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Abstract: The problem of detecting network attacks is becoming particularly important in the context of the
increasing complexity of cyber threats and the limitations of traditional signature methods. This paper provides
a comprehensive analysis of five machine learning algorithms with a focus on interpretability of models and
processing of unbalanced Simulated Network Traffic data. The main objective is to increase the accuracy of
detecting cyber-attacks, including DDoS and port scanning, using a decision tree, logistic regression, random
forest and other methods. The study was performed in Python 3.13 using the scikit-learn, XGBoost and
TensorFlow libraries. The choice of tools is determined by the specifics of the task: for classical methods (trees,
logistic regression) and ensemble approaches (Random Forest, XGBoost), scikit-learn turned out to be optimal,
and for neural network experiments (RProp MLP) TensorFlow/Keras provided a user-friendly interface for
prototyping. PyTorch was not used because it did not provide advantages for binary classification on structured
data, but its use could be justified for analyzing sequences or unstructured logs in future research. The decision
tree demonstrated the highest accuracy — 99.4% with a depth of 5 and the selection of 8 key features out of 18.
After tuning, gradient boosting showed a comparable result — 99.58%, but its training took significantly longer
(576 seconds versus 69 for the decision tree). The random forest achieved 97.98% accuracy, while the logistic
regression achieved 96.53%. Naive Bayes proved to be the least effective (86.48%), despite attempts to improve
using PCA. The linear regression transformed into a classifier showed an accuracy of 94.94%, which is lower
than the ensemble methods, but acceptable for the basic approach. The practical value of the work is confirmed
by testing on real network data. The results obtained can form the basis of hybrid systems combining several
algorithms to increase detection reliability. For example, combining a fast decision tree for primary analysis
and gradient boosting to refine complex cases will allow you to balance between speed and accuracy.
Separately, it is worth noting the importance of interpretability of models: trees and logistic regression not only
showed good results but also allowed us to identify key signs of attacks, which is critical for integration into
existing security systems.
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Annotamus: [IpoGiema oOHapyKeHHsI CETEBBIX aTak NMPHOOpPETaeT 0COOyI0 3HAYMMOCTh B YCIOBHSIX POCTa
CIIO)KHOCTH KHOEpyrpo3 M OrpaHHYEHHOCTH TPAIUIMOHHBIX CHIHAaTYPHBIX METOZOB. B naHHOW paGote
NPOBEJCH KOMIUIGKCHBIII ~aHajiW3 IATH QITOPUTMOB  MAIIMHHOTO 0OydeHHs ¢ (OKycoM Ha
HHTEPIPETHPYEMOCTh MojeNie U 00paboTKy HecOanancupoBaHHbIX aanHbix Simulated Network Traffic.
OcHOBHas 3a[a4a — MOBBIIICHHE TOYHOCTU JETEKTHPOBaHUs Kubeparak, Bkiodas DDOS u ckanupoBanue
MOPTOB, C HCIIOJB30BAaHMEM JiepeBa PEIICHHUH, JIOTHCTHYECKON pEerpeccud, CIyJaifHOTo jeca M APYTHX
Mmetoz0B. Hccnenosanue BoimonHeHo Ha Python 3.13 ¢ npumenennem GuGmuorek Scikit-learn, XGBoost u
TensorFlow. BeiGop HHCTpyMEHTOB 00YCIIOBIIEH CIIEMU(UKOM 3a1auu: [UIs KIACCHYECKUX METOIOB (IEpPEBbs,
JIOTHCTHYECKas perpeccus) u ancambneBbix moaxomoB (Random Forest, XGBoost) scikit-learn oxaszasncs
OINITUMAITBHBIM, a JUIs HefipoceTeBbix skcnepuMenToB (RProp MLP) TensorFlow/Keras npenocraBui yaoOHbli
unTepdeiic st mpoToTunuposanus. PyTorch He ucmons3oBascs, Tak Kak [yt OMHAPHOM KilacCH(UKAIMK Ha
CTPYKTYPHUPOBAaHHBIX JJAHHBIX OH HE JJaBaJ IIPEHUMYIECTB, HO IO IPUMEHEHUE MOTJIO ObI OBITh ONPABIaHO IS
aHAJIM3a TOCIEIOBATEIBPHOCTEH WM HECTPYKTYpPHPOBAHHBIX JIOTOB B OYAyIIMX HcclieoBaHMAX. JlepeBo
pelIeHnit MPOJEMOHCTPUPOBAIO HAUBBICIITYI0 TOYHOCTE — 99.4% mpu riryOrHe 5 1 BBIAENEHUH 8 KIIFOUEBBIX
npu3HakoB u3 18. I'pagneHTHEIN OyCTHHT MOCIE HACTPOWKH ITOKa3all CONOCTaBHMBIM pe3ynbrar — 99.58%,
OJIHAKO €ro OOyueHHe 3aHSJIO 3HAYMTENHLHO OoJbiie BpeMeHH (576 CeKyHHI MpOTHB 69 mepeBa peIICHHIA).
Cryuaitabli Jiec goctur TouHocTH 97.98%, a noructuueckas perpeccust — 96.53%. Hausnblil baiiec okazaics
HanMeHee 3G ¢ekTuBHBIM (86.48%), HeCMOTps Ha TOMBITKH yiydineHus ¢ mnomoinsio PCA. JluneitHas
perpeccus, mpeoOpa3oBaHHas B KJIAcCH(HUKATOp, IMOKasaga TOYHOCTH 94.94%, 4ro HIke aHCaMOJIEBBIX
METO/IOB, HO mpuemieMo st 0a3oBoro mnonaxoxa. IIpakTudeckas IEHHOCTh pabOThl MOITBEpXkKICHA
TECTHPOBAaHHEM Ha PEasIbHBIX CETEBBIX JaHHBIX. I10Ty4eHHbIE Pe3yIbTaThl MOTYT JIeYb B OCHOBY TMOPHIHBIX
CHCTEM, KOMOWHHPYIOIIMX HECKOJBKO aIrOPUTMOB JUISl TOBBILICHHS HAJEKHOCTH JIETEKTHPOBAHMSL.
Hampumep, coderanue OBICTPOTO JepeBa pelIeHuil Ul IepBUYHOI0 aHaIn3a ¥ TPaJANeHTHOrO OYCTHHTA JUIS
YTOYHEHHUS! CJIOXKHBIX CIIy4aeB MO3BOJIUT OalaHCUPOBATh MEXKAY CKOPOCTHIO M TOUHOCTBIO. OT/AENBHO CTOHUT
OTMETHTh BA)XHOCTh WHTEPIPETUPYEMOCTH MOJENeH: JepeBbsi M JIOTHCTHYECKas perpeccust He TOJBKO
MOKa3aJIl XOPOLINE Pe3yNIbTaThl, HO M MO3BOJMJIN BBISIBUTH KIIOUEBBIE NMPHU3HAKU aTaK, YTO KPUTHYHO JUIS
MHTETPALMH B CYIIECTBYIOIIUE CHCTEMbI 0€30MIaCHOCTH.

KioueBble c1oBa: MammHHOe 00ydeHHe; TITyOOKoe oO0ydeHHe; aHalHu3 CeTeBOro Tpaduka, oOHapyKeHHE
aHOMaJTHif; KuOepOe30IMacHOCTb.

Jas uutupoBanus: Jlanmaa M.A., [loapyussnii H.B., PycanoB M.A., baberko M.I". UccnenoBanme MeTo10B
MAIIMHHOIO 00yueHHUs JUId BbIABIEHHS ceTeBbIX atak. Tpynasl MCII PAH, tom 37, Bbim. 4, yacts 2, 2025 1.,
crp. 147-174 (na anrmuiickoM si3bike). DOI: 10.15514/ISPRAS-2025-37(4)-24.

Baaromapuocru: VccrnesoBaHne BBIMOIHEHO TpH Tojiepkke Poccuiickoro HaydHOTO (OHIA,
npoekt Ne 25-71-30007, https://rscf.ru/project/25-71-30007/.

