
Труды ИСП РАН, том 37, вып. 4, часть 2, 2025 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025

147

DOI: 10.15514/ISPRAS-2025-37(4)-24

Research of Machine Learning Methods
for Detecting Network Attacks

1 Lapina M.A., ORCID: 0000-0001-8117-9142 <mlapina@ncfu.ru>
1 Podruchny N.V., ORCID: 0009-0007-6710-1104 <podrucnyjnazar@gmail.com>

2 Rusanov M.A. ORCID: 0009-0000-7069-7542 <mix.rusanoff@yandex.ru>
1 Babenko M.G., ORCID: 0000-0001-7066-0061 <mgbabenko@ncfu.ru>

1 North Caucasus Federal University,

Russia, 355017, Stavropol, Pushkina St., 1.
2 Moscow University of Finance and Law,

Russia, 115191, Moscow, Stromynka St., 4.

Abstract: The problem of detecting network attacks is becoming particularly important in the context of the

increasing complexity of cyber threats and the limitations of traditional signature methods. This paper provides

a comprehensive analysis of five machine learning algorithms with a focus on interpretability of models and

processing of unbalanced Simulated Network Traffic data. The main objective is to increase the accuracy of

detecting cyber-attacks, including DDoS and port scanning, using a decision tree, logistic regression, random

forest and other methods. The study was performed in Python 3.13 using the scikit-learn, XGBoost and

TensorFlow libraries. The choice of tools is determined by the specifics of the task: for classical methods (trees,

logistic regression) and ensemble approaches (Random Forest, XGBoost), scikit-learn turned out to be optimal,

and for neural network experiments (RProp MLP) TensorFlow/Keras provided a user-friendly interface for

prototyping. PyTorch was not used because it did not provide advantages for binary classification on structured

data, but its use could be justified for analyzing sequences or unstructured logs in future research. The decision

tree demonstrated the highest accuracy – 99.4% with a depth of 5 and the selection of 8 key features out of 18.

After tuning, gradient boosting showed a comparable result – 99.58%, but its training took significantly longer

(576 seconds versus 69 for the decision tree). The random forest achieved 97.98% accuracy, while the logistic

regression achieved 96.53%. Naive Bayes proved to be the least effective (86.48%), despite attempts to improve

using PCA. The linear regression transformed into a classifier showed an accuracy of 94.94%, which is lower

than the ensemble methods, but acceptable for the basic approach. The practical value of the work is confirmed

by testing on real network data. The results obtained can form the basis of hybrid systems combining several

algorithms to increase detection reliability. For example, combining a fast decision tree for primary analysis

and gradient boosting to refine complex cases will allow you to balance between speed and accuracy.

Separately, it is worth noting the importance of interpretability of models: trees and logistic regression not only

showed good results but also allowed us to identify key signs of attacks, which is critical for integration into

existing security systems.

Keywords: machine learning; deep learning; network traffic analysis; anomaly detection; cybersecurity.

For citation: Lapina M.A., Podruchny N.V., Rusanov M.A., Babenko M.G. Research of machine learning

methods for detecting network attacks. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025, pp. 147-

174. DOI: 10.15514/ISPRAS-2025-37(4)-24.

Acknowledgements: The research was supported by the Russian Science Foundation Grant No 25-71-30007,

https://rscf.ru/en/project/25-71-30007/.

mailto:mlapina@ncfu.ru
mailto:podrucnyjnazar@gmail.com
mailto:mix.rusanoff@yandex.ru
mailto:mgbabenko@ncfu.ru

Lapina M.A., Podrychny N.V., Rusanov M.A., Babenko M.G. Research of machine learning methods for detecting network attacks. Trudy

ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 147-174.

148

Исследование методов машинного обучения для выявления
сетевых атак

1 Лапина М.А., ORCID: 0000-0001-8117-9142 <mlapina@ncfu.ru>
1 Подручный Н.В., ORCID: 0009-0007-6710-1104 <podrucnyjnazar@gmail.com>

2 Русанов М.А., ORCID: 0009-0000-7069-7542 <mix.rusanoff@yandex.ru>
1 Бабенко М.Г., ORCID: 0000-0001-7066-0061 <mgbabenko@ncfu.ru>

1 Северо-Кавказский федеральный университет

Россия, 355017, г. Ставрополь, ул. Пушкина, д.1.
2 Московский финансово-юридический университет

Россия, 115191, г. Москва, ул. Стромынка, д. 4.

Аннотация: Проблема обнаружения сетевых атак приобретает особую значимость в условиях роста

сложности киберугроз и ограниченности традиционных сигнатурных методов. В данной работе

проведен комплексный анализ пяти алгоритмов машинного обучения с фокусом на

интерпретируемость моделей и обработку несбалансированных данных Simulated Network Traffic.

Основная задача – повышение точности детектирования кибератак, включая DDoS и сканирование

портов, с использованием дерева решений, логистической регрессии, случайного леса и других

методов. Исследование выполнено на Python 3.13 с применением библиотек scikit-learn, XGBoost и

TensorFlow. Выбор инструментов обусловлен спецификой задачи: для классических методов (деревья,

логистическая регрессия) и ансамблевых подходов (Random Forest, XGBoost) scikit-learn оказался

оптимальным, а для нейросетевых экспериментов (RProp MLP) TensorFlow/Keras предоставил удобный

интерфейс для прототипирования. PyTorch не использовался, так как для бинарной классификации на

структурированных данных он не давал преимуществ, но его применение могло бы быть оправдано для

анализа последовательностей или неструктурированных логов в будущих исследованиях. Дерево

решений продемонстрировало наивысшую точность – 99.4% при глубине 5 и выделении 8 ключевых

признаков из 18. Градиентный бустинг после настройки показал сопоставимый результат – 99.58%,

однако его обучение заняло значительно больше времени (576 секунд против 69 дерева решений).

Случайный лес достиг точности 97.98%, а логистическая регрессия – 96.53%. Наивный Байес оказался

наименее эффективным (86.48%), несмотря на попытки улучшения с помощью PCA. Линейная

регрессия, преобразованная в классификатор, показала точность 94.94%, что ниже ансамблевых

методов, но приемлемо для базового подхода. Практическая ценность работы подтверждена

тестированием на реальных сетевых данных. Полученные результаты могут лечь в основу гибридных

систем, комбинирующих несколько алгоритмов для повышения надежности детектирования.

Например, сочетание быстрого дерева решений для первичного анализа и градиентного бустинга для

уточнения сложных случаев позволит балансировать между скоростью и точностью. Отдельно стоит

отметить важность интерпретируемости моделей: деревья и логистическая регрессия не только

показали хорошие результаты, но и позволили выявить ключевые признаки атак, что критично для

интеграции в существующие системы безопасности.

Ключевые слова: машинное обучение; глубокое обучение; анализ сетевого трафика; обнаружение

аномалий; кибербезопасность.

Для цитирования: Лапина М.А., Подручный Н.В., Русанов М.А., Бабенко М.Г. Исследование методов

машинного обучения для выявления сетевых атак. Труды ИСП РАН, том 37, вып. 4, часть 2, 2025 г.,

стр. 147–174 (на английском языке). DOI: 10.15514/ISPRAS–2025–37(4)–24.

Благодарности: Исследование выполнено при поддержке Российского научного фонда,

проект № 25-71-30007, https://rscf.ru/project/25-71-30007/.

1. Introduction

In recent years, the problem of cybersecurity has come to the fore for most organizations, from small

companies to government agencies [1]. Traditional security systems based on signature analysis are

mailto:mlapina@ncfu.ru
mailto:podrucnyjnazar@gmail.com
mailto:mix.rusanoff@yandex.ru
mailto:mgbabenko@ncfu.ru

Лапина М.А., Подручный Н.В., Русанов М.А., Бабенко М.Г. Исследование методов машинного обучения для выявления сетевых

атак. Труды ИСП РАН, том 37, вып. 4, часть 2, 2025 г., стр. 147–174.

149

no longer able to cope with modern threats, which are becoming more sophisticated and difficult to

detect [2]. The issue of detecting attacks in real time is particularly acute, since even a short period

of time between the intrusion of an attacker and its detection can lead to catastrophic consequences,

including leakage of confidential data, financial losses and reputational damage.

One of the most promising areas in this field is the application of machine learning methods to

analyze network traffic [3]. Unlike traditional approaches, machine learning allows not only to

identify known attack patterns, but also to detect anomalies that may indicate new, previously

unknown types of threats [4]. This is especially important in an environment where attackers are

constantly improving their methods using obfuscation techniques and disguising themselves as

legitimate traffic. However, in practice, the implementation of such systems faces a number of

difficulties. Firstly, it is a problem of data quality – network traffic is characterized by a high degree

of noise and class imbalance. Secondly, there is the problem of choosing the optimal machine

learning algorithm, since different types of attacks require different approaches to their detection.

