специальных 

методов [9] для решения проблем затрат памяти и вычислений. 

 

Рис. 1. Схема работы обратного рендеринга. 

Fig. 1. Inverse rendering workflow. 

Тем не менее, задача обратного рендеринга остается достаточно вычислительно затратной. 

При этом время реконструкции напрямую зависит от числа эталонных изображений, 

подаваемых на вход [10]. 

Чтобы точно восстановить текстуры оптических свойств поверхности, изображения на входе 

должны демонстрировать целевой объект реконструкции со всех сторон. Другими словами, 

если геометрическая модель уже известна, каждой полигон объекта должен быть виден хотя 

бы на одном ракурсе (если это возможно). Существующие наборы данных для оценки 

методов реконструкции, такие как [6, 11-12], обычно представляют собой изображения 

целевого объекта с ракурсов, полученных с помощью поворотного столика или путем 

перемещения камеры вокруг него. Это, с одной стороны, не гарантирует достаточную 

видимость всех частей объекта, а с другой обычно приводит к тому, что соседние 

изображения могут в значительной мере перекрываться и, вероятно, вносить небольшой 

вклад в точность реконструкции, увеличивая при этом время расчетов. В то же время 

существующие исследования показывают, что разнообразие выбранных точек обзора влияет 

на конечное качество реконструкции [13], улучшая результат по метрике PSNR до 1.9 дБ по 

сравнению со случайным выбором. 

В данной работе рассматривается задача выбора набора ракурсов целевого объекта для 

улучшения качества реконструкции материалов и снижения вычислительных затрат. 

2. Существующие решения 

Выбор ракурса является одной из основных задач активного восприятия (active perception). 

Данная задача заключается в том, что необходимо выбрать положение камеры, которое 

максимально улучшит понимание сцены. В компьютерном зрении и графике эффективный 

выбор ракурсов может значительно снизить неопределенность в 3D-реконструкции или в 

синтезе новых ракурсов. Были предложены различные критерии, от основанных на теории 

информации (например, энтропии Шеннона) до покрытия геометрического представления и 

эвристик, основанных на неопределенности. 
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Существует достаточно много методов выбора ракурсов. В работах [14-15] представлен 

обзор различных метрик, классифицированных по типу используемых данных: площадь 

полигонов, силуэт, глубина, кривизна, семантическая информация, салиентность. 

Наибольшее распространение получили методы, основанные на теории информации, такие 

как расчет энтропии [16-18] и взаимной информации [19] с использованием геометрических 

данных. Также существуют подходы на основе глубокого обучения [10, 20]. 

В работе [10] предлагается выбор ракурсов на основе площади полигонов в текстурном 

пространстве. Этот и другие критерии применяются авторами для выбора изображений из 

заранее подготовленного набора для реконструкции текстур. Также предлагается алгоритм 

последовательного выбора нескольких ракурсов так, чтобы каждый полигон объекта был 

виден хотя бы на одном из ракурсов. 

Основное ограничение этих методов связано с зависимостью от предопределенного набора 

изображений. Большинство решений работают с заранее заданным набором изображений 

объекта, полученных путем рендеринга 3D-модели с фиксированных позиций камеры. Эти 

позиции часто определяются точками на сфере вокруг объекта [16-19] или вершинами 

икосаэдра [21], который затем тесселируется для аппроксимации сферы. 

В работе [22] авторы расширяют NeRF-представление, рассматривая освещенность в каждой 

точке не как одно значение, а как распределение Гаусса, дисперсия которого описывает 

неопределенность. Новые положения камеры выбираются так, чтобы максимизировать 

уменьшение неопределенности модели. Это позволяет улучшить качество при построении 

поля освещенности по небольшому числу изображений, выбирая наиболее информативные. 

В [23] предлагается построение предварительного поля освещенности для расчета 

глобальной карты неопределенности. Далее производится выбор ракурсов на основе этой 

карты. Другие подходы на основе нейронного рендеринга действуют схожим образом, – 

производится обучение нейронной модели для небольшого числа изображений, которая 

затем используется для оценки неопределенности с помощью различных эвристик. На основе 

полученных оценок выбираются новые ракурсы. Основной недостаток этих решений в том, 

что процесс выбора ракурсов в них требует значительных вычислительных затрат, связанных 

с постоянным обучением или дообучением нейронных моделей. 

Работы [24-25] строят модели, позволяющие сразу получить очередной оптимальный ракурс 

из текущего. Однако, выбор осуществляется из предопределенного набора ракурсов. Кроме 

того, для обучения моделей требуются эталонные оптимальные ракурсы. 

В работе [26] авторы обучают нейросетевую модель, которая предсказывает карту 

неопределенности по одному изображению, что позволяет избежать построения 

специального поля освещенности. 

Задача выбора ракурсов также использовалась и для «gaussian splatting»-представлений сцен. 

В [27] оценивается плотность сцены, которая затем используется для выбора ракурсов на 

основе максимального пространственного заполнения. В [28-29] используется плотность и 

глубина, чтобы оценить число вокселей, которые не видимы на данном ракурсе, но будут 

видимы на ракурсе-кандидате. 

В целом, выбор ракурсов в приложении к полям освещенности, gaussian splatting и близким 

к ним представлениям основан на оценке неопределенности и активном обучении. Оценка 

неопределенности обычно строится на основе дисперсии цвета и/или плотности. 