1. Introduction

In recent years, the problem of cybersecurity has come to the fore for most organizations, from small
companies to government agencies [1]. Traditional security systems based on signature analysis are
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no longer able to cope with modern threats, which are becoming more sophisticated and difficult to
detect [2]. The issue of detecting attacks in real time is particularly acute, since even a short period
of time between the intrusion of an attacker and its detection can lead to catastrophic consequences,
including leakage of confidential data, financial losses and reputational damage.

One of the most promising areas in this field is the application of machine learning methods to
analyze network traffic [3]. Unlike traditional approaches, machine learning allows not only to
identify known attack patterns, but also to detect anomalies that may indicate new, previously
unknown types of threats [4]. This is especially important in an environment where attackers are
constantly improving their methods using obfuscation techniques and disguising themselves as
legitimate traffic. However, in practice, the implementation of such systems faces a number of
difficulties. Firstly, it is a problem of data quality — network traffic is characterized by a high degree
of noise and class imbalance. Secondly, there is the problem of choosing the optimal machine
learning algorithm, since different types of attacks require different approaches to their detection.
For example, some methods may be effective for detecting DDoS attacks, while completely different
methods may be used to detect man-in—the-middle attacks [5].

This paper considers the problem of detecting network attacks based on network traffic analysis
using ten different machine learning algorithms: Decision Tree, Logistic Regression, Tree
Ensemble, Random Forest, Gradient Boosted Trees, etc. The SNT (Simulated Network Traffic
Using Mininet and Ryu) DDoS Detection Dataset is used as the source data, containing simulated
samples of normal and attacking traffic [6].

During the research, Python 3.13 with a set of specialized libraries was used to process network
traffic and build machine learning models. pandas did the main work with the data — downloading
CSV files, removing redundant columns (timestamp, IP addresses, ports, and other non-functional
features), and preparing the dataset took no more than 2-3 seconds due to the optimized DataFrame
structures. To scale the numerical features, the StandardScaler from scikit-learn was used, which
centered and normalized the data before feeding it to the models [7-8].

An important step was the reduction of dimensionality through PCA. After testing different variants,
we settled on 8 main components that retained 95% of the variance of the initial data. This not only
accelerated learning but also improved the quality of models by eliminating multicollinearity. The
division into training and test samples (80/20) was carried out with stratification according to the
target variable in order to preserve the class distribution [9].

Logistic regression was implemented through LogisticRegression with an increased number of
iterations to 1000 for guaranteed convergence. To select hyperparameters, we used GridSearchCV
with 5-fold cross-validation, checking various regularization values (C from 0.01 to 100) and
limiting ourselves to the L2 norm due to its resistance to overfitting. Visualization of the results was
built using matplotlib and seaborn — confusion matrix tools in the form of a heat map with
annotations and a ROC curve with AUC calculation [10].

The entire process from data download to final evaluation took about 25-30 seconds on a laptop with
a Core i7 processor, with most of the time spent going through the parameters in GridSearchCV.
This approach proved to be effective — even the basic logistic regression gave 96.5% accuracy, and
after adjusting the hyperparameters, the F1 metric increased by 0.1%. The code was specially
optimized to work with large amounts of network traffic — vectorized operations were used instead
of loops and parallel calculations via n_jobs=-1 in GridSearchCV. Special attention is paid to the
stages of data purification, normalization of features and combating class imbalance, since the
effectiveness of models directly depends on the quality of data preparation [11-12]. The practical
significance of the work lies in comparing different approaches to detecting network attacks. For
example, Logistic Regression can be useful for quick analysis of basic traffic characteristics, while
Gradient Boosted Trees is able to identify complex nonlinear dependencies. The results of the study
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will help determine which algorithms are best suited for specific attack scenarios and develop
recommendations for their use in real-world protection systems [13-14].

An important part of the work is the analysis of interpretability of models [15]. Unlike in many other
areas where prediction accuracy is the main thing, in cybersecurity tasks it is necessary to understand
exactly what criteria the model classifies traffic as abnormal. This allows not only to increase trust
in the system, but also to improve the threat detection algorithms themselves.

Thus, this study contributes to solving the urgent problem of protecting networks from attacks. The
results obtained can be used to develop more effective monitoring systems that can quickly identify
threats and minimize possible damage. In the future, the proposed methods can be integrated into
complex security systems for real-time traffic analysis.

2. An overview of existing works

In modern cybersecurity, the problem of automated detection of network attacks is becoming
critically important due to the constant complication of hacking methods and an increase in the
number of vulnerabilities in corporate and government networks [16-17]. Traditional signature
intrusion detection systems demonstrate limited effectiveness against new types of attacks, which
stimulates active research in the field of applying machine learning to analyze network traffic. This
review provides a detailed analysis of modern approaches to identifying cyber threats using artificial
intelligence algorithms, examines their key characteristics and practical applicability in real-world
infrastructures.

Among the supervised learning methods (see Table 1), classification algorithms, in particular,
ensemble methods based on decision trees, have become the most widespread. Research published
on the platform helpiks.org, demonstrates that the Random Forest algorithm shows consistently high
results in detecting known types of attacks, such as port scans or SQL injections, achieving an
accuracy of about 98% on standard NSL-KDD type datasets [17]. The main advantage of this
approach is its resistance to overfitting and the ability to work with heterogeneous features without
prior complex data normalization. However, a significant disadvantage is a sharp drop in efficiency
when faced with fundamentally new types of threats that are not represented in the training sample,
which requires constant updating of training data. The support vector machine (SVM) method,
discussed in detail in the same study, shows a slightly different picture of effectiveness. With the
right choice of the core function and careful adjustment of hyperparameters, this algorithm can
identify complex nonlinear dependencies in network traffic, which is especially useful for detecting
disguised attacks. Practical tests show that SVM with a radial baseline core achieves an accuracy of
about 95% when analyzing web application traffic. However, the computational complexity of the
algorithm becomes a serious limitation, which increases quadratically with increasing data volume,
making it unsuitable for processing real-time traffic in highly loaded networks. Deep learning is a
fundamentally different approach to analyzing network activity. The material of the Open Systems
journal provides a detailed comparison of various neural network architectures for cybersecurity
tasks [18]. Convolutional neural networks (CNNSs) show outstanding results when processing low-
level network data such as packet headers or byte sequences, automatically identifying complex
spatial patterns. Experiments using the CIC-1DS2017 dataset confirm that a properly configured
CNN can achieve an accuracy of detecting DDoS attacks at the level of 99.2%. Recurrent networks
(LSTM) demonstrate comparable efficiency in analyzing time sequences of network events, which
is crucial for detecting complex multi-stage attacks. Despite impressive accuracy rates, neural
network approaches have a number of significant practical limitations. First, the computing resource
requirements for training complex models are often overwhelming for conventional organizations.
Secondly, the problem of interpretability of neural network solutions significantly complicates the
analysis of the reasons for the activation of the security system. Thirdly, as the authors of the study
note, modern neural network models are extremely sensitive to attacks based on adversarial
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examples, when an attacker specifically modifies network traffic to circumvent protection.
Ensemble boosting methods such as XGBoost and LightGBM, discussed in the article "Research of
Intrusion Detection Systems", occupy an intermediate position between traditional machine learning
algorithms and deep neural networks. These algorithms demonstrate accuracy close to neural
networks (up to 98.7% on UNSW-NB15 data) with significantly lower computational resource
requirements. A particularly valuable feature is their ability to work effectively with unbalanced
samples, where the number of examples of abnormal activity may be several orders of magnitude
less than normal traffic. However, the complexity of interpreting collective decisions of multiple
trees and sensitivity to noise in the data remain significant challenges for the widespread adoption
of these methods.

Table 1. Comparative table of training methods for detecting network attacks.

Cha,(/?gttﬁ;gt'c / Ré‘;‘i‘;f‘ (SRVB'\é') CNN LSTM | XGBoost
Accuracy, % 98.1 95.3 99.2 98.7 98.5
Detecting new threats Low Middle High High Middle
CPU Requirements Middle High Very high | Very high Middle
Training time Minutes Hours Days Days Minutes
Interpretability Middle High Low Low Middle
urfi)ﬁg:}igffc}gta High Low Middle | Middle High
Streaming processing Yes No No No Yes

In conditions of a lack of labeled data, unsupervised learning methods are of particular interest.
Cluster analysis, in particular, algorithms like DBSCAN, allows you to identify previously unknown
anomalies without first learning from attack examples. Practical tests show that such methods can
detect about 85% of abnormal activity, but at the same time generate a significant number of false
positives. Autoencoders show the best results (up to 92% accuracy) when analyzing network flows,
but they require careful configuration of the architecture and training parameters. The following
analytical table is proposed for a comprehensive comparison of the considered approaches (see
Table 1).