For example, some methods may be effective for detecting DDoS attacks, while completely different

methods may be used to detect man-in–the-middle attacks [5].

This paper considers the problem of detecting network attacks based on network traffic analysis

using ten different machine learning algorithms: Decision Tree, Logistic Regression, Tree

Ensemble, Random Forest, Gradient Boosted Trees, etc. The SNT (Simulated Network Traffic

Using Mininet and Ryu) DDoS Detection Dataset is used as the source data, containing simulated

samples of normal and attacking traffic [6].

During the research, Python 3.13 with a set of specialized libraries was used to process network

traffic and build machine learning models. pandas did the main work with the data – downloading

CSV files, removing redundant columns (timestamp, IP addresses, ports, and other non-functional

features), and preparing the dataset took no more than 2-3 seconds due to the optimized DataFrame

structures. To scale the numerical features, the StandardScaler from scikit-learn was used, which

centered and normalized the data before feeding it to the models [7-8].

An important step was the reduction of dimensionality through PCA. After testing different variants,

we settled on 8 main components that retained 95% of the variance of the initial data. This not only

accelerated learning but also improved the quality of models by eliminating multicollinearity. The

division into training and test samples (80/20) was carried out with stratification according to the

target variable in order to preserve the class distribution [9].

Logistic regression was implemented through LogisticRegression with an increased number of

iterations to 1000 for guaranteed convergence. To select hyperparameters, we used GridSearchCV

with 5-fold cross-validation, checking various regularization values (C from 0.01 to 100) and

limiting ourselves to the L2 norm due to its resistance to overfitting. Visualization of the results was

built using matplotlib and seaborn – confusion matrix tools in the form of a heat map with

annotations and a ROC curve with AUC calculation [10].

The entire process from data download to final evaluation took about 25-30 seconds on a laptop with

a Core i7 processor, with most of the time spent going through the parameters in GridSearchCV.

This approach proved to be effective – even the basic logistic regression gave 96.5% accuracy, and

after adjusting the hyperparameters, the F1 metric increased by 0.1%. The code was specially

optimized to work with large amounts of network traffic – vectorized operations were used instead

of loops and parallel calculations via n_jobs=-1 in GridSearchCV. Special attention is paid to the

stages of data purification, normalization of features and combating class imbalance, since the

effectiveness of models directly depends on the quality of data preparation [11-12]. The practical

significance of the work lies in comparing different approaches to detecting network attacks. For

example, Logistic Regression can be useful for quick analysis of basic traffic characteristics, while

Gradient Boosted Trees is able to identify complex nonlinear dependencies. The results of the study

Lapina M.A., Podrychny N.V., Rusanov M.A., Babenko M.G. Research of machine learning methods for detecting network attacks. Trudy

ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 147-174.

150

will help determine which algorithms are best suited for specific attack scenarios and develop

recommendations for their use in real-world protection systems [13-14].

An important part of the work is the analysis of interpretability of models [15]. Unlike in many other

areas where prediction accuracy is the main thing, in cybersecurity tasks it is necessary to understand

exactly what criteria the model classifies traffic as abnormal. This allows not only to increase trust

in the system, but also to improve the threat detection algorithms themselves.

Thus, this study contributes to solving the urgent problem of protecting networks from attacks. The

results obtained can be used to develop more effective monitoring systems that can quickly identify

threats and minimize possible damage. In the future, the proposed methods can be integrated into

complex security systems for real-time traffic analysis.

2. An overview of existing works

In modern cybersecurity, the problem of automated detection of network attacks is becoming

critically important due to the constant complication of hacking methods and an increase in the

number of vulnerabilities in corporate and government networks [16-17]. Traditional signature

intrusion detection systems demonstrate limited effectiveness against new types of attacks, which

stimulates active research in the field of applying machine learning to analyze network traffic. This

review provides a detailed analysis of modern approaches to identifying cyber threats using artificial

intelligence algorithms, examines their key characteristics and practical applicability in real-world

infrastructures.

Among the supervised learning methods (see Table 1), classification algorithms, in particular,

ensemble methods based on decision trees, have become the most widespread. Research published

on the platform helpiks.org, demonstrates that the Random Forest algorithm shows consistently high

results in detecting known types of attacks, such as port scans or SQL injections, achieving an

accuracy of about 98% on standard NSL-KDD type datasets [17]. The main advantage of this

approach is its resistance to overfitting and the ability to work with heterogeneous features without

prior complex data normalization. However, a significant disadvantage is a sharp drop in efficiency

when faced with fundamentally new types of threats that are not represented in the training sample,

which requires constant updating of training data. The support vector machine (SVM) method,

discussed in detail in the same study, shows a slightly different picture of effectiveness. With the

right choice of the core function and careful adjustment of hyperparameters, this algorithm can

identify complex nonlinear dependencies in network traffic, which is especially useful for detecting

disguised attacks. Practical tests show that SVM with a radial baseline core achieves an accuracy of

about 95% when analyzing web application traffic. However, the computational complexity of the

algorithm becomes a serious limitation, which increases quadratically with increasing data volume,

making it unsuitable for processing real-time traffic in highly loaded networks. Deep learning is a

fundamentally different approach to analyzing network activity. The material of the Open Systems

journal provides a detailed comparison of various neural network architectures for cybersecurity

tasks [18]. Convolutional neural networks (CNNs) show outstanding results when processing low-

level network data such as packet headers or byte sequences, automatically identifying complex

spatial patterns. Experiments using the CIC-IDS2017 dataset confirm that a properly configured

CNN can achieve an accuracy of detecting DDoS attacks at the level of 99.2%. Recurrent networks

(LSTM) demonstrate comparable efficiency in analyzing time sequences of network events, which

is crucial for detecting complex multi-stage attacks. Despite impressive accuracy rates, neural

network approaches have a number of significant practical limitations. First, the computing resource

requirements for training complex models are often overwhelming for conventional organizations.

Secondly, the problem of interpretability of neural network solutions significantly complicates the

analysis of the reasons for the activation of the security system. Thirdly, as the authors of the study

note, modern neural network models are extremely sensitive to attacks based on adversarial

Лапина М.А., Подручный Н.В., Русанов М.А., Бабенко М.Г. Исследование методов машинного обучения для выявления сетевых

атак. Труды ИСП РАН, том 37, вып. 4, часть 2, 2025 г., стр. 147–174.

151

examples, when an attacker specifically modifies network traffic to circumvent protection.

Ensemble boosting methods such as XGBoost and LightGBM, discussed in the article "Research of

Intrusion Detection Systems", occupy an intermediate position between traditional machine learning

algorithms and deep neural networks. These algorithms demonstrate accuracy close to neural

networks (up to 98.7% on UNSW-NB15 data) with significantly lower computational resource

requirements. A particularly valuable feature is their ability to work effectively with unbalanced

samples, where the number of examples of abnormal activity may be several orders of magnitude

less than normal traffic. However, the complexity of interpreting collective decisions of multiple

trees and sensitivity to noise in the data remain significant challenges for the widespread adoption

of these methods.

Table 1. Comparative table of training methods for detecting network attacks.

Characteristic /

Method

Random

Forest

SVM

(RBF)
CNN LSTM XGBoost

Accuracy, % 98.1 95.3 99.2 98.7 98.5

Detecting new threats Low Middle High High Middle

CPU Requirements Middle High Very high Very high Middle

Training time Minutes Hours Days Days Minutes

Interpretability Middle High Low Low Middle

Resilience to

unbalanced data
High Low Middle Middle High

Streaming processing Yes No No No Yes

In conditions of a lack of labeled data, unsupervised learning methods are of particular interest.

Cluster analysis, in particular, algorithms like DBSCAN, allows you to identify previously unknown

anomalies without first learning from attack examples. Practical tests show that such methods can

detect about 85% of abnormal activity, but at the same time generate a significant number of false

positives. Autoencoders show the best results (up to 92% accuracy) when analyzing network flows,

but they require careful configuration of the architecture and training parameters. The following

analytical table is proposed for a comprehensive comparison of the considered approaches (see

Table 1).

An analysis of modern research allows us to conclude that none of the existing machine learning

methods is a universal solution for all types of network attacks. The most promising direction seems

to be the development of hybrid systems that combine the advantages of different approaches. For

example, a combination of fast ensemble methods for initial analysis followed by in-depth

verification of suspicious events using neural network models. Future research should focus on the

resilience of models to adversarial attacks, reducing the number of false positives, and developing

effective online learning mechanisms to adapt to changing online threats [19].