Используемые стратегии выбора ракурса включают [13]: случайный выбор, выбор ракурса, 

наименее похожего на текущий и выбор на основе прироста информации (уменьшении 

неопределенности). 

Таким образом, методы выбора ракурсов для классических представлений сцены с 

разделением геометрии (полигональных моделей) и моделей материалов опираются на выбор 

из предопределенного набора ракурсов, который обычно генерируется по сетке на 

сфере/полусфере вокруг объекта. Это приводит к тому, что возможные оптимальные ракурсы 
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могут быть пропущены, а также к ограниченности позиционирования камеры – обычно 

допускается только вращение вокруг объекта на фиксированном расстоянии. 

Большинство методов, ориентированных на нейронные представления, лишено этого 

недостатка, но приобретают другие. В частности, они требуют значительных 

вычислительных затрат на выбор ракурса, связанных либо с необходимостью (до)обучения 

вспомогательного нейронного представления (зачастую после выбора каждого нового 

ракурса), либо с обучением отдельной нейросетевой модели оценке неопределенности [26]. 

Также некоторые методы требуют наборов данных с эталонными оптимальными ракурсами. 

Данная работа посвящена методу выбора произвольных ракурсов (без использования 

предопределенного набора) для классических представлений сцены. Мы рассматриваем 

задачу реконструкции материалов, предполагая, что реконструкция геометрической модели 

в виде полигональной сетки уже некоторым образом выполнена. 

3. Предлагаемое решение 

Предлагаемый метод использует обратный рендеринг, чтобы подобрать набор положений 

виртуальной камеры, основываясь на некоторой оценке качества ракурса, вычисленной 

одним из способов, использующих геометрические данные [10, 14-15]. Далее рассмотрим 

схему работы предлагаемого метода, а конкретные использованные в работе оценки качества 

ракурса будут рассмотрены позднее. 

3.1 Общая схема работы 

Общая схема работы предлагаемого метода представлена на рис. 2. 

 

Рис. 2. Схема работы предлагаемого решения. 

Fig. 2. Proposed solution schematic workflow. 
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На вход методу подается 3D-сцена, включающая один целевой 3D-объект, размещенный в 

начале координат. Использование только одного объекта – наиболее распространенный 

сценарий в существующих исследованиях и наборах данных [6, 11, 12]. При необходимости 

обрабатывать нескольких объектов сразу, они могут быть обработаны последовательно, 

либо, например, объединены в одну полигональную модель. На этапе подготовки сцены 

задается начальное положение и ориентация целевого объекта, а также вычисляются 

дополнительные геометрические атрибуты, необходимые для оценки качества ракурса тем 

или иным методом, – площадь полигонов, кривизна, площадь полигонов в текстурном 

пространстве и так далее. 

Далее следует основная часть предлагаемого метода – этап обратного рендеринга. Сначала с 

помощью прямого прохода синтезируются следующие изображения: 

● визуализация индексов полигонов – в каждый пиксель записывается индекс 

полигона, видимого в этом пикселе; 

● визуализация геометрических атрибутов – в каждый пиксель записывается значение 

геометрического атрибута полигона, видимого в этом пикселе. 

На основе обработки этих изображений вычисляется оценка качества ракурса, которая 

является значением целевой функции обратного рендеринга. Оптимизируемыми 

параметрами выступает положение и ориентация объекта (эйлеровы углы или ось и угол 

вращения). 

Как уже было сказано, большинство существующих работ в области обратного рендеринга 

используют дифференцируемый рендеринг. Однако, так как в нашем случае число 

оптимизируемых параметров сравнительно мало, то могут быть использованы и другие 

методы, например, метод Нелдера-Мида. Использование безградиентных методов в 

рассматриваемой задаче имеет ряд преимуществ. В частности, для вычисления целевой 

функции можно использовать недифференцируемые операции, что расширяет выбор 

методов оценки ракурса. В рамках предлагаемого решения исследовалось использование как 

дифференцируемого рендеринга, так и безградиентных методов. 

В конце этапа обратного рендеринга, значение оценки качества передается оптимизатору, 

завершая одну итерацию обратного рендеринга. На выходе получается матрица 

трансформации целевого объекта (при необходимости она может быть преобразована в 

матрицу трансформации виртуальной камеры), которая представляет один выбранный 

ракурс. 

Следующим этапом, на основе визуализации индексов полигонов для полученного ракурса, 

производится обновление геометрических атрибутов целевого объекта. Для этого вес 

полигонов, видимых на выбранном ракурсе, уменьшается. За счет этого при выборе 

следующего ракурса процесс обратного рендеринга будет стремиться выбирать ракурсы с 

полигонами, которые ещё не были видны на предыдущих ракурсах. 

Далее весь процесс повторяется до тех пор, пока каждый следующий ракурс уменьшает число 

полигонов, которые были до этого не видны, на некоторую 𝛿. В результате на выходе 

формируется последовательность матриц трансформации, задающих набор выбранных 

ракурсов. 

3.2 Оценка качества ракурса 

Для оценки качества ракурсов предлагаемый метод позволяет использовать различные 

способы, основанные на геометрических характеристиках. 