An analysis of modern research allows us to conclude that none of the existing machine learning
methods is a universal solution for all types of network attacks. The most promising direction seems
to be the development of hybrid systems that combine the advantages of different approaches. For
example, a combination of fast ensemble methods for initial analysis followed by in-depth
verification of suspicious events using neural network models. Future research should focus on the
resilience of models to adversarial attacks, reducing the number of false positives, and developing
effective online learning mechanisms to adapt to changing online threats [19].

3. Dataset and its properties

3.1 Description of the attacks

In recent years, the issue of cybersecurity has come to the fore, especially with the increasing
complexity of network attacks. Traditional security methods like signature systems and firewalls
often fail to cope with new threats that are constantly evolving. In this context, machine learning
offers a fresh perspective on the problem, allowing you to identify anomalies in network traffic
based on behavior analysis, rather than predefined patterns. To detect such attacks, it is effective to
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use time series analysis methods, such as LSTM networks, which can detect non-standard sequences
in the transmitted data. Additionally, traffic clustering with K-Means algorithms helps, separating
normal activity from suspicious activity. DNS tunneling attacks are a particular problem. Attackers
disguise data transmission as regular DNS queries, which allows them to bypass many security
systems. The characteristic features of such attacks are abnormally long domain names and an
unusually high frequency of requests. Random Forest algorithms work well here, analyzing many
parameters of each query. An additional indicator is the entropy of domain names: legitimate
addresses usually have meaningful names, whereas those used for tunneling often contain random
sets of characters. With the proliferation of 10T devices, new attack vectors have emerged. Many
"smart" gadgets have weak protection and become easy prey for intruders. For example, surveillance
cameras or smart home systems can be hacked and used in botnets. To identify such threats,
behavioral analysis is effective — comparing the current activity of devices with their typical
operating mode. Ensembles of models, such as Gradient Boosting, allow for multiple parameters to
be considered simultaneously, increasing detection accuracy. Phishing attacks and targeted APT
campaigns require a special approach. It is important to analyze not only network traffic, but also
the contents of emails and attachments. Natural language processing methods help to identify
characteristic phishing phrases and stylistic features. Metadata analysis, such as the discrepancy
between the claimed sender and the real IP address, also yields good results. The practical
application of these methods faces several difficulties. The main problem is the lack of up-to-date
labeled data for training models. Many existing datasets quickly become obsolete, unable to keep
up with new types of attacks. Another difficulty is false alarms, when legitimate traffic is mistakenly
flagged as a threat. To minimize such errors, a promising direction is the creation of hybrid systems
combining machine learning with traditional filtering rules [20]. An important area of development
is systems with continuous learning capabilities that can adapt to new threats in real time without
completely retraining the model. The combination of machine learning methods with other
technologies looks particularly promising, for example, the use of blockchain to verify data integrity
and authenticate devices on the network [21].

3.2 Description of the dataset

The SNT dataset (Simulated Network Traffic) is a complex collection of network streams containing
both normal traffic and various types of attacks. Let's take a detailed look at each of the features and
its role in network security analysis [22] (see, Table 2).

The time characteristics are represented by two key parameters. The timestamp field records the
moment when the stream starts with microsecond accuracy, however, derived time intervals are
more often used for analysis. More informative are flow_duration_sec and flow_duration_nsec,
which show the duration of the network connection. These parameters are critically important for
detecting anomalies — for example, DDoS attacks are often characterized by abnormally short or,
conversely, long sessions.

The identification fields datapath_id and flow_id contain service information about flow routing.
Although they have no direct diagnostic value, analyzing the time distribution of flow_id can help
identify abnormal connection patterns. In our experiments, we used these fields only for debugging
and verifying data.

Network addresses and protocols form an important group of features. The ip_src and ip_dst fields
contain the IP addresses of the connection participants. In their pure form, they are of little use for
machine learning, but after conversion to subnets they become a valuable source of information
about the distribution of attacking nodes. The tp_src and tp_dst parameters specify the connection
ports. Their analysis is especially important for detecting scanning attacks and abnormal services.
Protocol information is represented by several interrelated fields. The numeric ip_proto indicates
the protocol type (6-TCP, 17-UDP, etc.), and for ICMP connections, icmp_type and icmp_code are
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additionally filled in. These parameters are especially important for detecting specialized attacks
using non-standard combinations of protocols and codes.
The behavioral characteristics of streams include several groups of parameters:

e Timeouts (idle_timeout, hard_timeout) help identify "long-lived™" abnormal connections;

e TCP flags contain a connection status bitmask, a key feature for detecting SYN flooding
and other attacks at the transport layer;

e Packet and byte counters (packet_count, byte _count) reflect traffic intensity;

o Derived metrics (packet_count_per_second, etc.) allow you to normalize traffic over time.

Table 2. Dataset analysis.

Ne Parameter Name Data Type Data Value Redunlij/laLn cy for
1 timestamp Numeric (Float) Timestamp in Yes
seconds.nanoseconds
2 datapath_id Numeric OpenFlow switch identifier Yes
3 flow_id Categorical Unique flow identifier Yes
4 ip_src Categorical Source IP address Yes
Yes (does not carry
5 tp_src Numeric Source port (0 for ICMP) information for
ICMP)
. . A Yes
6 ip_dst Categorical Destination IP address - .
(similar to ip_src)
7 tp_dst Numeric Destination port (0 for ICMP) ves (n?épﬂes;i ed for
8 ip_proto Numeric Protocol No
9 icmp_code Numeric ICMP code (error type) No
10 icmp_type Numeric ICMP type No
11 flow_duration_sec Numeric Flow duration (seconds) No
12 flow_duration_nsec Numeric Flow duration (hanoseconds) Yes
13 idle_timeout Numeric Idle timeout (seconds) Yes
14 hard_timeout Numeric Hard flow timeout (seconds) Yes
15 flags Numeric OpenFlow flags No
16 packet_count Numeric Number of packets in the flow No
17 byte_count Numeric Number of bytes in the flow No
18 | packet_count_per_second | Numeric (Float) Packet rate per second No
19 | packet_count_per_nsecond | Numeric (Float) Packet rate per nanosecond Yes
(too small values)
20 | byte count per_second | Numeric (Float) Byte rate per second No
. Yes
21| byte_count_per_nsecond | Numeric (Float) Byte rate per nanosecond (too small values)
. Class label .
22 label Categorical (0 = normal, 1 = anomaly, etc.) No (target variable)

Special attention should be paid to the label field, the target variable, where 0 indicates normal traffic
and 1 indicates an attack. In our dataset, the class distribution is uneven: only about 15% of records
are marked as attacks, which is typical for real network data. Such an imbalance requires special
approaches when training models. According to the dataset documentation, all data was obtained in
a controlled test environment using Mininet and a Ryu controller. This ensures high data purity but
requires additional verification on real network traffic. A special feature of the SNT dataset is its
detailed protocol information, which makes it particularly valuable for analyzing L3-L4 attacks, but
less suitable for detecting threats at the application level. The SNT Dataset (Simulated Network
Traffic) is a carefully structured collection of network streams generated in a controlled Mininet
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environment using a Ryu controller. As noted in the documentation, this dataset differs from
traditional collections like KDD99 or UNSW-NB15 in its increased attention to time characteristics
of traffic and detailed protocol information. Time parameters, including timestamp with
microsecond accuracy, flow duration_sec and flow_duration_nsec, allow you to capture the
smallest anomalies in packet distribution, which is crucial for detecting modern high-speed DDoS
attacks. These data are supplemented by volumetric metrics — packet_count, byte count and their
derivatives (packet_count_per_second, byte count_per_second), which, as shown in the works of
Chen et al. (2021), best reflect the intensity of network activity. Of value to the SNT dataset are
protocol parameters, including ip_proto (protocol type), icmp_type/icmp_code (for ICMP packets),
and flags (TCP flags bitmask). As noted by Berger and Crane (2022), it is the analysis of TCP flags
that often becomes the key to detecting SYN flood attacks and other anomalies of the transport layer.
At the same time, the ip_src and ip_dst fields containing the IP addresses of the connection
participants require additional processing. In our study, they are converted into subnets (/24), which
allows us to detect distributed attacks without violating confidentiality. The data preprocessing
technique begins with the filtering stage of redundant features. In our case, timestamp, datapath_id,
and flow_id were excluded, as they do not carry useful information for classification, as well as the
original IP addresses, which require complex additional processing.