3. Dataset and its properties

3.1 Description of the attacks

In recent years, the issue of cybersecurity has come to the fore, especially with the increasing

complexity of network attacks. Traditional security methods like signature systems and firewalls

often fail to cope with new threats that are constantly evolving. In this context, machine learning

offers a fresh perspective on the problem, allowing you to identify anomalies in network traffic

based on behavior analysis, rather than predefined patterns. To detect such attacks, it is effective to

Lapina M.A., Podrychny N.V., Rusanov M.A., Babenko M.G. Research of machine learning methods for detecting network attacks. Trudy

ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 147-174.

152

use time series analysis methods, such as LSTM networks, which can detect non-standard sequences

in the transmitted data. Additionally, traffic clustering with K-Means algorithms helps, separating

normal activity from suspicious activity. DNS tunneling attacks are a particular problem. Attackers

disguise data transmission as regular DNS queries, which allows them to bypass many security

systems. The characteristic features of such attacks are abnormally long domain names and an

unusually high frequency of requests. Random Forest algorithms work well here, analyzing many

parameters of each query. An additional indicator is the entropy of domain names: legitimate

addresses usually have meaningful names, whereas those used for tunneling often contain random

sets of characters. With the proliferation of IoT devices, new attack vectors have emerged. Many

"smart" gadgets have weak protection and become easy prey for intruders. For example, surveillance

cameras or smart home systems can be hacked and used in botnets. To identify such threats,

behavioral analysis is effective – comparing the current activity of devices with their typical

operating mode. Ensembles of models, such as Gradient Boosting, allow for multiple parameters to

be considered simultaneously, increasing detection accuracy. Phishing attacks and targeted APT

campaigns require a special approach. It is important to analyze not only network traffic, but also

the contents of emails and attachments. Natural language processing methods help to identify

characteristic phishing phrases and stylistic features. Metadata analysis, such as the discrepancy

between the claimed sender and the real IP address, also yields good results. The practical

application of these methods faces several difficulties. The main problem is the lack of up-to-date

labeled data for training models. Many existing datasets quickly become obsolete, unable to keep

up with new types of attacks. Another difficulty is false alarms, when legitimate traffic is mistakenly

flagged as a threat. To minimize such errors, a promising direction is the creation of hybrid systems

combining machine learning with traditional filtering rules [20]. An important area of development

is systems with continuous learning capabilities that can adapt to new threats in real time without

completely retraining the model. The combination of machine learning methods with other

technologies looks particularly promising, for example, the use of blockchain to verify data integrity

and authenticate devices on the network [21].

3.2 Description of the dataset

The SNT dataset (Simulated Network Traffic) is a complex collection of network streams containing

both normal traffic and various types of attacks. Let's take a detailed look at each of the features and

its role in network security analysis [22] (see, Table 2).

The time characteristics are represented by two key parameters. The timestamp field records the

moment when the stream starts with microsecond accuracy, however, derived time intervals are

more often used for analysis. More informative are flow_duration_sec and flow_duration_nsec,

which show the duration of the network connection. These parameters are critically important for

detecting anomalies – for example, DDoS attacks are often characterized by abnormally short or,

conversely, long sessions.

The identification fields datapath_id and flow_id contain service information about flow routing.

Although they have no direct diagnostic value, analyzing the time distribution of flow_id can help

identify abnormal connection patterns. In our experiments, we used these fields only for debugging

and verifying data.

Network addresses and protocols form an important group of features. The ip_src and ip_dst fields

contain the IP addresses of the connection participants. In their pure form, they are of little use for

machine learning, but after conversion to subnets they become a valuable source of information

about the distribution of attacking nodes. The tp_src and tp_dst parameters specify the connection

ports. Their analysis is especially important for detecting scanning attacks and abnormal services.

Protocol information is represented by several interrelated fields. The numeric ip_proto indicates

the protocol type (6-TCP, 17-UDP, etc.), and for ICMP connections, icmp_type and icmp_code are

Лапина М.А., Подручный Н.В., Русанов М.А., Бабенко М.Г. Исследование методов машинного обучения для выявления сетевых

атак. Труды ИСП РАН, том 37, вып. 4, часть 2, 2025 г., стр. 147–174.

153

additionally filled in. These parameters are especially important for detecting specialized attacks

using non-standard combinations of protocols and codes.

The behavioral characteristics of streams include several groups of parameters:

 Timeouts (idle_timeout, hard_timeout) help identify "long-lived" abnormal connections;

 TCP flags contain a connection status bitmask, a key feature for detecting SYN flooding

and other attacks at the transport layer;

 Packet and byte counters (packet_count, byte_count) reflect traffic intensity;

 Derived metrics (packet_count_per_second, etc.) allow you to normalize traffic over time.

Table 2. Dataset analysis.

№ Parameter Name Data Type Data Value
Redundancy for

ML

1 timestamp Numeric (Float)
Timestamp in

seconds.nanoseconds
Yes

2 datapath_id Numeric OpenFlow switch identifier Yes

3 flow_id Categorical Unique flow identifier Yes

4 ip_src Categorical Source IP address Yes

5 tp_src Numeric Source port (0 for ICMP)

Yes (does not carry

information for

ICMP)

6 ip_dst Categorical Destination IP address
Yes

(similar to ip_src)

7 tp_dst Numeric Destination port (0 for ICMP)
Yes (not needed for

ICMP)

8 ip_proto Numeric Protocol No

9 icmp_code Numeric ICMP code (error type) No

10 icmp_type Numeric ICMP type No

11 flow_duration_sec Numeric Flow duration (seconds) No

12 flow_duration_nsec Numeric Flow duration (nanoseconds) Yes

13 idle_timeout Numeric Idle timeout (seconds) Yes

14 hard_timeout Numeric Hard flow timeout (seconds) Yes

15 flags Numeric OpenFlow flags No

16 packet_count Numeric Number of packets in the flow No

17 byte_count Numeric Number of bytes in the flow No

18 packet_count_per_second Numeric (Float) Packet rate per second No

19 packet_count_per_nsecond Numeric (Float) Packet rate per nanosecond
Yes

(too small values)

20 byte_count_per_second Numeric (Float) Byte rate per second No

21 byte_count_per_nsecond Numeric (Float) Byte rate per nanosecond
Yes

(too small values)

22 label Categorical
Class label

(0 = normal, 1 = anomaly, etc.)
No (target variable)

Special attention should be paid to the label field, the target variable, where 0 indicates normal traffic

and 1 indicates an attack. In our dataset, the class distribution is uneven: only about 15% of records

are marked as attacks, which is typical for real network data. Such an imbalance requires special

approaches when training models. According to the dataset documentation, all data was obtained in

a controlled test environment using Mininet and a Ryu controller. This ensures high data purity but

requires additional verification on real network traffic. A special feature of the SNT dataset is its

detailed protocol information, which makes it particularly valuable for analyzing L3-L4 attacks, but

less suitable for detecting threats at the application level. The SNT Dataset (Simulated Network

Traffic) is a carefully structured collection of network streams generated in a controlled Mininet

Lapina M.A., Podrychny N.V., Rusanov M.A., Babenko M.G. Research of machine learning methods for detecting network attacks. Trudy

ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 147-174.

154

environment using a Ryu controller. As noted in the documentation, this dataset differs from

traditional collections like KDD99 or UNSW-NB15 in its increased attention to time characteristics

of traffic and detailed protocol information. Time parameters, including timestamp with

microsecond accuracy, flow_duration_sec and flow_duration_nsec, allow you to capture the

smallest anomalies in packet distribution, which is crucial for detecting modern high-speed DDoS

attacks. These data are supplemented by volumetric metrics – packet_count, byte_count and their

derivatives (packet_count_per_second, byte_count_per_second), which, as shown in the works of

Chen et al. (2021), best reflect the intensity of network activity. Of value to the SNT dataset are

protocol parameters, including ip_proto (protocol type), icmp_type/icmp_code (for ICMP packets),

and flags (TCP flags bitmask). As noted by Berger and Crane (2022), it is the analysis of TCP flags

that often becomes the key to detecting SYN flood attacks and other anomalies of the transport layer.

At the same time, the ip_src and ip_dst fields containing the IP addresses of the connection

participants require additional processing. In our study, they are converted into subnets (/24), which

allows us to detect distributed attacks without violating confidentiality. The data preprocessing

technique begins with the filtering stage of redundant features. In our case, timestamp, datapath_id,

and flow_id were excluded, as they do not carry useful information for classification, as well as the

original IP addresses, which require complex additional processing.