В работе [10], где также решалась задача выбора ракурса для реконструкции материалов 

объекта, наилучший результат продемонстрировала оценка ракурса на основе энтропии 

спроецированной площади полигонов, предложенная в работе [18]: 
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𝑉𝐸(𝑣) = − ∑

𝑁

𝑖=0

𝑎𝑧(𝑣)

𝑎𝑡(𝑣)
𝑙𝑜𝑔 𝑙𝑜𝑔 

𝑎𝑧(𝑣)

𝑎𝑡(𝑣)
 

где 𝑁- число полигонов в 3D модели, 𝑎𝑧(𝑣) – спроецированная площадь полигона 𝑧 для 

ракурса 𝑣 и 𝑎𝑡(𝑣) – спроецированная площадь всей 3D модели для ракурса 𝑣. 

Под спроецированной площадью полигона 𝑎𝑧 понимается число пикселей на изображении, 

принадлежащих полигону z. Для наилучшего ракурса по данной оценке все полигоны 3D 

модели видны с одинаковой относительной спроецированной площадью. 

В рамках предлагаемого метода эта величина вычисляется за счет визуализации индексов 

полигонов при рендеринге. Для полученного изображения производится подсчет числа 

пикселей, содержащих каждое из значений индексов, что и дает спроецированную площадь. 

Этот способ вычисления не может быть обработан автоматическим дифференцированием. 

Поэтому оценка ракурса 𝑉𝐸 в предлагаемом решении может использоваться только с 

безградиентным обратным рендерингом. 

Также в качестве оценки может выступать просто спроецированная площадь всего целевого 

объекта 𝑎𝑡(𝑣) [30]. Т.е. чем большую часть синтезированного изображения занимает целевой 

объект, тем лучше ракурс. В этом случае достаточно просто просуммировать пиксели 

изображения, в которых виден целевой объект, что позволяет использовать такую оценку как 

с дифференцируемым рендерингом, так и с безградиентными методами. 

Схожим образом могут быть использованы и другие атрибуты геометрической модели: 

● 𝐹𝐴 – суммарная площадь видимых полигонов в локальной системе координат; 

● 𝑇𝐴 – суммарная площадь видимых полигонов в текстурном пространстве; 

● 𝑀𝐶 – сумма модулей средней кривизны поверхности. 

Наилучшим ракурсом является тот, на котором видна максимальная площадь или наиболее 

детальная часть модели (т.е. с наибольшей суммарной кривизной). 

Расчет этих оценок также необходимо вычислять по-разному для безградиентых методов и 

дифференцируемого рендеринга. В случае безградиентных методов возможно получить 

множество всех видимых полигонов, используя индексы которых вычислить сумму 

требуемых атрибутов. Например, для площади в локальной системе координат: 

𝐹𝐴(𝑣) = ∑

𝑧∈𝑍𝑣

𝐴𝑧 

где 𝑍 – множество полигонов, видимых на ракурсе 𝑣, 𝐴𝑧 – значение атрибута для z-го 

полигона. 

Для дифференцируемого рендеринга операция индексации по значениям в пикселях 

изображения при вычислении функции потерь (целевой функции) невозможна, поэтому 

необходимо суммировать значения по всему изображению, содержащего в своих пикселах 

значения атрибутов. Это приводит к тому, что для полигона, который виден в четырех 

пикселях (т.е. имеет спроецированную площадь 𝑎𝑧 = 4), значение атрибута, например, 

площади в локальных координатах, будет просуммировано 4 раза, то есть: 

𝐹𝐴(𝑣) = ∑

𝑧∈𝑍𝑣

𝑎𝑧(𝑣) ∗ 𝐴𝑧 

Таким образом, получается некоторое неявное «взвешивание» по спроецированной площади 

полигонов, – чем больше спроецированная площадь, тем больший вклад вносит данный 

полигон. 

Для безградиентных методов нами был также исследован вариант, где используется 

взвешивание по относительной спроецированной площади: 
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𝐹𝐴(𝑣) = ∑

𝑧∈𝑍

𝑎𝑧(𝑣)

𝑎𝑡(𝑣)
∗ 𝐴𝑧 (1) 

Чтобы иметь возможность учесть ориентацию полигонов относительно камеры мы также 

исследовали взвешивание по косинусу угла между вектором нормали к полигону 𝑁 и 

направлением на виртуальную камеру 𝑉: 

𝑤𝑧 =  (0, (𝑁 ∙ 𝑉)) 

Для оценок с суммированием атрибутов (𝐹𝐴, 𝑇𝐴, 𝑀𝐶) это взвешивание применяется сразу 

при их вычислении: 

𝐹𝐴(𝑣) = ∑

𝑧∈𝑍𝑣

𝑤𝑧(𝑣) ∗ 𝐴𝑧 (2) 

Вариант с «двойным» взвешиванием – по косинусу и по спроецированной площади 

𝐹𝐴(𝑣) = ∑

𝑧∈𝑍𝑣

𝑤𝑧(𝑣) ∗ 𝑎𝑧(𝑣) ∗ 𝐴𝑧 

может быть также вычислен, но не имеет большого смысла, так как веса 𝑤𝑧(𝑣) и 𝑎𝑧(𝑣) 

зависимы. 

Отметим, что предлагаемое решение не зависит от конкретного метода оценки качества 

ракурсов и может использовать другие существующие решения, не рассмотренные выше, 

если они могут быть рассчитаны с использованием только геометрической модели. 