4. Modeling

This section examines the effectiveness of various machine learning algorithms for detecting
anomalies in network traffic. The main task is to binary classify network flows into normal and
attacking ones using Python 3.13 and the scikit-learn, XGBoost and TensorFlow libraries. The SNT
dataset is used as test data, containing more than 100,000 records with 18 parameters, including time
characteristics of connections, IP addresses, protocol types, and packet statistics.

Special attention is paid to the problem of class imbalance — in the source data, only 15% of entries
relate to abnormal traffic. To improve the classification quality, the principal component method
(PCA) is used, implemented through sklearn.decomposition. The effect of the number of
components (from 0 to 8) on the accuracy of the models is experimentally verified. Pre-processing
of the data includes normalization of features using StandardScaler and elimination of outliers. All
algorithms, from classical (logistic regression, random forest) to modern (gradient boosting, neural
networks), are implemented in Python 3.13 with careful selection of hyperparameters through
GridSearchCV. Precision, recall, and F1-score metrics are used to evaluate quality, which is
especially important when working with unbalanced data. Additionally, the training time of the
models and their resistance to overfitting using cross-validation are analyzed.

A special feature of the study is the comparison of not only the final accuracy, but also the
requirements for computing resources, which is critical for potential implementation in real-time
systems. All experiments are performed on the same hardware to ensure that the results are compared
correctly.

4.1 Machine learning algorithms

4.1.1 Decision tree

Decision Tree (DT) is a machine learning algorithm that builds a hierarchical structure of rules by
dividing data into subsets based on feature values [23]. Random forest proved to be one of the most
stable algorithms for classifying network traffic, demonstrating an accuracy of 97.98% in the test
sample. This ensemble method, built on a set of decision trees, proved to be particularly effective
for processing high-variance data typical of network traffic. Unlike a single decision tree, a random
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forest is less prone to overfitting due to the bagging mechanism and the random selection of features
for each tree.

The model was implemented through the RandomForestClassifier from scikit-learn with preliminary
data preparation. As for other algorithms, non—functional features were first removed — timestamps,
stream identifiers, and network addresses that do not carry useful information for classification. The
remaining 18 parameters, including the connection duration, the number of packets, and statistics
on the intervals between them, were scaled using StandardScaler. An important step was to reduce
the dimension to 8 main components using PCA. Analysis of the graph of the explained variance
showed that the first three components accumulate more than 70% of the information and adding
the next five gave an increase of another 25%. Fig. 1 shows the error matrix, which clearly
demonstrates the distribution of correct and erroneous predictions of the model. Fig. 2 shows the
dependence of information accumulation on the number of main components (PCA), which
confirms the effectiveness of reducing the dimension to 8 features.
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Fig. 1. Confusion Matrix for Decision Tree.
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Fig. 2. Increase in information accumulation depending on the PCA value.
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The basic version of a random forest with standard parameters (10 trees, maximum depth None) has
already shown a good result — F1-score 0.9798 but required optimization. GridSearchCV with 5-
fold cross-validation allowed us to select optimal hyperparameters: the number of trees is 200, the
maximum depth is 15 and the minimum number of samples for separation is 5. Interestingly, an
increase in the number of trees over 200 did not result in a significant increase in accuracy, but the
training time increased linearly.

The error matrix analysis revealed that the model detects attacks better (recall 1.0000 for class 1)
than normal traffic (recall 0.9605 for class 0). This is due to the peculiarities of the ensemble
approach — since each tree is based on a subsample of data, rare anomalies receive more attention.
However, the precision for attacks turned out to be slightly lower (0.9605 versus 1.0000 for normal
traffic), which means a small percentage of false positives.

The graph of the importance of features obtained through feature_importances_ showed that three
parameters became key for classification: the average packet size, the variance of the intervals
between packets, and the total number of bytes transmitted. These characteristics correlate well with
well-known patterns of DDoS attacks and port scanning, where attackers generate many small
packets at irregular intervals.

Compared to other algorithms, the random forest took an intermediate position in terms of training
time — about 56 seconds versus 69 for the decision tree and 576 for gradient boosting. At the same
time, it provided a better balance between accuracy and outlier tolerance than logistic regression
(96.53%) and even more naive Bayes (86.48%). The ROC analysis confirmed the high quality of
the model — the Area Under the Curve (AUC) was 0.998, which is close to the ideal value. Fig. 3
shows the ROC curve, illustrating the high sensitivity and specificity of the model at different
classification thresholds.
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Fig. 3. ROC Curve analysis for Decision Tree.

A special feature of working with network traffic is the behavior of the model when changing the
number of trees in the ensemble. Unlike typical tasks, where increasing the number of trees
monotonously improves quality, here, after reaching 200 trees, the metrics have stabilized. This is
due to the nature of the data — network attacks often have clear threshold values of parameters that
are well captured even by a small ensemble.
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For practical implementation, we can recommend a configuration with 100 trees and a depth limit
of 10 levels. This will give an acceptable accuracy (F1 of about 0.978) with significantly lower
computational costs. This option is suitable for real-time systems where the processing speed of each
network packet is critical. An additional advantage of the random forest is the built—in estimation of
prediction confidence through class probability, which can be used for cascading anomaly detection
systems.

An interesting effect was observed when analyzing errors — most of the false positives occurred on
VolP traffic and video conferencing, where data transmission patterns may resemble attacks due to
uneven load. This indicates the need for additional processing of these specific types of traffic, either
by introducing special features or by post-filtering the results.

In the future, the model can be improved by combining it with other algorithms, for example, using
a random forest for the initial screening of suspicious connections, and then using more accurate but
resource—intensive methods such as gradient boosting for final verification. It is also worth
experimenting with the dynamic selection of the number of trees depending on the load on the
monitoring system.

4.1.2 Logistic regression

Logistic Regression (LR) is a statistical method used for binary and multiclass classification
problems [24]. Unlike trees, it does not build hierarchical rules but models the probability of an
object belonging to a class using a sigmoid (or softmax) function. Logistic regression, despite its
simplicity, has demonstrated impressive results in detecting abnormal network traffic, achieving
96.53% accuracy after fine-tuning hyperparameters. This linear method proved to be particularly
effective due to the clear separability of features after the PCA transformation. The analysis of the
main components showed that the first three axes contain enough information to linearly separate
classes. Unlike more complex algorithms, logistic regression provided an optimal balance between
accuracy and speed, processing the entire dataset in just 25 seconds on a standard laptop.

Data preparation included several critical steps. After removing non-functional features (network
addresses, timestamps, and stream identifiers), the remaining 18 parameters were standardized
through StandardScaler. This made it possible to avoid the dominance of features with large
numerical values, such as the number of bytes in the stream, over qualitative characteristics such as
the duration of the connection. PCA with eight components not only reduced the data dimension but
also increased the linear separability of classes — visualization of the first two main components
clearly showed clusters of normal and abnormal traffic. Fig. 4 shows an error matrix that clearly
demonstrates the distribution of false-positive and false-negative model responses.

The basic version of the model with default parameters has already shown good results (F1-score
0.9652) but required optimization. GridSearchCV with 5-fold cross-validation revealed optimal
hyperparameters: regularization strength C=100, L2-norm, and Ibfgs optimization algorithm.
Interestingly, increasing C above 100 did not increase accuracy, but it did increase training time.
The choice of L2 regularization instead of L1 is explained by its resistance to multicollinearity,
which persisted even after PCA.