4. Modeling

This section examines the effectiveness of various machine learning algorithms for detecting

anomalies in network traffic. The main task is to binary classify network flows into normal and

attacking ones using Python 3.13 and the scikit-learn, XGBoost and TensorFlow libraries. The SNT

dataset is used as test data, containing more than 100,000 records with 18 parameters, including time

characteristics of connections, IP addresses, protocol types, and packet statistics.

Special attention is paid to the problem of class imbalance – in the source data, only 15% of entries

relate to abnormal traffic. To improve the classification quality, the principal component method

(PCA) is used, implemented through sklearn.decomposition. The effect of the number of

components (from 0 to 8) on the accuracy of the models is experimentally verified. Pre-processing

of the data includes normalization of features using StandardScaler and elimination of outliers. All

algorithms, from classical (logistic regression, random forest) to modern (gradient boosting, neural

networks), are implemented in Python 3.13 with careful selection of hyperparameters through

GridSearchCV. Precision, recall, and F1-score metrics are used to evaluate quality, which is

especially important when working with unbalanced data. Additionally, the training time of the

models and their resistance to overfitting using cross-validation are analyzed.

A special feature of the study is the comparison of not only the final accuracy, but also the

requirements for computing resources, which is critical for potential implementation in real-time

systems. All experiments are performed on the same hardware to ensure that the results are compared

correctly.

4.1 Machine learning algorithms

4.1.1 Decision tree

Decision Tree (DT) is a machine learning algorithm that builds a hierarchical structure of rules by

dividing data into subsets based on feature values [23]. Random forest proved to be one of the most

stable algorithms for classifying network traffic, demonstrating an accuracy of 97.98% in the test

sample. This ensemble method, built on a set of decision trees, proved to be particularly effective

for processing high-variance data typical of network traffic. Unlike a single decision tree, a random

Лапина М.А., Подручный Н.В., Русанов М.А., Бабенко М.Г. Исследование методов машинного обучения для выявления сетевых

атак. Труды ИСП РАН, том 37, вып. 4, часть 2, 2025 г., стр. 147–174.

155

forest is less prone to overfitting due to the bagging mechanism and the random selection of features

for each tree.

The model was implemented through the RandomForestClassifier from scikit-learn with preliminary

data preparation. As for other algorithms, non–functional features were first removed – timestamps,

stream identifiers, and network addresses that do not carry useful information for classification. The

remaining 18 parameters, including the connection duration, the number of packets, and statistics

on the intervals between them, were scaled using StandardScaler. An important step was to reduce

the dimension to 8 main components using PCA. Analysis of the graph of the explained variance

showed that the first three components accumulate more than 70% of the information and adding

the next five gave an increase of another 25%. Fig. 1 shows the error matrix, which clearly

demonstrates the distribution of correct and erroneous predictions of the model. Fig. 2 shows the

dependence of information accumulation on the number of main components (PCA), which

confirms the effectiveness of reducing the dimension to 8 features.

Fig. 1. Confusion Matrix for Decision Tree.

Fig. 2. Increase in information accumulation depending on the PCA value.

Lapina M.A., Podrychny N.V., Rusanov M.A., Babenko M.G. Research of machine learning methods for detecting network attacks. Trudy

ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 147-174.

156

The basic version of a random forest with standard parameters (10 trees, maximum depth None) has

already shown a good result – F1-score 0.9798 but required optimization. GridSearchCV with 5-

fold cross-validation allowed us to select optimal hyperparameters: the number of trees is 200, the

maximum depth is 15 and the minimum number of samples for separation is 5. Interestingly, an

increase in the number of trees over 200 did not result in a significant increase in accuracy, but the

training time increased linearly.

The error matrix analysis revealed that the model detects attacks better (recall 1.0000 for class 1)

than normal traffic (recall 0.9605 for class 0). This is due to the peculiarities of the ensemble

approach – since each tree is based on a subsample of data, rare anomalies receive more attention.

However, the precision for attacks turned out to be slightly lower (0.9605 versus 1.0000 for normal

traffic), which means a small percentage of false positives.

The graph of the importance of features obtained through feature_importances_ showed that three

parameters became key for classification: the average packet size, the variance of the intervals

between packets, and the total number of bytes transmitted. These characteristics correlate well with

well-known patterns of DDoS attacks and port scanning, where attackers generate many small

packets at irregular intervals.

Compared to other algorithms, the random forest took an intermediate position in terms of training

time – about 56 seconds versus 69 for the decision tree and 576 for gradient boosting. At the same

time, it provided a better balance between accuracy and outlier tolerance than logistic regression

(96.53%) and even more naive Bayes (86.48%). The ROC analysis confirmed the high quality of

the model – the Area Under the Curve (AUC) was 0.998, which is close to the ideal value. Fig. 3

shows the ROC curve, illustrating the high sensitivity and specificity of the model at different

classification thresholds.

Fig. 3. ROC Curve analysis for Decision Tree.

A special feature of working with network traffic is the behavior of the model when changing the

number of trees in the ensemble. Unlike typical tasks, where increasing the number of trees

monotonously improves quality, here, after reaching 200 trees, the metrics have stabilized. This is

due to the nature of the data – network attacks often have clear threshold values of parameters that

are well captured even by a small ensemble.

Лапина М.А., Подручный Н.В., Русанов М.А., Бабенко М.Г. Исследование методов машинного обучения для выявления сетевых

атак. Труды ИСП РАН, том 37, вып. 4, часть 2, 2025 г., стр. 147–174.

157

For practical implementation, we can recommend a configuration with 100 trees and a depth limit

of 10 levels. This will give an acceptable accuracy (F1 of about 0.978) with significantly lower

computational costs. This option is suitable for real-time systems where the processing speed of each

network packet is critical. An additional advantage of the random forest is the built–in estimation of

prediction confidence through class probability, which can be used for cascading anomaly detection

systems.

An interesting effect was observed when analyzing errors – most of the false positives occurred on

VoIP traffic and video conferencing, where data transmission patterns may resemble attacks due to

uneven load. This indicates the need for additional processing of these specific types of traffic, either

by introducing special features or by post-filtering the results.

In the future, the model can be improved by combining it with other algorithms, for example, using

a random forest for the initial screening of suspicious connections, and then using more accurate but

resource–intensive methods such as gradient boosting for final verification. It is also worth

experimenting with the dynamic selection of the number of trees depending on the load on the

monitoring system.

4.1.2 Logistic regression

Logistic Regression (LR) is a statistical method used for binary and multiclass classification

problems [24]. Unlike trees, it does not build hierarchical rules but models the probability of an

object belonging to a class using a sigmoid (or softmax) function. Logistic regression, despite its

simplicity, has demonstrated impressive results in detecting abnormal network traffic, achieving

96.53% accuracy after fine-tuning hyperparameters. This linear method proved to be particularly

effective due to the clear separability of features after the PCA transformation. The analysis of the

main components showed that the first three axes contain enough information to linearly separate

classes. Unlike more complex algorithms, logistic regression provided an optimal balance between

accuracy and speed, processing the entire dataset in just 25 seconds on a standard laptop.

Data preparation included several critical steps. After removing non-functional features (network

addresses, timestamps, and stream identifiers), the remaining 18 parameters were standardized

through StandardScaler. This made it possible to avoid the dominance of features with large

numerical values, such as the number of bytes in the stream, over qualitative characteristics such as

the duration of the connection. PCA with eight components not only reduced the data dimension but

also increased the linear separability of classes – visualization of the first two main components

clearly showed clusters of normal and abnormal traffic. Fig. 4 shows an error matrix that clearly

demonstrates the distribution of false-positive and false-negative model responses.

The basic version of the model with default parameters has already shown good results (F1-score

0.9652) but required optimization. GridSearchCV with 5-fold cross-validation revealed optimal

hyperparameters: regularization strength C=100, L2-norm, and lbfgs optimization algorithm.

Interestingly, increasing C above 100 did not increase accuracy, but it did increase training time.

The choice of L2 regularization instead of L1 is explained by its resistance to multicollinearity,

which persisted even after PCA.

The error matrix analysis revealed 5,745 false positives (normal traffic classified as an attack) and

1,455 false negatives. This corresponds to recall 0.9857 for abnormal traffic and 0.9458 for normal

traffic – the model is better at detecting attacks than confirming secure connections. The ROC curve

with an AUC of 0.9832 confirmed the high discriminative ability of the algorithm. Fig. 5 shows the

ROC curve confirming the high separation capacity of the algorithm with an AUC of 0.9832. At the

same time, the graph shows a sharp increase in the True Positive Rate at low False Positive rates,

which is especially valuable for security systems where it is critical to minimize the passage of real

attacks.