Например, на основе силуэта [31] или глубины [32]. 

3.3 Алгоритм выбора ракурсов 

Предлагаемый алгоритм выбора набора ракурсов можно разделить на две части: 

1) внутренний цикл обратного рендеринга (оптимизации), 

2) внешний цикл выбора набора ракурсов. 

При этом внутренний цикл будет несколько отличаться в зависимости от того, используется 

ли дифференцируемый рендеринг (алгоритм 1) или безградиентные методы оптимизации 

(алгоритм 2). 

В случае дифференцируемого рендеринга сразу выполняется рендеринг нужных атрибутов 

геометрической модели в изображение 𝑎𝑡𝑡𝑟𝑖𝑏_𝑖𝑚𝑔, которое уже затем используются для 

вычисления оценки качества ракурса, в большинстве случае простым суммированием по 

изображению. 

При использовании безградиентной оптимизации нет ограничений на дифференцируемость 

операций, поэтому производится рендеринг индексов примитивов в изображение 𝑝𝑟𝑖𝑚_𝑖𝑚𝑔. 

Из этого изображения можно получить список всех примитивов, видных на текущем ракурсе, 

и уже для них вычислять выбранную оценку ракурса. 

Отметим, что в описаниях алгоритмов подразумевается параллельная обработка примитивов 

3D модели. Поэтому, например, в 6-й строчке алгоритма 2 имеется в виду поэлементное 

умножение списка значений 𝑣 некоторого атрибута примитивов на список весов 

примитивов 𝑊. 

Алгоритмы 1 и 2 дают на выходе один ракурс. Процедура выбора нескольких ракурсов 

описана в алгоритме 3, который вызывает алгоритм 1 или 2 в цикле (строчка 4). 
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Алгоритм 1. 𝑁𝑒𝑥𝑡𝑉𝑖𝑒𝑤(… ), Выбор ракурса с помощью дифференцируемого рендеринга 
Вход: 

scene – описание 3D сцены, attrib – имя атрибута(ов) 3D модели, используемое для расчета оценки 

качества ракурса, P – набор оптимизируемых параметров трансформации (углы эйлера или ось и 

угол поворота; вектор переноса), measure – используемая оценка качества ракурса, 𝑐𝑜𝑛𝑑 – условие 

остановки поиска одного ракурса, 𝑙𝑟 – отображение оптимизируемого параметра на величину его 

темпа обучения, 𝛿 – изменение функции потерь, меньше которого процесс оптимизации 

завершается, 𝑖𝑡𝑚𝑎𝑥 – максимальное число итераций, 𝑊 – веса примитивов 3D модели. 

Выход: 

𝑀4×4 – матрица трансформации целевого объекта на подобранном ракурсе 

1 𝑐𝑜𝑛𝑑 ← 𝑇𝑟𝑢𝑒, 𝑖𝑡 ← 0 
2 𝑤ℎ𝑖𝑙𝑒 𝑐𝑜𝑛𝑑 𝑑𝑜 
3  𝑙 ← 0, 𝑙 ← 0  

4  𝐴𝑝𝑝𝑙𝑦𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑃) 
5  𝑎𝑡𝑡𝑟𝑖𝑏_𝑖𝑚𝑔 ← 𝑅𝑒𝑛𝑑𝑒𝑟(𝑠𝑐𝑒𝑛𝑒, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 =  𝑎𝑡𝑡𝑟𝑖𝑏) // рендеринг необходимых атрибутов 

6  𝑙 ← 𝑉𝑖𝑒𝑤𝑝𝑜𝑖𝑛𝑡𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑎𝑡𝑡𝑟𝑖𝑏_𝑖𝑚𝑔, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒, 𝑊) // вычисление оценки ракурса 

7  𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑒𝑝(𝑙, 𝑙𝑟) // шаг градиентного спуска 

8  𝑖𝑡 ← 𝑖𝑡 + 1 
9  𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒(𝑙𝑟, 𝑖𝑡) // опциональное изменение темпа обучения 

10  
𝑖𝑓 ( 𝑙 ≠ 0 𝑎𝑛𝑑 

|𝑙 − 𝑙|

|𝑙|
< 𝛿) 𝑜𝑟 𝑖𝑡 ≥ 𝑖𝑡𝑚𝑎𝑥 𝑡ℎ𝑒𝑛 

11   𝑐𝑜𝑛𝑑 ← 𝐹𝑎𝑙𝑠𝑒 
12  𝑒𝑙𝑠𝑒 
13   𝑙 ← 𝑙 
14  𝑒𝑛𝑑 
15 𝑒𝑛𝑑 
16 𝑟𝑒𝑡𝑢𝑟𝑛 𝑀 

 

Алгоритм 2. 𝑁𝑒𝑥𝑡𝑉𝑖𝑒𝑤(… ), Выбор ракурса с помощью безградиентной оптимизации 

Вход: 

scene – описание 3D сцены, attrib – имя атрибута(оа) 3D модели, используемое для расчета оценки 

качества ракурса, P – набор оптимизируемых параметров трансформации (углы эйлера или ось и 

угол поворота; вектор переноса), measure – используемая оценка качества ракурса, 

𝑊 – веса примитивов 3D модели, 𝑤𝑎 – использовать ли взвешивание по спроецированным площадям, 