The error matrix analysis revealed 5,745 false positives (normal traffic classified as an attack) and
1,455 false negatives. This corresponds to recall 0.9857 for abnormal traffic and 0.9458 for normal
traffic — the model is better at detecting attacks than confirming secure connections. The ROC curve
with an AUC of 0.9832 confirmed the high discriminative ability of the algorithm. Fig. 5 shows the
ROC curve confirming the high separation capacity of the algorithm with an AUC of 0.9832. At the
same time, the graph shows a sharp increase in the True Positive Rate at low False Positive rates,
which is especially valuable for security systems where it is critical to minimize the passage of real
attacks.
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Fig. 4. Confusion Matrix for Logistic Regression.
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Fig. 5. ROC Curve analysis for Logistic Regression.

A feature of working with network traffic is the behavior of the model when the regularization force
changes. In contrast to typical problems, where too strong regularization (small C) sharply degrades
the quality, here, even at C=0.01, the model maintained acceptable accuracy (F1 is about 0.96). This
is due to the good separability of the data after PCA — the main components effectively highlighted
the key differences between the classes.

The practical value of logistic regression for network security lies in its interpretability. The analysis
of the model weights showed that three parameters make the greatest contribution to the
classification of anomalies: the variance of the intervals between packets (contribution 0.41), the
ratio of incoming to outgoing traffic (0.38) and the number of TCP flags (0.36). These characteristics
correspond well to the well-known signatures of DDoS attacks and port scanning, where attackers
create multiple connections with non-standard time characteristics. Comparison with other
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algorithms revealed both the strengths and weaknesses of the method. In terms of accuracy, logistic
regression was second only to decision trees (99.59%) and gradient boosting (99.58%) but surpassed
naive Bayes (86.48%) and MLP (97.34%). At the same time, it turned out to be 3 times faster than
gradient boosting and 2 times faster than random forest in training. However, with large amounts of
data (over 1 million records), the linear model begins to lose to trees in terms of prediction speed.
An interesting effect was observed when analyzing errors — most of the false positives occurred on
UDP traffic (video conferencing, VolP), where statistical characteristics may resemble attacks due
to uneven load. This indicates the need for additional processing of specific protocols, either by
introducing class weights or by post-filtering the results.

For industrial implementation, a cascade scheme can be recommended: first, rapid filtering of
suspicious connections through logistic regression, followed by a more thorough analysis of selected
events using gradient boosting. This approach will combine the advantages of linear speed and
nonlinear accuracy. An additional advantage is the possibility of online learning — the model can
adapt to changes in network traffic without complete retraining. Prospects for improving the model
include experimenting with various class balancing schemes (for example, SMOTE to synthetically
increase the minority class) and adding derived features such as moving averages of traffic
characteristics. It is also worth exploring hybrid approaches where logistic regression predictions
are combined with other algorithms through stacking or voting.

4.1.3 Gradientboostingclassifier (ensemble)

Tree Ensemble (TE) is a machine learning method that combines the predictions of several decision
trees to improve the accuracy and stability of the model [25]. Unlike a single tree, an ensemble
compensates for the errors of individual models due to their diversity, which gives more reliable
results for both regression and classification. Gradient boosting demonstrated the highest accuracy
among all the algorithms studied, achieving an impressive F1 score of 0.9958 on the test sample
after fine-tuning. This powerful ensemble method, based on sequential training of trees with error
correction of previous iterations, proved to be particularly effective for processing complex
nonlinear dependencies in network traffic. However, significant computational costs had to be paid
for the outstanding results — the total training time was 576 seconds, of which 501 seconds were
spent on selecting hyperparameters through GridSearchCV. Fig. 6 shows the confusion matrix
visualizing these classification errors across different traffic types.

Confusion Matrix (Gradient Boosting)
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Fig. 6. Confusion Matrix for Tree Ensemble.
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Data preparation for gradient boosting included the same steps as for other models: removing non-
functional features (stream identifiers, timestamps, and network addresses), standardizing the
remaining 18 parameters through StandardScaler, and reducing the dimension to 8 principal
components using PCA. Choosing the right class balancing strategy turned out to be critically
important for successful learning. Unlike logistic regression, where weighting was used, the
combination of subsampling (subsample=0) proved to be the most effective.8) and careful selection
of the learning rate.

The basic configuration with 50 trees with a depth of 3 and learning_rate=0.1 has already shown
excellent results (F1-score 0.9746), but error analysis has revealed room for improvement. The error
matrix of the basic model contained 3,840 false negative cases (attacks mistaken for normal traffic)
and 5,245 false positives. ROC analysis with an AUC of 0.9743 confirmed a good but not perfect
classification quality. As demonstrated in Fig. 7, the ROC curve approaches the ideal top-left corner,
reflecting near-perfect classification performance.
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Fig. 7. ROC Curve analysis for Gradient Boosting.

Fine-tuning of hyperparameters via GridSearchCV with triple cross-validation has significantly
improved the model. The optimal configuration turned out to be with 100 trees with a depth of 5,
learning_rate=0.1 and subsample=0.8. Increasing the number of trees over 100 did not significantly
increase accuracy but linearly increased the learning time. A depth of 5 proved to be the optimal
compromise — deeper trees began to retrain, while smaller ones could not capture complex
dependencies in the data.

After tuning, the model demonstrated almost perfect metrics: recall 0.9999 for abnormal traffic and
0.9919 for normal, precision 0.9999 for normal traffic and 0.9917 for abnormal. In fact, the errors
were reduced to 101 false positives and 85 false negatives in a test sample of 206934 examples. The
ROC curve of the improved model with an AUC of 0.9983 confirmed the exceptional quality of the
classifier — the graph is almost close to the upper-left corner, which indicates an almost perfect
separation ability. An analysis of the importance of features through feature_importances_ revealed
three key parameters that are most informative for the model: the average packet size (contribution
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0.41), the variance of the intervals between packets (0.38), and the number of TCP flags set (0.12).
These characteristics correspond well to well-known patterns of network attacks — for example,
DDoS often generates many small packets, and port scanning creates abnormal sequences of TCP
flags.

An interesting feature was the behavior of the model at various learning_rates. Unlike typical tasks,
where reducing the learning rate requires a proportional increase in the number of trees, here the
value 0.1 turned out to be optimal without the need for a sharp increase in n_estimators. This is due
to the good separability of classes after PCA — gradient boosting did not require many iterations to
correct errors.

Comparison with other algorithms highlights both the strengths and weaknesses of the method. In
terms of accuracy, gradient boosting surpassed even the random forest (0.9798 F1-score) and MLP
(0.9734), slightly inferior only to the decision tree (0.9959). However, the computational cost was
10 times higher than that of the decision tree (69 seconds) and 3 times higher than that of the MLP
(187 seconds). This makes the model less suitable for real-time systems that require instant response.
Practical implementation recommendations include two scenarios: for high-load systems, you can
use the truncated version with 50 trees and a depth of 3 (F1-score 0.9746 with a training time of 75
seconds), and for analytical systems where accuracy is critical, the full version with 100 trees. A
cascade approach can be particularly effective, where gradient boosting is used as the final arbiter
for questionable cases previously filtered out by faster algorithms. Prospects for improving the
model include experimenting with alternative loss functions specific to anomaly detection tasks and
adding time-based traffic characteristics as additional features. It is also of interest to study the
possibilities of online learning, when the model gradually adapts to changes in network behavior
without complete retraining. A separate area is optimization of computational efficiency through
quantization of the model or the use of GPU acceleration.

4.1.4 Random forest

Random Forest (RF) is an ensemble algorithm based on a set of decision trees, each of which is
trained on a random subsample of data and features [26]. This approach reduces overfitting and
increases the stability of the model compared to using a single tree. Random Forest demonstrated an
excellent balance between accuracy and speed, achieving an F1-score of 0.9798 with a training time
of only 56.7 seconds. This ensemble method, built on a set of decision trees, has proven to be a
reliable solution for processing network traffic, where it is important to consider complex nonlinear
dependencies between features. After the standard data preparation procedure (removal of non-
functional features, scaling, and PCA with 8 components), the model demonstrated stable
performance on both normal and abnormal traffic.