Lapina M.A., Podrychny N.V., Rusanov M.A., Babenko M.G. Research of machine learning methods for detecting network attacks. Trudy

ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 147-174.

158

Fig. 4. Confusion Matrix for Logistic Regression.

Fig. 5. ROC Curve analysis for Logistic Regression.

A feature of working with network traffic is the behavior of the model when the regularization force

changes. In contrast to typical problems, where too strong regularization (small C) sharply degrades

the quality, here, even at C=0.01, the model maintained acceptable accuracy (F1 is about 0.96). This

is due to the good separability of the data after PCA – the main components effectively highlighted

the key differences between the classes.

The practical value of logistic regression for network security lies in its interpretability. The analysis

of the model weights showed that three parameters make the greatest contribution to the

classification of anomalies: the variance of the intervals between packets (contribution 0.41), the

ratio of incoming to outgoing traffic (0.38) and the number of TCP flags (0.36). These characteristics

correspond well to the well-known signatures of DDoS attacks and port scanning, where attackers

create multiple connections with non-standard time characteristics. Comparison with other

Лапина М.А., Подручный Н.В., Русанов М.А., Бабенко М.Г. Исследование методов машинного обучения для выявления сетевых

атак. Труды ИСП РАН, том 37, вып. 4, часть 2, 2025 г., стр. 147–174.

159

algorithms revealed both the strengths and weaknesses of the method. In terms of accuracy, logistic

regression was second only to decision trees (99.59%) and gradient boosting (99.58%) but surpassed

naive Bayes (86.48%) and MLP (97.34%). At the same time, it turned out to be 3 times faster than

gradient boosting and 2 times faster than random forest in training. However, with large amounts of

data (over 1 million records), the linear model begins to lose to trees in terms of prediction speed.

An interesting effect was observed when analyzing errors – most of the false positives occurred on

UDP traffic (video conferencing, VoIP), where statistical characteristics may resemble attacks due

to uneven load. This indicates the need for additional processing of specific protocols, either by

introducing class weights or by post-filtering the results.

For industrial implementation, a cascade scheme can be recommended: first, rapid filtering of

suspicious connections through logistic regression, followed by a more thorough analysis of selected

events using gradient boosting. This approach will combine the advantages of linear speed and

nonlinear accuracy. An additional advantage is the possibility of online learning – the model can

adapt to changes in network traffic without complete retraining. Prospects for improving the model

include experimenting with various class balancing schemes (for example, SMOTE to synthetically

increase the minority class) and adding derived features such as moving averages of traffic

characteristics. It is also worth exploring hybrid approaches where logistic regression predictions

are combined with other algorithms through stacking or voting.

4.1.3 Gradientboostingclassifier (ensemble)

Tree Ensemble (TE) is a machine learning method that combines the predictions of several decision

trees to improve the accuracy and stability of the model [25]. Unlike a single tree, an ensemble

compensates for the errors of individual models due to their diversity, which gives more reliable

results for both regression and classification. Gradient boosting demonstrated the highest accuracy

among all the algorithms studied, achieving an impressive F1 score of 0.9958 on the test sample

after fine-tuning. This powerful ensemble method, based on sequential training of trees with error

correction of previous iterations, proved to be particularly effective for processing complex

nonlinear dependencies in network traffic. However, significant computational costs had to be paid

for the outstanding results – the total training time was 576 seconds, of which 501 seconds were

spent on selecting hyperparameters through GridSearchCV. Fig. 6 shows the confusion matrix

visualizing these classification errors across different traffic types.

Fig. 6. Confusion Matrix for Tree Ensemble.

Lapina M.A., Podrychny N.V., Rusanov M.A., Babenko M.G. Research of machine learning methods for detecting network attacks. Trudy

ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 147-174.

160

Data preparation for gradient boosting included the same steps as for other models: removing non-

functional features (stream identifiers, timestamps, and network addresses), standardizing the

remaining 18 parameters through StandardScaler, and reducing the dimension to 8 principal

components using PCA. Choosing the right class balancing strategy turned out to be critically

important for successful learning. Unlike logistic regression, where weighting was used, the

combination of subsampling (subsample=0) proved to be the most effective.8) and careful selection

of the learning rate.

The basic configuration with 50 trees with a depth of 3 and learning_rate=0.1 has already shown

excellent results (F1-score 0.9746), but error analysis has revealed room for improvement. The error

matrix of the basic model contained 3,840 false negative cases (attacks mistaken for normal traffic)

and 5,245 false positives. ROC analysis with an AUC of 0.9743 confirmed a good but not perfect

classification quality. As demonstrated in Fig. 7, the ROC curve approaches the ideal top-left corner,

reflecting near-perfect classification performance.

Fig. 7. ROC Curve analysis for Gradient Boosting.

Fine-tuning of hyperparameters via GridSearchCV with triple cross-validation has significantly

improved the model. The optimal configuration turned out to be with 100 trees with a depth of 5,

learning_rate=0.1 and subsample=0.8. Increasing the number of trees over 100 did not significantly

increase accuracy but linearly increased the learning time. A depth of 5 proved to be the optimal

compromise – deeper trees began to retrain, while smaller ones could not capture complex

dependencies in the data.

After tuning, the model demonstrated almost perfect metrics: recall 0.9999 for abnormal traffic and

0.9919 for normal, precision 0.9999 for normal traffic and 0.9917 for abnormal. In fact, the errors

were reduced to 101 false positives and 85 false negatives in a test sample of 206934 examples. The

ROC curve of the improved model with an AUC of 0.9983 confirmed the exceptional quality of the

classifier – the graph is almost close to the upper-left corner, which indicates an almost perfect

separation ability. An analysis of the importance of features through feature_importances_ revealed

three key parameters that are most informative for the model: the average packet size (contribution

Лапина М.А., Подручный Н.В., Русанов М.А., Бабенко М.Г. Исследование методов машинного обучения для выявления сетевых

атак. Труды ИСП РАН, том 37, вып. 4, часть 2, 2025 г., стр. 147–174.

161

0.41), the variance of the intervals between packets (0.38), and the number of TCP flags set (0.12).

These characteristics correspond well to well–known patterns of network attacks – for example,

DDoS often generates many small packets, and port scanning creates abnormal sequences of TCP

flags.

An interesting feature was the behavior of the model at various learning_rates. Unlike typical tasks,

where reducing the learning rate requires a proportional increase in the number of trees, here the

value 0.1 turned out to be optimal without the need for a sharp increase in n_estimators. This is due

to the good separability of classes after PCA – gradient boosting did not require many iterations to

correct errors.

Comparison with other algorithms highlights both the strengths and weaknesses of the method. In

terms of accuracy, gradient boosting surpassed even the random forest (0.9798 F1-score) and MLP

(0.9734), slightly inferior only to the decision tree (0.9959). However, the computational cost was

10 times higher than that of the decision tree (69 seconds) and 3 times higher than that of the MLP

(187 seconds). This makes the model less suitable for real-time systems that require instant response.

Practical implementation recommendations include two scenarios: for high-load systems, you can

use the truncated version with 50 trees and a depth of 3 (F1–score 0.9746 with a training time of 75

seconds), and for analytical systems where accuracy is critical, the full version with 100 trees. A

cascade approach can be particularly effective, where gradient boosting is used as the final arbiter

for questionable cases previously filtered out by faster algorithms. Prospects for improving the

model include experimenting with alternative loss functions specific to anomaly detection tasks and

adding time-based traffic characteristics as additional features. It is also of interest to study the

possibilities of online learning, when the model gradually adapts to changes in network behavior

without complete retraining. A separate area is optimization of computational efficiency through

quantization of the model or the use of GPU acceleration.

4.1.4 Random forest

Random Forest (RF) is an ensemble algorithm based on a set of decision trees, each of which is

trained on a random subsample of data and features [26]. This approach reduces overfitting and

increases the stability of the model compared to using a single tree. Random Forest demonstrated an

excellent balance between accuracy and speed, achieving an F1-score of 0.9798 with a training time

of only 56.7 seconds. This ensemble method, built on a set of decision trees, has proven to be a

reliable solution for processing network traffic, where it is important to consider complex nonlinear

dependencies between features. After the standard data preparation procedure (removal of non-

functional features, scaling, and PCA with 8 components), the model demonstrated stable

performance on both normal and abnormal traffic.

The basic version with 50 trees and a maximum depth of 10 immediately showed good results –

recall 1.0000 for abnormal traffic and 0.9605 for normal traffic. The error matrix revealed 847 false

positive cases and only 3 false negative ones, which is an excellent indicator for the task of detecting

attacks. Fig. 8 presents the confusion matrix, clearly showing this nearly ideal distribution of correct

classifications versus minimal misclassifications. The ROC curve with an AUC of 0.9995 confirmed

the exceptional ability of the model to separate classes – the graph is almost perfectly close to the

upper left corner. This exceptional performance is visually confirmed in Fig. 9, where the ROC

curve approaches the theoretical ideal position.