𝑤𝑛 – использовать ли взвешивание по косинусу между вектором нормали и направление на камеру 

Выход: 

𝑀4×4 – матрица трансформации целевого объекта на подобранном ракурсе 

1 𝑐𝑜𝑛𝑑 ← 𝑇𝑟𝑢𝑒, 𝑖𝑡 ← 0 
2 𝑓𝑢𝑛𝑐 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑃): 
3  𝑀̂ ← 𝐴𝑝𝑝𝑙𝑦𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑃)  

4  𝑝𝑟𝑖𝑚_𝑖𝑚𝑔 ← 𝑅𝑒𝑛𝑑𝑒𝑟(𝑠𝑐𝑒𝑛𝑒, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝑝𝑟𝑖𝑚_𝑖𝑑) // рендеринг индексов примитивов 

5  𝑣 ← 𝑅𝑒𝑎𝑑𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑎𝑡𝑡𝑟𝑖𝑏, 𝑝𝑟𝑖𝑚_𝑖𝑚𝑔, 𝑠𝑐𝑒𝑛𝑒) // чтение атрибутов по индексам 

полигонов из изображения 

6  𝑣 ← 𝑣 ∗ 𝑊 
7  𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 ← 𝑉𝑖𝑒𝑤𝑝𝑜𝑖𝑛𝑡𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑣, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒, 𝑤𝑎 , 𝑤𝑛, 𝑀̂)  

8  𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 ∗ (−1) 
9 𝑒𝑛𝑑 
10 𝑃̂ ←  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒, 𝑃) // вызов метода оптимизации 

11 𝑀 ← 𝑎𝑝𝑝𝑙𝑦_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑃̂) 
12 𝑟𝑒𝑡𝑢𝑟𝑛 𝑀 
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При выборе ракурсов из некоторого предопределенного набора заранее известно, какие 

полигоны геометрической модели видны на всем наборе, что позволяет ставить цель 

сформировать такой набор ракурсов, который будет включать каждый полигон хотя бы на 

одном ракурсе. В рассматриваемом же случае выбора произвольных ракурсов, такой 

информации нет, и легко представить случай, когда значительная часть 3D модели может 

быть сокрытой на любом возможном ракурсе в реальном сценарии съемки. Например, 

внутренняя поверхность какого-либо полого предмета. Таким образом, условие завершения 

работы алгоритма не может требовать видимости всех полигонов. Поэтому в качестве 

условия завершения формирования набора ракурсов мы используем относительное 

уменьшение суммы весов примитивов (алгоритм 3, строчка 10). 

Алгоритм 3. Выбор набора ракурсов  

Вход: 

scene – описание 3D сцены, attrib – имя атрибута 3D модели, используемое для расчета оценки 

качества ракурса, measure – используемая оценка качества ракурса, 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙_𝑐𝑜𝑛𝑑 – условие 

остановки поиска одного ракурса, 𝑤𝑛 – использовать ли взвешивание по косинусу между вектором 

нормали и направление на камеру, 𝛿 – изменение суммарного значения весов примитивов, меньше 

которого процесса поиска ракурсов завершается. 

Выход: 

𝑀 – список матриц трансформации, описывающих положение камеры для выбранных ракурсов 

1 𝑐 ← 0, 𝑗 ← 0, 𝑐𝑜𝑛𝑑 ← 𝑇𝑟𝑢𝑒, 𝑀 ← 𝐿𝑖𝑠𝑡(),  
 𝑎𝑡 ← 𝑁𝑢𝑚𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠𝐼𝑛𝑀𝑒𝑠ℎ(𝑠𝑐𝑒𝑛𝑒), 𝑊 ← 𝑜𝑛𝑒𝑠(𝑎𝑡), 𝑎𝑡̃ ← 𝑎𝑡 
2 𝑤ℎ𝑖𝑙𝑒 𝑐𝑜𝑛𝑑 𝑑𝑜 
3  𝑃 ← 𝐼𝑛𝑖𝑡𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑗) // выбор начального положения объекта 

4  𝑀 ← 𝑁𝑒𝑥𝑡𝑉𝑖𝑒𝑤(𝑠𝑐𝑒𝑛𝑒, 𝑎𝑡𝑡𝑟𝑖𝑏, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒, 𝑃, 𝑊, … ) // выбор одного ракурса по алгоритму 1 

или 2 

5  𝑀  ← 𝑀: 𝑀 // добавление матрицы найденного ракурса в список 

6  𝑝𝑟𝑖𝑚_𝑖𝑚𝑔 ← 𝑅𝑒𝑛𝑑𝑒𝑟(𝑠𝑐𝑒𝑛𝑒, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝑝𝑟𝑖𝑚_𝑖𝑑) // рендеринг индексов примитивов 

7  𝑎̂𝑡 ← 𝑎𝑡 
8  𝑊 ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑒𝑠ℎ𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(𝑠𝑐𝑒𝑛𝑒, 𝑝𝑟𝑖𝑚_𝑖𝑚𝑔, 𝑤𝑛 , 𝑎𝑡𝑡𝑟𝑖𝑏) // обновление весов для 