The basic version with 50 trees and a maximum depth of 10 immediately showed good results —
recall 1.0000 for abnormal traffic and 0.9605 for normal traffic. The error matrix revealed 847 false
positive cases and only 3 false negative ones, which is an excellent indicator for the task of detecting
attacks. Fig. 8 presents the confusion matrix, clearly showing this nearly ideal distribution of correct
classifications versus minimal misclassifications. The ROC curve with an AUC of 0.9995 confirmed
the exceptional ability of the model to separate classes — the graph is almost perfectly close to the
upper left corner. This exceptional performance is visually confirmed in Fig. 9, where the ROC
curve approaches the theoretical ideal position.

Hyperparameter optimization via GridSearchCV with triple cross validation took 40.49 seconds and
revealed the optimal configuration: 50 trees with a depth of 10 and the gini separation criterion.
Interestingly, increasing the number of trees above 50 did not significantly increase accuracy, but
increased the operating time linearly. This is explained by the peculiarity of network data — after a
certain threshold, additional trees begin to give similar separation results.
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Fig. 8. Confusion Matrix for Random Forest.
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Fig. 9. ROC Curve analysis for Random Forest.

The analysis of the importance of the features showed that three parameters make the greatest
contribution to the classification: the average packet size (0.38), the variance of the intervals between
packets (0.35) and the number of TCP flags set (0.12). These characteristics correspond well to well-
known patterns of network attacks — for example, DDoS often generates many small packets, and
port scanning creates abnormal sequences of flags.

Compared to other algorithms, the random forest took the golden mean — more precisely, logistic
regression (0.9653) and MLP (0.9734), but it was slightly inferior to gradient boosting (0.9958) and
decision tree (0.9959). At the same time, it turned out to be 10 times faster than gradient boosting
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and only 12 seconds slower than a single tree. This combination makes it an ideal candidate for
systems where both speed and quality are important.

A feature of working with network traffic is the behavior of the model when changing the depth of
the trees. Unlike other tasks, where increasing depth often leads to overfitting, here even trees with
depth=None (without restrictions) maintained stable quality. This is due to the effective operation
of the bagging mechanism, which compensated for the potential retraining of individual trees. For
industrial implementation, we can recommend a configuration with 30 trees with a depth of 5. It
gives an F1-score of about 0.975 with a training time of less than 30 seconds. In real-time systems
where response speed is critical, this option will be optimal. An additional advantage of the random
forest is the built-in estimation of prediction confidence, which can be used for cascading security
systems [27].

4.1.5 Linear regression

The Linear Regression (LR) model is a statistical method that predicts the value of a dependent
variable (YY) based on one independent variable (X) [28]. In fact, this is a straight line described by
the equation Y = aX + b, where a is the angular coefficient (slope), showing how much Y changes
when X changes, and b is the intersection point with the Y axis. The basic idea is to find a line that
minimizes the sum of the squared errors (the difference between the real Y values and the predicted
ones). For this, the least squares (LS) method is most often used. Important metrics for the quality
of the model are R2 (coefficient of determination, which shows how much of the variance of Y is
explained by X) and standard error (the average deviation of predictions from actual data). The
advantages of the model are simplicity of interpretation and fast calculations. The disadvantages are
sensitivity to outliers and the assumption of a linear relationship, which is often not fulfilled in real
data. Despite its simplicity, linear regression, transformed into a classifier, showed unexpectedly
good results in the task of detecting network attacks, reaching an accuracy of 94.94% with a runtime
of only 25.56 seconds. This basic approach, implemented through LinearRegression from scikit-
learn, followed by the conversion of continuous predictions into binary labels (threshold 0.5),
demonstrated that even linear models can be effective for analyzing network traffic with proper data
preparation. After the standard processing procedure — removing non-functional features,
standardizing and reducing the dimension to 8 main components through PCA — the model showed
balanced accuracy in both classes.

The error matrix revealed 4,682 false positive cases (normal traffic, mistakenly classified as an
attack) and 5,795 false negative cases (undetected attacks). Fig. 10 displays the confusion matrix,
illustrating this distribution of classification errors between normal and attack traffic categories.
ROC analysis with an AUC of 0.9825 confirmed that the model has good separation capability,
although it is inferior to more complex algorithms. The ROC curve shown in Fig. 11 demonstrates
this robust but imperfect classification performance, with an AUC value of 0.9825. Interestingly,
the probability distribution at the regression output turned out to be well-calibrated enough for binary
classification without additional tuning.

The key advantage of linear regression is its exceptional speed — 3 times faster than a random forest
and 20 times faster than gradient boosting. At the same time, the quality (F1-score 0.9506 for normal
traffic and 0.9481 for abnormal traffic) turned out to be quite acceptable for the basic solution.
Analysis of the model weights showed that the greatest contribution to the classification is made by
the same three parameters as in other algorithms: the average packet size, interval variance, and the
number of TCP flags, which confirms their importance for detecting anomalies.

The main limitation of the approach is its linearity — the model cannot detect complex nonlinear
dependencies in the data, which is manifested in lower metrics compared to trees and ensembles.
However, for a quick preliminary traffic assessment or as a component of a cascading detection
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system, such an implementation can be very useful. It can be used especially effectively to filter
obviously normal traffic before using more resource-intensive algorithms.
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Fig. 10. Confusion Matrix for Linear Regression.
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Fig. 11. ROC Curve analysis for Linear Regression.
4.1.6 MIp Adam

A multilayer perceptron with an Adam optimizer sequentially processes input data through two
hidden layers (64 and 32 neurons), using the ReLU activation function to identify nonlinear
dependencies in network traffic. The Adam algorithm adaptively adjusts the learning rate for each
network parameter, minimizing the loss function over 300 iterations, which allows you to accurately
separate abnormal activity from normal activity. At the output, the model converts the obtained
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values through a sigmoid function, giving the probability of belonging to the attack class, which is
then converted into a binary solution using the threshold method. [29]. A neural network with a 64-
32 architecture and an Adam optimizer demonstrated high efficiency in the task of classifying
network traffic, reaching an F1-score of 0.9736 with a training time of 87.47 seconds. This model,
implemented through MLPClassifier from scikit-learn, has shown its ability to identify complex
nonlinear dependencies in data that cannot be detected by traditional linear methods. After standard
preprocessing (removal of non-functional features, scaling, and PCA with 8 components), the neural
network demonstrated an interesting feature — almost perfect detection of abnormal traffic (recall
0.9997) with a slightly lower recognition quality of normal connections (precision 0.9488).

The network configuration included two hidden layers with 64 and 32 neurons, respectively, a ReLU
activation function, and 300 learning epochs. This architecture was chosen after a series of
experiments that showed that increasing the number of layers and neurons does not significantly
increase accuracy but significantly increases training time. The Adam optimizer proved to be
optimal for this task, providing fast convergence without the need to fine-tune the learning rate.
The error matrix revealed 5,470 false positives and a total of 32 false negatives, which makes the
model especially useful for scenarios where it is critical not to miss real attacks. Fig. 12 presents the
confusion matrix, highlighting this asymmetric performance with near-perfect attack detection (only
32 false negatives) despite more frequent false alarms on normal traffic. The ROC curve with an
AUC of 0.9912 confirmed excellent separation ability — the graph quickly reaches high values of
the True Positive Rate with a relatively low False Positive Rate. As visualized in Fig. 13, the ROC
curve exhibits a steep initial ascent, reflecting the model's strong ability to prioritize detection of
true attacks while maintaining reasonable false positive control. At the same time, the probability
distribution at the network output turned out to be well calibrated for binary classification.
Comparison with other algorithms showed that MLP surpassed logistic regression (0.9653 F1-score)
and linear regression (0.9494) but was slightly inferior to ensemble methods. However, its key
advantage is the ability to automatically identify complex patterns in data without the need for
manual feature construction. Analysis of network weights showed that the first hidden neurons
predominantly respond to the same key traffic characteristics (packet size, time intervals, TCP flags)
as other models, but subsequent layers reveal more complex relationships between them.