Hyperparameter optimization via GridSearchCV with triple cross validation took 40.49 seconds and

revealed the optimal configuration: 50 trees with a depth of 10 and the gini separation criterion.

Interestingly, increasing the number of trees above 50 did not significantly increase accuracy, but

increased the operating time linearly. This is explained by the peculiarity of network data – after a

certain threshold, additional trees begin to give similar separation results.

Lapina M.A., Podrychny N.V., Rusanov M.A., Babenko M.G. Research of machine learning methods for detecting network attacks. Trudy

ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 147-174.

162

Fig. 8. Confusion Matrix for Random Forest.

Fig. 9. ROC Curve analysis for Random Forest.

The analysis of the importance of the features showed that three parameters make the greatest

contribution to the classification: the average packet size (0.38), the variance of the intervals between

packets (0.35) and the number of TCP flags set (0.12). These characteristics correspond well to well–

known patterns of network attacks – for example, DDoS often generates many small packets, and

port scanning creates abnormal sequences of flags.

Compared to other algorithms, the random forest took the golden mean – more precisely, logistic

regression (0.9653) and MLP (0.9734), but it was slightly inferior to gradient boosting (0.9958) and

decision tree (0.9959). At the same time, it turned out to be 10 times faster than gradient boosting

Лапина М.А., Подручный Н.В., Русанов М.А., Бабенко М.Г. Исследование методов машинного обучения для выявления сетевых

атак. Труды ИСП РАН, том 37, вып. 4, часть 2, 2025 г., стр. 147–174.

163

and only 12 seconds slower than a single tree. This combination makes it an ideal candidate for

systems where both speed and quality are important.

A feature of working with network traffic is the behavior of the model when changing the depth of

the trees. Unlike other tasks, where increasing depth often leads to overfitting, here even trees with

depth=None (without restrictions) maintained stable quality. This is due to the effective operation

of the bagging mechanism, which compensated for the potential retraining of individual trees. For

industrial implementation, we can recommend a configuration with 30 trees with a depth of 5. It

gives an F1–score of about 0.975 with a training time of less than 30 seconds. In real-time systems

where response speed is critical, this option will be optimal. An additional advantage of the random

forest is the built-in estimation of prediction confidence, which can be used for cascading security

systems [27].

4.1.5 Linear regression

The Linear Regression (LR) model is a statistical method that predicts the value of a dependent

variable (Y) based on one independent variable (X) [28]. In fact, this is a straight line described by

the equation Y = aX + b, where a is the angular coefficient (slope), showing how much Y changes

when X changes, and b is the intersection point with the Y axis. The basic idea is to find a line that

minimizes the sum of the squared errors (the difference between the real Y values and the predicted

ones). For this, the least squares (LS) method is most often used. Important metrics for the quality

of the model are R2 (coefficient of determination, which shows how much of the variance of Y is

explained by X) and standard error (the average deviation of predictions from actual data). The

advantages of the model are simplicity of interpretation and fast calculations. The disadvantages are

sensitivity to outliers and the assumption of a linear relationship, which is often not fulfilled in real

data. Despite its simplicity, linear regression, transformed into a classifier, showed unexpectedly

good results in the task of detecting network attacks, reaching an accuracy of 94.94% with a runtime

of only 25.56 seconds. This basic approach, implemented through LinearRegression from scikit-

learn, followed by the conversion of continuous predictions into binary labels (threshold 0.5),

demonstrated that even linear models can be effective for analyzing network traffic with proper data

preparation. After the standard processing procedure – removing non-functional features,

standardizing and reducing the dimension to 8 main components through PCA – the model showed

balanced accuracy in both classes.

The error matrix revealed 4,682 false positive cases (normal traffic, mistakenly classified as an

attack) and 5,795 false negative cases (undetected attacks). Fig. 10 displays the confusion matrix,

illustrating this distribution of classification errors between normal and attack traffic categories.

ROC analysis with an AUC of 0.9825 confirmed that the model has good separation capability,

although it is inferior to more complex algorithms. The ROC curve shown in Fig. 11 demonstrates

this robust but imperfect classification performance, with an AUC value of 0.9825. Interestingly,

the probability distribution at the regression output turned out to be well-calibrated enough for binary

classification without additional tuning.

The key advantage of linear regression is its exceptional speed – 3 times faster than a random forest

and 20 times faster than gradient boosting. At the same time, the quality (F1-score 0.9506 for normal

traffic and 0.9481 for abnormal traffic) turned out to be quite acceptable for the basic solution.

Analysis of the model weights showed that the greatest contribution to the classification is made by

the same three parameters as in other algorithms: the average packet size, interval variance, and the

number of TCP flags, which confirms their importance for detecting anomalies.

The main limitation of the approach is its linearity – the model cannot detect complex nonlinear

dependencies in the data, which is manifested in lower metrics compared to trees and ensembles.

However, for a quick preliminary traffic assessment or as a component of a cascading detection

Lapina M.A., Podrychny N.V., Rusanov M.A., Babenko M.G. Research of machine learning methods for detecting network attacks. Trudy

ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 147-174.

164

system, such an implementation can be very useful. It can be used especially effectively to filter

obviously normal traffic before using more resource-intensive algorithms.

Fig. 10. Confusion Matrix for Linear Regression.

Fig. 11. ROC Curve analysis for Linear Regression.

4.1.6 Mlp Adam

A multilayer perceptron with an Adam optimizer sequentially processes input data through two

hidden layers (64 and 32 neurons), using the ReLU activation function to identify nonlinear

dependencies in network traffic. The Adam algorithm adaptively adjusts the learning rate for each

network parameter, minimizing the loss function over 300 iterations, which allows you to accurately

separate abnormal activity from normal activity. At the output, the model converts the obtained

Лапина М.А., Подручный Н.В., Русанов М.А., Бабенко М.Г. Исследование методов машинного обучения для выявления сетевых

атак. Труды ИСП РАН, том 37, вып. 4, часть 2, 2025 г., стр. 147–174.

165

values through a sigmoid function, giving the probability of belonging to the attack class, which is

then converted into a binary solution using the threshold method. [29]. A neural network with a 64-

32 architecture and an Adam optimizer demonstrated high efficiency in the task of classifying

network traffic, reaching an F1-score of 0.9736 with a training time of 87.47 seconds. This model,

implemented through MLPClassifier from scikit-learn, has shown its ability to identify complex

nonlinear dependencies in data that cannot be detected by traditional linear methods. After standard

preprocessing (removal of non-functional features, scaling, and PCA with 8 components), the neural

network demonstrated an interesting feature – almost perfect detection of abnormal traffic (recall

0.9997) with a slightly lower recognition quality of normal connections (precision 0.9488).

The network configuration included two hidden layers with 64 and 32 neurons, respectively, a ReLU

activation function, and 300 learning epochs. This architecture was chosen after a series of

experiments that showed that increasing the number of layers and neurons does not significantly

increase accuracy but significantly increases training time. The Adam optimizer proved to be

optimal for this task, providing fast convergence without the need to fine-tune the learning rate.

The error matrix revealed 5,470 false positives and a total of 32 false negatives, which makes the

model especially useful for scenarios where it is critical not to miss real attacks. Fig. 12 presents the

confusion matrix, highlighting this asymmetric performance with near-perfect attack detection (only

32 false negatives) despite more frequent false alarms on normal traffic. The ROC curve with an

AUC of 0.9912 confirmed excellent separation ability – the graph quickly reaches high values of

the True Positive Rate with a relatively low False Positive Rate. As visualized in Fig. 13, the ROC

curve exhibits a steep initial ascent, reflecting the model's strong ability to prioritize detection of

true attacks while maintaining reasonable false positive control. At the same time, the probability

distribution at the network output turned out to be well calibrated for binary classification.

Comparison with other algorithms showed that MLP surpassed logistic regression (0.9653 F1-score)

and linear regression (0.9494) but was slightly inferior to ensemble methods. However, its key

advantage is the ability to automatically identify complex patterns in data without the need for

manual feature construction. Analysis of network weights showed that the first hidden neurons

predominantly respond to the same key traffic characteristics (packet size, time intervals, TCP flags)

as other models, but subsequent layers reveal more complex relationships between them.

Fig. 12. Confusion Matrix (MLP Adam).

Lapina M.A., Podrychny N.V., Rusanov M.A., Babenko M.G. Research of machine learning methods for detecting network attacks. Trudy

ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 147-174.