видимых примитивов 

9  𝑎𝑡 ← 𝑠𝑢𝑚(𝑊) 
10  

𝑖𝑓
|𝑎𝑡 − 𝑎̂𝑡|

𝑎𝑡̃
< 𝛿 𝑡ℎ𝑒𝑛 

11   𝑐𝑜𝑛𝑑 ← 𝐹𝑎𝑙𝑠𝑒 
12  𝑒𝑛𝑑 
13 𝑒𝑛𝑑 
14 𝑟𝑒𝑡𝑢𝑟𝑛 𝑀  

Веса примитивов уменьшаются на каждом шаге после обновления (алгоритм 3, строчка 8), 

которое учитывает то, какие примитивы видны на последнем выбранном ракурсе. При 

использовании взвешивания по косинусу веса также используются при обновлении 

атрибутов геометрической модели после нахождения очередного ракурса: 

𝑚𝑒𝑠ℎ[𝑎𝑡𝑡𝑟𝑖𝑏] = 𝑚𝑒𝑠ℎ[𝑎𝑡𝑡𝑟𝑖𝑏] −  𝑚𝑒𝑠ℎ[𝑎𝑡𝑡𝑟𝑖𝑏] ∗  (0, (𝑁 ∙ 𝑉)) 

За счет этого видимые под углом полигоны учитываются при поиске последующих ракурсов, 

но с меньшим весом, т.к. они были видимы на ракурсах, найденных ранее. Если взвешивание 

не используется, то вес видимых примитивов принимается равным нулю. В экспериментах 

мы использовали значение 𝛿 = 1%. 

В строчке 3 алгоритма 3 производится выбор начального положения объекта. Это может быть 

сделано разными способами, основная задача состоит в том, чтобы обеспечить разные 
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начальные точки для поиска очередного ракурса, чтобы метод оптимизации мог исследовать 

разные части пространства решений. Удобнее выбирать положение камеры, от которого 

можно перейти к положению объекта. Например, может использоваться случайное 

положение камеры, но так, чтобы она всегда смотрела на целевой объект. 

4. Экспериментальная оценка 

4.1 Исходные данные 

Для проведения экспериментальной оценки предложенного метода использовался набор 

данных Stanford-ORB [11], содержащий: 

● фотографии 14 объектов в узком и широком динамическом диапазоне, 

● эталонные 3D модели объектов, полученные с помощью 3D сканирования, 

● HDR-панорамы освещения, 

● текстуры объектов для модели материала Principled BSDF. 

Текстуры были получены авторами при помощи дифференцируемого рендеринга по 

фотографиям, сделанным в специальных контролируемых условиях освещения, будем 

называть их «псевдоэталонными». Для каждого объекта заданы три текстуры – диффузный 

цвет, шероховатость, «металличность» (вес для смешения модели двулучевой функции 

рассеяния (ДФР) проводника и ДФР диэлектрика). 

Из этого набора данных нами были выбраны объекты, отличающиеся геометрической 

формой (рис. 3), начиная от простой к более сложной. 

 

Рис. 3. Объекты, отобранные для тестирования предложенного метода. 

Fig. 3. Objects chosen for testing proposed method. 

4.2 Схема проведения экспериментов 

Предложенный метод и тестовая система обратного рендеринга были реализованы на базе 

рендер-системы Mitsuba3 [33]. Предварительная обработка полигональной модели и расчет 

атрибутов был реализован с помощью библиотеки libIGL [34]. Вычисление оценок качества 

ракурса по большей части были реализованы на GPU с использованием JIT-компилятора 

Dr.Jit [35], для обратного рендеринга на основе безградиентной оптимизации небольшая 

часть вычислений производилась на CPU. 

Для каждой из 3D моделей экспериментальная оценка включала следующие этапы: 

1. Предварительная обработка геометрической модели с назначением и расчетом 

атрибутов на каждый примитив, включающих: вес (исходно равный единице), 

площадь в локальной системе координат, площадь в текстурном пространстве, 

средняя кривизна. 
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2. Формирование набора ракурсов по алгоритму 3 для различных оценок ракурса для 

безградиентного обратного рендеринга и для дифференцируемого обратного 

рендеринга. 

3. Прямой рендеринг 3D модели с псевдоэталонными текстурами на полученном 

наборе ракурсов. 

4. Реконструкция текстур диффузного цвета, шероховатости и металличности для 

модели материала «Principled BSDF» рендер-системы Mitsuba3. В качестве входных 

использовались изображения, полученные на предыдущем этапе. 

5. Оценка качества реконструкции по метрикам PSNR, SSIM и LPIPS [36] для трех 

тестовых наборов: 

a. набор A – синтетические изображения, полученные путем рендеринга 3D модели 

с псевдоэталонными текстурами на ракурсах тестовой части набора данных 

Stanford-ORB; 

b. набор B – реальные фотографии из тестовой части набора данных Stanford-ORB; 

c. набор C – синтетические изображения, полученные путем рендеринга 3D модели 

с псевдоэталонными текстурами на 16 псевдослучайных ракурсах, полученных 

из трехмерной последовательности Соболя. 

В качестве базового метода рассматривался выбор ракурсов из трехмерной 

последовательности Соболя. Для этого алгоритм 3 исполнялся без запуска процедуры 

обратного рендеринга (оптимизации) и использовался выбранный псевдослучайный 

начальный ракурс (строчка 3, алгоритм 3). В качестве измерений последовательности Соболя 

использовались эйлеровы углы, за счет чего такой выбор ракурсов позволил обеспечить 

равномерное покрытие ориентаций целевого объекта. 