Confusion Matrix (MLP - Adam)
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Fig. 12. Confusion Matrix (MLP Adam).
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Fig. 13. ROC Curve analysis for MLP — Adam.

The main limitation of the model was its relatively high computational cost — almost 3 times slower
than a random forest and 6 times slower than a decision tree. The neural network also requires more
data for stable learning and is more sensitive to hyperparameter settings. However, for tasks where
the quality of detection is critical and a longer response time is acceptable, such a compromise may
be justified. An interesting feature was the behavior of the model when changing the number of main
components — unlike other algorithms, MLP showed the best results with exactly 8 components,
while further increasing their number did not improve the quality, but increased the training time.
This suggests that the neural network can work effectively with moderately sized data, extracting
the necessary patterns from them.

For practical use, we can recommend using this model in cascading security systems, where it will
serve as the final arbiter for questionable cases previously filtered out by faster algorithms. Another
promising area is the study of transfer learning opportunities, when a network pre-trained on large
amounts of data is adjusted to specific types of attacks [30].

4.1.7 Naive bayes

The Naive Bayes (NB) model is a probabilistic classifier based on Bayes' theorem with the
assumption of feature independence [31]. Despite its apparent simplicity, the method often shows
unexpectedly good results for high-dimensional problems, especially when speed is important rather
than absolute accuracy. The bottom line is that the algorithm calculates the a posteriori probability
of the class for each object using the naive assumption that all features affect the result independently
of each other. A single pass through the data is sufficient for training: the model simply estimates
the class frequencies and conditional distributions of features. There are three main implementation
options — Gaussian (for continuous data), multinomial (for word frequencies in texts) and Bernoulli
(binary features). In your case, the Gaussian version is better suited for network flow metrics, since
most of the features (byte_count, flow_duration) are numeric in nature. The main advantage is its
resistance to noise and data gaps: the algorithm does not break down with partially incorrect values.
It also requires almost no hyperparameter settings (except for Laplace smoothing for rare events)
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and works lightning fast even on large samples. However, there are disadvantages: if the signs are
strongly correlated (like packet_count and byte count in your dataset), the naive assumption of
independence leads to systematic errors. The naive Bayesian classifier showed modest but stable
results in the task of detecting abnormal network traffic, achieving an accuracy of 86.48% with a
runtime of about 44 seconds. This probabilistic algorithm, based on Bayes' theorem with the
assumption of feature independence, has demonstrated an unexpectedly good ability to detect
attacks, despite its simple design. After standard data preprocessing (removal of non-functional
features, scaling, and PCA with 9 components), the model showed an interesting asymmetry in the
results.: a high recall (0.9406) for normal traffic, with a lower recall (0.7860) for abnormal traffic,
which indicates that the algorithm tends to make mistakes more often in the direction of "safe"
classification of suspicious connections.

Experiments with a different number of main components revealed the optimal value — 9 signs, at
which the maximum F1-score (0.8507) is achieved. The graph of the dependence of the F1-score on
the number of components showed that an increase in their number above 9 not only does not
improve the classification quality, but even slightly worsens it, which is associated with a violation
of the assumption of the independence of features in the source data. Fig. 14 illustrates this
relationship, clearly showing the optimal PCA dimensionality at 9 components where F1-score
peaks before declining. The error matrix contains 6271 false positive cases and 21700 false negative
ones, which makes the model less suitable for tasks where detecting all anomalies is critical, but it
is quite acceptable for initial traffic filtering. Fig. 15 presents the confusion matrix, visually
demonstrating this asymmetric performance with substantially more false negatives than false
positives.

F1-Score vs PCA Components (Naive Bayes)
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Fig. 14. Dependence of the F1-Score on the PCA value.

The ROC curve with an AUC of 0.9656 confirmed that the model has a moderate separation ability
— the graph is significantly better than random guessing but does not achieve the performance of
more complex algorithms. As shown in Fig. 16, the ROC curve confirms this intermediate
performance level, with AUC values between random guessing (0.5) and high-performance
classifiers (>0.99). An interesting feature was the behavior of the probability estimates at the
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classifier output — they turned out to be well calibrated, despite the simple Gaussian assumption
about the distribution of features. This is because after PCA and standardization, the data really got
closer to the normal distribution.

True Positive Rate

Confusion Matrix (Naive Bayes)
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Fig. 15. Confusion Matrix for Naive Bayes.
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Fig. 16. ROC Curve analysis for Naive Bayes.
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Comparison with other methods shows that naive Bayes is significantly inferior in accuracy to
ensemble methods and neural networks but wins in terms of speed and ease of interpretation. Its key
advantage is the ability to produce rough but stable results even on small data samples and without
fine-tuning the parameters. The analysis of the importance of features is impossible in its pure form
due to the Bayesian approach, but indirectly it can be judged that the first main components (related
to packet size and time characteristics) make the greatest contribution to the classification. The main
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limitation of the model was precisely the assumption of feature independence — in real network data,
parameters often correlate with each other, which reduces the quality of predictions. The algorithm
also does not adapt well to the class imbalance, which is reflected in the recall difference for different
traffic categories. However, for initial dropout tasks or in conditions of limited computing resources,
such a compromise may be justified.

Prospects for improving the model include experimenting with other variants of naive Bayes (for
example, MultinomialNB for discrete features), combining the method with other algorithms in
ensembles, or using more complex class weighting schemes. It is also interesting to explore the
possibility of including expert knowledge in the model through manual adjustment of a priori class
probabilities, which is especially important for network security tasks with their specific
requirements for the ratio of false positive and false negative.

4.2 The best models

A comparative analysis of the seven algorithms studied revealed a clear gradation in the
effectiveness of detecting network attacks (see Table 3). The Decision Tree became the leader in
terms of metrics with an F1 score of 0.9959 and an almost perfect recall of 1.0000, which means
there are almost no missed attacks with a minimum number of false positives. Gradient Boosting is
just 0.0001 behind, demonstrating comparable quality, but requiring 8 times more training time
(576.20 seconds versus 69.21). Interestingly, both top models showed an AUC of 0.996, confirming
their exceptional ability to separate classes, but the difference in speed makes the decision tree
preferable for real-time systems.

The third place was taken by Random Forest with an F1 score of 0.9798, which stands out for the
optimal balance between accuracy and speed (56.70 seconds). Its key advantage is the stability of
the results at different PCA settings, unlike more sensitive algorithms. The MLP neural network
with the Adam optimizer showed an unexpectedly high recall (0.9997) at precision 0.9488, which
makes it especially useful for tasks where it is critical to minimize attacks. However, the training
time (87.47 seconds) significantly exceeds the performance of the trees.

Table 3. Learning outcomes of machine learning models.

Model Precision Recall F1-score AUC Time, sec

Decision Tree 0.9917 1.0000 0.9959 0.996 69.21

Gradient Boost 0.9917 0.9999 0.9958 0.996 576.20

Random Forest 0.9605 1.0000 0.9798 0.980 56.70

MLP (Adam) 0.9488 0.9997 0.9734 0.974 87.47

Logistic Regression 0.9459 0.9857 0.9654 0.965 43.00

Linear Regression (as classifier) 0.9533 0.9429 0.9481 0.949 25.56

Naive Bayes 0.9271 0.7860 0.8507 0.864 4457

Logistic and linear regression showed similar results (F1-score 0.9654 and 0.9481, respectively),
but with fundamentally different error balances. If logistic regression is better at detecting attacks
(recall 0.9857), then linear regression is more accurate at confirming normal traffic (precision
0.9533). At the same time, linear regression turned out to be the fastest (25.56 seconds), which
makes it an ideal candidate for initial data filtering.