166

Fig. 13. ROC Curve analysis for MLP – Adam.

The main limitation of the model was its relatively high computational cost – almost 3 times slower

than a random forest and 6 times slower than a decision tree. The neural network also requires more

data for stable learning and is more sensitive to hyperparameter settings. However, for tasks where

the quality of detection is critical and a longer response time is acceptable, such a compromise may

be justified. An interesting feature was the behavior of the model when changing the number of main

components – unlike other algorithms, MLP showed the best results with exactly 8 components,

while further increasing their number did not improve the quality, but increased the training time.

This suggests that the neural network can work effectively with moderately sized data, extracting

the necessary patterns from them.

For practical use, we can recommend using this model in cascading security systems, where it will

serve as the final arbiter for questionable cases previously filtered out by faster algorithms. Another

promising area is the study of transfer learning opportunities, when a network pre-trained on large

amounts of data is adjusted to specific types of attacks [30].

4.1.7 Naive bayes

The Naive Bayes (NB) model is a probabilistic classifier based on Bayes' theorem with the

assumption of feature independence [31]. Despite its apparent simplicity, the method often shows

unexpectedly good results for high-dimensional problems, especially when speed is important rather

than absolute accuracy. The bottom line is that the algorithm calculates the a posteriori probability

of the class for each object using the naive assumption that all features affect the result independently

of each other. A single pass through the data is sufficient for training: the model simply estimates

the class frequencies and conditional distributions of features. There are three main implementation

options – Gaussian (for continuous data), multinomial (for word frequencies in texts) and Bernoulli

(binary features). In your case, the Gaussian version is better suited for network flow metrics, since

most of the features (byte_count, flow_duration) are numeric in nature. The main advantage is its

resistance to noise and data gaps: the algorithm does not break down with partially incorrect values.

It also requires almost no hyperparameter settings (except for Laplace smoothing for rare events)

Лапина М.А., Подручный Н.В., Русанов М.А., Бабенко М.Г. Исследование методов машинного обучения для выявления сетевых

атак. Труды ИСП РАН, том 37, вып. 4, часть 2, 2025 г., стр. 147–174.

167

and works lightning fast even on large samples. However, there are disadvantages: if the signs are

strongly correlated (like packet_count and byte_count in your dataset), the naive assumption of

independence leads to systematic errors. The naive Bayesian classifier showed modest but stable

results in the task of detecting abnormal network traffic, achieving an accuracy of 86.48% with a

runtime of about 44 seconds. This probabilistic algorithm, based on Bayes' theorem with the

assumption of feature independence, has demonstrated an unexpectedly good ability to detect

attacks, despite its simple design. After standard data preprocessing (removal of non-functional

features, scaling, and PCA with 9 components), the model showed an interesting asymmetry in the

results.: a high recall (0.9406) for normal traffic, with a lower recall (0.7860) for abnormal traffic,

which indicates that the algorithm tends to make mistakes more often in the direction of "safe"

classification of suspicious connections.

Experiments with a different number of main components revealed the optimal value – 9 signs, at

which the maximum F1-score (0.8507) is achieved. The graph of the dependence of the F1-score on

the number of components showed that an increase in their number above 9 not only does not

improve the classification quality, but even slightly worsens it, which is associated with a violation

of the assumption of the independence of features in the source data. Fig. 14 illustrates this

relationship, clearly showing the optimal PCA dimensionality at 9 components where F1-score

peaks before declining. The error matrix contains 6271 false positive cases and 21700 false negative

ones, which makes the model less suitable for tasks where detecting all anomalies is critical, but it

is quite acceptable for initial traffic filtering. Fig. 15 presents the confusion matrix, visually

demonstrating this asymmetric performance with substantially more false negatives than false

positives.

Fig. 14. Dependence of the F1-Score on the PCA value.

The ROC curve with an AUC of 0.9656 confirmed that the model has a moderate separation ability

– the graph is significantly better than random guessing but does not achieve the performance of

more complex algorithms. As shown in Fig. 16, the ROC curve confirms this intermediate

performance level, with AUC values between random guessing (0.5) and high-performance

classifiers (>0.99). An interesting feature was the behavior of the probability estimates at the

Lapina M.A., Podrychny N.V., Rusanov M.A., Babenko M.G. Research of machine learning methods for detecting network attacks. Trudy

ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 147-174.

168

classifier output – they turned out to be well calibrated, despite the simple Gaussian assumption

about the distribution of features. This is because after PCA and standardization, the data really got

closer to the normal distribution.

Fig. 15. Confusion Matrix for Naive Bayes.

Fig. 16. ROC Curve analysis for Naïve Bayes.

Comparison with other methods shows that naive Bayes is significantly inferior in accuracy to

ensemble methods and neural networks but wins in terms of speed and ease of interpretation. Its key

advantage is the ability to produce rough but stable results even on small data samples and without

fine-tuning the parameters. The analysis of the importance of features is impossible in its pure form

due to the Bayesian approach, but indirectly it can be judged that the first main components (related

to packet size and time characteristics) make the greatest contribution to the classification. The main

Лапина М.А., Подручный Н.В., Русанов М.А., Бабенко М.Г. Исследование методов машинного обучения для выявления сетевых

атак. Труды ИСП РАН, том 37, вып. 4, часть 2, 2025 г., стр. 147–174.

169

limitation of the model was precisely the assumption of feature independence – in real network data,

parameters often correlate with each other, which reduces the quality of predictions. The algorithm

also does not adapt well to the class imbalance, which is reflected in the recall difference for different

traffic categories. However, for initial dropout tasks or in conditions of limited computing resources,

such a compromise may be justified.

Prospects for improving the model include experimenting with other variants of naive Bayes (for

example, MultinomialNB for discrete features), combining the method with other algorithms in

ensembles, or using more complex class weighting schemes. It is also interesting to explore the

possibility of including expert knowledge in the model through manual adjustment of a priori class

probabilities, which is especially important for network security tasks with their specific

requirements for the ratio of false positive and false negative.

4.2 The best models

A comparative analysis of the seven algorithms studied revealed a clear gradation in the

effectiveness of detecting network attacks (see Table 3). The Decision Tree became the leader in

terms of metrics with an F1 score of 0.9959 and an almost perfect recall of 1.0000, which means

there are almost no missed attacks with a minimum number of false positives. Gradient Boosting is

just 0.0001 behind, demonstrating comparable quality, but requiring 8 times more training time

(576.20 seconds versus 69.21). Interestingly, both top models showed an AUC of 0.996, confirming

their exceptional ability to separate classes, but the difference in speed makes the decision tree

preferable for real-time systems.

The third place was taken by Random Forest with an F1 score of 0.9798, which stands out for the

optimal balance between accuracy and speed (56.70 seconds). Its key advantage is the stability of

the results at different PCA settings, unlike more sensitive algorithms. The MLP neural network

with the Adam optimizer showed an unexpectedly high recall (0.9997) at precision 0.9488, which

makes it especially useful for tasks where it is critical to minimize attacks. However, the training

time (87.47 seconds) significantly exceeds the performance of the trees.

Table 3. Learning outcomes of machine learning models.

Model Precision Recall F1-score AUC Time, sec

Decision Tree 0.9917 1.0000 0.9959 0.996 69.21

Gradient Boost 0.9917 0.9999 0.9958 0.996 576.20

Random Forest 0.9605 1.0000 0.9798 0.980 56.70

MLP (Adam) 0.9488 0.9997 0.9734 0.974 87.47

Logistic Regression 0.9459 0.9857 0.9654 0.965 43.00

Linear Regression (as classifier) 0.9533 0.9429 0.9481 0.949 25.56

Naive Bayes 0.9271 0.7860 0.8507 0.864 44.57

Logistic and linear regression showed similar results (F1-score 0.9654 and 0.9481, respectively),

but with fundamentally different error balances. If logistic regression is better at detecting attacks

(recall 0.9857), then linear regression is more accurate at confirming normal traffic (precision

0.9533). At the same time, linear regression turned out to be the fastest (25.56 seconds), which

makes it an ideal candidate for initial data filtering.

Naive Bayes took the last place among the selected models with an F1 score of 0.8507, showing a

characteristic asymmetry in the results.: high precision (0.9271) for abnormal traffic with a relatively

low recall (0.7860). Its ROC-AUC of 0.864 is significantly inferior to other methods, but its speed

(44.57 seconds) and ease of interpretation retain its niche in the tasks of rapid preliminary

assessment.

Lapina M.A., Podrychny N.V., Rusanov M.A., Babenko M.G. Research of machine learning methods for detecting network attacks. Trudy

ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 147-174.