4.3 Результаты экспериментов 

Далее приведены оценки качества реконструкции материалов на трех тестовых наборах 

данных – набор A (табл. 1), набор B (табл. 2), набор C (табл. 3). 

Для каждого способа оценки ракурсов тестировалось три варианта – без взвешивания, со 

взвешиванием по косинусу угла нормали и направления на камеру (𝑤𝑛) и со взвешиванием 

по спроецированной площади, где это имело смысл (𝑤𝑎). В таблицах приведены результаты 

только лучшего из этих трех вариантов. Для случаев, когда использовался 

дифференцируемый рендеринг, это отмечено в таблице как «дифф. рендеринг», в остальных 

вариантах использовалась безградиентная оптимизация. 

Для синтетических тестовых наборов A (табл. 1) наилучшие из методов выбора ракурсов 

демонстрируют преимущество на случайных выборах порядка 1.9 дБ по метрике PSNR, что 

согласуется с результатами, полученными авторами [13] для реконструкции нейронных 

полей освещенности. Для псевдослучайных синтетических ракурсов (набор данных C, 

табл. 3) прирост несколько меньше – около 1.2 дБ, но при этом большинство методов выбора 

ракурса также снижают и дисперсию PSNR по сравнению с базовым методом. При 

тестировании на фотографиях (набор данных B, табл. 2) использование предлагаемых 

методов также демонстрирует преимущество над базовым методом. По метрике SSIM все 

варианты показывают близкие высокие значения, по метрике LPIPS результаты в целом 

согласуются с таковыми по PSNR. 

Среди вариантов, превосходящих базовый метод, в основном, присутствуют те, которые 

используют предложенные механизмы взвешивания по косинусу угла между вектором 

нормали к примитиву и направлением на камеру (выражение 2), которое позволяет получить 

больше ракурсов, где одни и те же примитивы видны под разным углом. Это, в свою очередь, 

может позволить получить более качественную реконструкцию материалов с бликами. 
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Табл. 1. Результаты на наборе синтетических изображений тестовой части Stanford-ORB (набор 

данных A). 

Table 1. Results for synthetic images of testing part of Stanford-ORB (dataset A). 

Метод оценки ракурса 
Среднее число 

ракурсов 

Среднее PSNR, 

дБ ↑ 

Среднее SSIM 

↑ 

Среднее LPIPS 

↓ 

Базовый 8.6 33.99 ± 1.98 0.967 ± 0.012 0.019 ± 0.012 

Средняя кривизна, 𝑤𝑛 11.6 35.86 ± 2.23 0.971 ± 0.013 0.014 ± 0.010 

Спроецированная 

площадь, 𝑤𝑛 
11 35.72 ± 2.61 0.971 ± 0.015 0.015 ± 0.011 

Площадь в текстурном 

пространстве, 𝑤𝑛 
11.6 35.84 ± 2.50 0.971 ± 0.015 0.015 ± 0.012 

Энтропия 

спроецированной 

площади 
8.4 34.23 ± 2.19 0.967 ± 0.015 0.019 ± 0.013 

Площадь полигонов, 𝑤𝑛 11 35.86 ± 1.97 0.972 ± 0.012 0.014 ± 0.010 

Площадь полигонов, 𝑤𝑛, 

дифф. рендеринг 
11 35.66 ± 2.49 0.971 ± 0.013 0.015 ± 0.010 

Площадь в текстурном 

пространстве, 

дифф. рендеринг 

9 35.27 ± 2.25 0.969 ± 0.015 0.016 ± 0.012 

Спроецированная 

площадь, 

дифф. рендеринг 

11.6 35.51 ± 2.02 0.970 ± 0.013 0.016 ± 0.011 

Табл. 2. Результаты на наборе реальных изображений (фотографий) тестовой части Stanford-ORB 

(набор данных B). 

Table 2 Results for real images (photos) of testing part of Stanford-ORB (dataset B). 

Метод оценки ракурса 
Среднее PSNR, 

дБ ↑ 

Среднее SSIM 

↑ 

Среднее LPIPS 

↓ 

Базовый 30.36 ± 1.51 0.962 ± 0.013 0.025 ± 0.014 

Средняя кривизна, 𝑤𝑛 31.17 ± 2.17 0.966 ± 0.015 0.021 ± 0.014 

Спроецированная площадь, 𝑤𝑛 30.95 ± 2.27 0.965 ± 0.017 0.022 ± 0.015 

Площадь в текстурном 

пространстве, 𝑤𝑛 
31.05 ± 2.11 0.965 ± 0.016 0.022 ± 0.015 

Энтропия спроецированной 

площади 
30.39 ± 1.64 0.962 ± 0.015 0.025 ± 0.016 

Площадь полигонов, 𝑤𝑛 31.07 ± 1.98 0.966 ± 0.014 0.022 ± 0.014 

Площадь полигонов, 𝑤𝑛, 

дифф. рендеринг 
31.07 ± 2.06 0.966 ± 0.014 0.022 ± 0.014 

Площадь в текстурном 

пространстве, дифф. рендеринг 
30.85 ± 1.95 0.964 ± 0.016 0.023 ± 0.016 

Спроецированная площадь, 

дифф. рендеринг 
30.97 ± 1.94 0.965 ± 0.014 0.023 ± 0.014 
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Табл. 3. Результаты на наборе синтетических изображений с псевдослучайными ракурсами (набор 

данных C). 