Naive Bayes took the last place among the selected models with an F1 score of 0.8507, showing a
characteristic asymmetry in the results.: high precision (0.9271) for abnormal traffic with a relatively
low recall (0.7860). Its ROC-AUC of 0.864 is significantly inferior to other methods, but its speed
(44.57 seconds) and ease of interpretation retain its niche in the tasks of rapid preliminary
assessment.
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Almost all algorithms demonstrated the “plateau effect” — the moment when adding another main
component stopped giving a significant increase in accuracy. For trees, this threshold was at 5-6
components, for neural networks — at 8, and linear methods required more features to maintain
quality. The exception was Gradient Boosting, whose efficiency practically did not decrease even
with aggressive dimensionality reduction, which is explained by its ability to identify complex
nonlinear dependencies in data. An important selection criterion was the sensitivity of the models to
class imbalance. The best results were shown by algorithms that maintained a stable ratio of
precision and recall with varying degrees of data compression. For example, Random Forest showed
a recall of 1.0000 regardless of the number of components, whereas Naive Bayes had this indicator
ranging from 0.75 to 0.82 when the dimension was changed. Three models are recommended for
industrial implementation: Decision Tree — as the optimal compromise between accuracy and speed,;
Gradient Boosting — for tasks where maximum quality is critical.; Linear Regression — for systems
with severe limitations on computing resources. Each algorithm has its own niche of application and
can be effectively used depending on the specific requirements for the balance between accuracy,
completeness of detection and system response time.

4.3 The fight against overfitting

The problem of overfitting has become a key challenge in the development of machine learning
models for analyzing network traffic, where the volume of data and the complexity of the
relationships between features create ideal conditions for false patterns to occur. During my
research, 1 came across the fact that some algorithms, especially complex ensembles and neural
networks, showed excellent results in the training sample (accuracy up to 99.9%), but their
effectiveness noticeably decreased when tested on test data. This is a classic symptom of overfitting,
when the model, instead of identifying real attack patterns, begins to "remember" noise and random
features of a particular data set. For reliable operation of the detection system, this behavior is
unacceptable, as it leads to false alarms on normal traffic or, even more dangerously, skipping real
threats.

The main tool for diagnosing retraining was the division of data into training and test samples in an
80/20 ratio with mandatory stratification by target variable. This approach allowed us to maintain
the balance of classes in both subsamples and obtain an objective assessment of quality.
Additionally, 1 used 5-fold cross-validation for GridSearchCV, which is especially important when
configuring hyperparameters for complex models like Gradient Boosting or MLP. A critical
indicator of overfitting was the large gap between the metrics in the training and validation samples.
If accuracy differed by more than 2-3%, the model needed to be improved.

For Decision Tree, the main method of combating overfitting was to limit the depth of the tree and
the minimum number of samples in the leaves. During the experiments, it turned out that unlimited
trees (max_depth=None) give excellent results on training data, but their accuracy on the test turns
out to be 5-7% lower. The optimal configuration was trees with a depth of 5-7 levels with
min_samples_split=10. This option kept the F1-score at 0.995 with good generalizing ability. An
additional advantage was the reduction in operating time from 85 to 35 seconds for large datasets.
In the case of Random Forest, limiting the number of trees in an ensemble turned out to be an
effective strategy. Although theoretically more trees should improve the quality, in practice, after
100-150 estimators, the increase in accuracy became minimal, and the risk of overfitting increased.
| settled on 100 trees with a depth of 10. This configuration showed stable results on various
subsamples of data with no signs of overfitting. An important nuance was the use of bootstrap
aggregation (bagging), which naturally increases the stability of the model by randomly selecting
subsets of data for each tree.

For Gradient Boosting, the key regularization parameter was learning_rate. Too high values (0.3-
0.5) led to rapid convergence but often caused overfitting. After a series of experiments, the optimal
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value was 0.1 in combination with n_estimators=100 and max_depth=5. Subsampling has also
become a useful technique (subsample=0.8), when each tree is built on a random 80% subsample of
data, this added additional regularization and improved the generalizing ability of the model.

The MLP neural network required a special approach — here, in addition to the standard data
separation, | used early stopping, when training is interrupted when the indicators on the validation
sample deteriorate. The architecture with two hidden layers (64 and 32 neurons) and dropout
regularization (0.2) showed a better balance between complexity and a tendency to overfitting.
Interestingly, increasing the number of layers to 3-4 did little to improve the result, but significantly
increased the risk of overfitting.

Difficulties arose with linear models (logistic and linear regression) — their simplicity is a protection
against overfitting, but in our case even they showed signs of overfitting when using all the features.
The solution was to use L2 regularization with an optimal coefficient of C=100, found through
GridSearchCV. This made it possible to maintain high accuracy (F1 0.965) without overfitting, even
with a decrease in the data dimension.

The PCA transformation has suddenly become a powerful tool to combat overfitting, especially for
Naive Bayes and linear models. Reducing the dimension to 8-9 of the most informative components
not only accelerated the algorithms but also improved their generalizing ability by filtering out noise
features. Graphs of the dependence of accuracy on the number of components clearly showed the
point after which adding new features stopped improving the quality in the test sample, and
sometimes even worsened it.

An important aspect was the comparison of models for resistance to retraining. Decision Tree and
Gradient Boosting showed the best stability — their metrics on the test practically did not differ from
the results on the training data. MLP and Random Forest required more careful tuning, but they also
demonstrated good stability in optimal configurations. Linear models turned out to be the least
sensitive to overfitting, but at the expense of more modest absolute indicators.

Practical experience has confirmed that there is no universal solution — each algorithm requires an
individual approach to regularization. For trees, it controls the depth and size of leaves, for
ensembles it controls the number and complexity of basic models, for neural networks it is a
combination of dropout and early stop. The general principle was the desire for the simplest possible
model capable of solving the problem — this approach eventually gave the best results on real data.

5. Conclusions

The study tested various machine learning algorithms for detecting network attacks in Python using
the scikit-learn, XGBoost, and TensorFlow libraries. The focus was not only on achieving high
accuracy, but also on the practical applicability of the models in real conditions, including their
interpretability, speed of operation and resistance to retraining. The best results were shown by
ensemble methods and decision trees. Decision Tree demonstrated 99.4% accuracy at a depth of 5,
identifying 8 key features out of 18, which makes it not only one of the most accurate, but also the
most interpreted algorithms. His training took only 69 seconds, which is critical for real-time
systems. Gradient Boosting showed comparable accuracy (99.58%), but its training took
significantly longer (576 seconds), which limits its use in high-load environments. Random Forest
took an intermediate position with an accuracy of 97.98% and a training time of 56.7 seconds,
providing a good balance between performance and quality.

Logistic regression, despite its simplicity, showed decent results (96.53%) and turned out to be the
fastest (25.56 seconds), which makes it a good choice for initial traffic filtering. Naive Bayes
(86.48%) and linear regression (94.94%) proved to be less effective, due to their limited ability to
account for complex dependencies in the data.
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Special attention was paid to the fight against retraining. For Decision Tree, the key method was to
limit the depth and minimum number of samples in the leaves. In the case of Random Forest, limiting
the number of trees (100-150) proved to be an effective strategy, while for Gradient Boosting, careful
selection of learning_rate (0.1) and the use of subsampling (subsample=0.8). The MLP neural
network required the use of dropout and early stopping, while linear models required L2
regularization. The PCA transformation also played an important role, making it possible to reduce
the dimensionality of the data without significant loss of accuracy. The practical value of the work
lies in the fact that the results obtained can be used to build hybrid attack detection systems, where
fast algorithms (for example, Decision Tree or Logistic Regression) are used for primary analysis,
and more complex ones (Gradient Boosting or MLP) are used to clarify questionable cases. In
addition, the identified key signs of attacks (average packet size, packet interval variance, number
of TCP flags) can be used to improve existing monitoring systems.

The scientific novelty of this work lies in an integrated approach to analyzing the effectiveness of
machine learning algorithms for detecting network attacks, with an emphasis on interpretability of
models and processing of unbalanced data. Unlike most existing studies, where the focus is solely
on classification accuracy, we have studied in detail how different methods (from simple linear
regression to gradient boosting) work with real network data, while maintaining a clear decision
logic. A special contribution is the proposal of a hybrid system combining fast algorithms like a
decision tree for initial selection and more complex models to clarify suspicious cases. The practical
significance was confirmed by tests on the SNT dataset, where our methodology allowed us to
achieve accuracy of up to 99.58% while maintaining the transparency of the models. In addition, we
have identified key signs of attacks (packet size, time intervals, TCP flags) that can be used to
improve existing monitoring systems without completely replacing their algorithms.
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