Table 3. Results for images with pseudorandom viewpoints (dataset C). 

Метод оценки ракурса 
Среднее PSNR, 

дБ ↑ 

Среднее SSIM 

↑ 

Среднее LPIPS 

↓ 

Базовый 32.81 ± 3.05 0.959 ± 0.015 0.019 ± 0.010 

Средняя кривизна, 𝑤𝑛 33.95 ± 2.62 0.962 ± 0.014 0.015 ± 0.007 

Спроецированная площадь, 𝑤𝑛 33.84 ± 2.70 0.962 ± 0.015 0.016 ± 0.007 

Площадь в текстурном 

пространстве, 𝑤𝑛 
34.07 ± 2.52 0.962 ± 0.014 0.016 ± 0.008 

Энтропия спроецированной 

площади 
32.69 ± 3.10 0.959 ± 0.016 0.019 ± 0.010 

Площадь полигонов, 𝑤𝑛 34.05 ± 2.44 0.963 ± 0.013 0.015 ± 0.007 

Площадь полигонов, 𝑤𝑛, дифф. 

рендеринг 
34.00 ± 2.84 0.963 ± 0.014 0.015 ± 0.007 

Площадь в текстурном 

пространстве, дифф. рендеринг 
33.45 ± 2.74 0.961 ± 0.014 0.016 ± 0.008 

Спроецированная площадь, 

дифф. рендеринг 
33.78 ± 2.40 0.962 ± 0.013 0.016 ± 0.008 

Число выбранных ракурсов в обучающем наборе при использовании обратного рендеринга в 

среднем имеет значения от 8.4 до 11.6. На рис. 4 показан пример набора ракурсов, выбранных 

по оценке, основанной на суммарной средней кривизне. 

С увеличением числа ракурсов растет и качество реконструкции, что ожидаемо. Но при этом 

метод на основе энтропии спроецированной площади, выбирающий в среднем наименьшее 

число ракурсов, демонстрирует небольшое увеличение качества реконструкции по 

сравнению с базовым методом, выбирающим немногим большее количество ракурсов. Это 

может служить дополнительным подтверждением того, что использование обратного 

рендеринга позволяет выбрать ракурсы, более подходящие для реконструкции материалов. 

 

Рис. 4. Пример набора ракурсов, выбранных с помощью оценки качества ракурса по суммарной 

средней кривизне. 

Fig. 4. Example set of viewpoints selected using the total mean curvature view quality measure. 
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В сравнении с реконструкцией по синтетическим изображениям из всего обучающего набора 

Stanford ORB, включающего 60 ракурсов, наилучший из вариантов с выбором ракурсов 

проигрывает около 1.5 дБ по метрике PSNR на синтетических тестовых наборах A и C и 

показывает почти такой же результат на фотографиях (набор B). При этом среднее число 

используемых для реконструкции изображений для предложенных вариантов в среднем 

меньше в ~6 раз, что позволяет значительно снизить время реконструкции. Для GPU Nvidia 

RTX 2070 Super реконструкция на 60 ракурсах в нашей реализации занимает порядка 2-х 

часов. А при использовании наборов ракурсов, полученных предложенным методов (в 

среднем 10 ракурсов), для реконструкции требуется в 8 раз меньше времени – в среднем 15 

минут. 

Время получения набора ракурсов с помощью предложенного метода при использовании 

обратного рендера на основе безградиентной оптимизации (методом Нелдера-Мида в 

реализации библиотеки scipy) занимает в среднем 1.5 минуты. Для дифференцируемого 

рендеринга на подбор ракурсов требуется в среднем 15 минут. Таким образом, 

дополнительные вычисления для выбора ракурсов при использовании безградиентной 

оптимизации составляют лишь 10% от времени реконструкции. При использовании 

дифференцируемого рендеринга время выбора ракурсов примерно равно времени 

реконструкции по выбранным ракурсам. Но, если сравнить суммарное время выбора 

ракурсов и реконструкции с временем реконструкции на всех 60 ракурсах из обучающей 

части набора данных Stanford-ORB, то разница достигает порядка 4-8 раз в зависимости от 

используемого механизма обратного рендеринга и меры оценки качества ракурса. 

5. Заключение 

Предложенный метод выбора ракурсов для задачи реконструкции материалов на основе 

обратного рендеринга с использованием 3D модели целевого объекта в качестве входных 

данных показал свою применимость. 

Предложенный метод позволяет использовать произвольные способы оценки качества 

ракурсов, опирающиеся на геометрическую модель целевого объекта. Это обеспечивается за 

счет возможности применения разных подходов к обратному рендерингу, включая 

дифференцируемый рендеринг и безградиентную оптимизацию. 

Для протестированных способов оценки качества ракурсов использование предложенного 

метода позволяет получить небольшой набор ракурсов (порядка 8-11 изображений), 

позволяющих произвести реконструкцию с достаточно высоким качеством, при 

использовании чисто синтетических обучающих данных превосходящим 34 дБ по метрике 

PSNR на синтетических тестовых наборах данных и около 31 дБ на реальных тестовых 

данных. При этом небольшое количество ракурсов приводит к снижению вычислительных 

затрат на проведение реконструкции. 
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