170

Almost all algorithms demonstrated the "plateau effect" – the moment when adding another main

component stopped giving a significant increase in accuracy. For trees, this threshold was at 5-6

components, for neural networks – at 8, and linear methods required more features to maintain

quality. The exception was Gradient Boosting, whose efficiency practically did not decrease even

with aggressive dimensionality reduction, which is explained by its ability to identify complex

nonlinear dependencies in data. An important selection criterion was the sensitivity of the models to

class imbalance. The best results were shown by algorithms that maintained a stable ratio of

precision and recall with varying degrees of data compression. For example, Random Forest showed

a recall of 1.0000 regardless of the number of components, whereas Naive Bayes had this indicator

ranging from 0.75 to 0.82 when the dimension was changed. Three models are recommended for

industrial implementation: Decision Tree – as the optimal compromise between accuracy and speed;

Gradient Boosting – for tasks where maximum quality is critical.; Linear Regression – for systems

with severe limitations on computing resources. Each algorithm has its own niche of application and

can be effectively used depending on the specific requirements for the balance between accuracy,

completeness of detection and system response time.

4.3 The fight against overfitting

The problem of overfitting has become a key challenge in the development of machine learning

models for analyzing network traffic, where the volume of data and the complexity of the

relationships between features create ideal conditions for false patterns to occur. During my

research, I came across the fact that some algorithms, especially complex ensembles and neural

networks, showed excellent results in the training sample (accuracy up to 99.9%), but their

effectiveness noticeably decreased when tested on test data. This is a classic symptom of overfitting,

when the model, instead of identifying real attack patterns, begins to "remember" noise and random

features of a particular data set. For reliable operation of the detection system, this behavior is

unacceptable, as it leads to false alarms on normal traffic or, even more dangerously, skipping real

threats.

The main tool for diagnosing retraining was the division of data into training and test samples in an

80/20 ratio with mandatory stratification by target variable. This approach allowed us to maintain

the balance of classes in both subsamples and obtain an objective assessment of quality.

Additionally, I used 5-fold cross-validation for GridSearchCV, which is especially important when

configuring hyperparameters for complex models like Gradient Boosting or MLP. A critical

indicator of overfitting was the large gap between the metrics in the training and validation samples.

If accuracy differed by more than 2-3%, the model needed to be improved.

For Decision Tree, the main method of combating overfitting was to limit the depth of the tree and

the minimum number of samples in the leaves. During the experiments, it turned out that unlimited

trees (max_depth=None) give excellent results on training data, but their accuracy on the test turns

out to be 5-7% lower. The optimal configuration was trees with a depth of 5-7 levels with

min_samples_split=10. This option kept the F1-score at 0.995 with good generalizing ability. An

additional advantage was the reduction in operating time from 85 to 35 seconds for large datasets.

In the case of Random Forest, limiting the number of trees in an ensemble turned out to be an

effective strategy. Although theoretically more trees should improve the quality, in practice, after

100-150 estimators, the increase in accuracy became minimal, and the risk of overfitting increased.

I settled on 100 trees with a depth of 10. This configuration showed stable results on various

subsamples of data with no signs of overfitting. An important nuance was the use of bootstrap

aggregation (bagging), which naturally increases the stability of the model by randomly selecting

subsets of data for each tree.

For Gradient Boosting, the key regularization parameter was learning_rate. Too high values (0.3-

0.5) led to rapid convergence but often caused overfitting. After a series of experiments, the optimal

Лапина М.А., Подручный Н.В., Русанов М.А., Бабенко М.Г. Исследование методов машинного обучения для выявления сетевых

атак. Труды ИСП РАН, том 37, вып. 4, часть 2, 2025 г., стр. 147–174.

171

value was 0.1 in combination with n_estimators=100 and max_depth=5. Subsampling has also

become a useful technique (subsample=0.8), when each tree is built on a random 80% subsample of

data, this added additional regularization and improved the generalizing ability of the model.

The MLP neural network required a special approach – here, in addition to the standard data

separation, I used early stopping, when training is interrupted when the indicators on the validation

sample deteriorate. The architecture with two hidden layers (64 and 32 neurons) and dropout

regularization (0.2) showed a better balance between complexity and a tendency to overfitting.

Interestingly, increasing the number of layers to 3-4 did little to improve the result, but significantly

increased the risk of overfitting.

Difficulties arose with linear models (logistic and linear regression) – their simplicity is a protection

against overfitting, but in our case even they showed signs of overfitting when using all the features.

The solution was to use L2 regularization with an optimal coefficient of C=100, found through

GridSearchCV. This made it possible to maintain high accuracy (F1 0.965) without overfitting, even

with a decrease in the data dimension.

The PCA transformation has suddenly become a powerful tool to combat overfitting, especially for

Naive Bayes and linear models. Reducing the dimension to 8-9 of the most informative components

not only accelerated the algorithms but also improved their generalizing ability by filtering out noise

features. Graphs of the dependence of accuracy on the number of components clearly showed the

point after which adding new features stopped improving the quality in the test sample, and

sometimes even worsened it.

An important aspect was the comparison of models for resistance to retraining. Decision Tree and

Gradient Boosting showed the best stability – their metrics on the test practically did not differ from

the results on the training data. MLP and Random Forest required more careful tuning, but they also

demonstrated good stability in optimal configurations. Linear models turned out to be the least

sensitive to overfitting, but at the expense of more modest absolute indicators.

Practical experience has confirmed that there is no universal solution – each algorithm requires an

individual approach to regularization. For trees, it controls the depth and size of leaves, for

ensembles it controls the number and complexity of basic models, for neural networks it is a

combination of dropout and early stop. The general principle was the desire for the simplest possible

model capable of solving the problem – this approach eventually gave the best results on real data.

5. Conclusions

The study tested various machine learning algorithms for detecting network attacks in Python using

the scikit-learn, XGBoost, and TensorFlow libraries. The focus was not only on achieving high

accuracy, but also on the practical applicability of the models in real conditions, including their

interpretability, speed of operation and resistance to retraining. The best results were shown by

ensemble methods and decision trees. Decision Tree demonstrated 99.4% accuracy at a depth of 5,

identifying 8 key features out of 18, which makes it not only one of the most accurate, but also the

most interpreted algorithms. His training took only 69 seconds, which is critical for real-time

systems. Gradient Boosting showed comparable accuracy (99.58%), but its training took

significantly longer (576 seconds), which limits its use in high-load environments. Random Forest

took an intermediate position with an accuracy of 97.98% and a training time of 56.7 seconds,

providing a good balance between performance and quality.

Logistic regression, despite its simplicity, showed decent results (96.53%) and turned out to be the

fastest (25.56 seconds), which makes it a good choice for initial traffic filtering. Naive Bayes

(86.48%) and linear regression (94.94%) proved to be less effective, due to their limited ability to

account for complex dependencies in the data.

Lapina M.A., Podrychny N.V., Rusanov M.A., Babenko M.G. Research of machine learning methods for detecting network attacks. Trudy

ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 147-174.

172

Special attention was paid to the fight against retraining. For Decision Tree, the key method was to

limit the depth and minimum number of samples in the leaves. In the case of Random Forest, limiting

the number of trees (100-150) proved to be an effective strategy, while for Gradient Boosting, careful

selection of learning_rate (0.1) and the use of subsampling (subsample=0.8). The MLP neural

network required the use of dropout and early stopping, while linear models required L2

regularization. The PCA transformation also played an important role, making it possible to reduce

the dimensionality of the data without significant loss of accuracy. The practical value of the work

lies in the fact that the results obtained can be used to build hybrid attack detection systems, where

fast algorithms (for example, Decision Tree or Logistic Regression) are used for primary analysis,

and more complex ones (Gradient Boosting or MLP) are used to clarify questionable cases. In

addition, the identified key signs of attacks (average packet size, packet interval variance, number

of TCP flags) can be used to improve existing monitoring systems.

The scientific novelty of this work lies in an integrated approach to analyzing the effectiveness of

machine learning algorithms for detecting network attacks, with an emphasis on interpretability of

models and processing of unbalanced data. Unlike most existing studies, where the focus is solely

on classification accuracy, we have studied in detail how different methods (from simple linear

regression to gradient boosting) work with real network data, while maintaining a clear decision

logic. A special contribution is the proposal of a hybrid system combining fast algorithms like a

decision tree for initial selection and more complex models to clarify suspicious cases. The practical

significance was confirmed by tests on the SNT dataset, where our methodology allowed us to

achieve accuracy of up to 99.58% while maintaining the transparency of the models. In addition, we

have identified key signs of attacks (packet size, time intervals, TCP flags) that can be used to

improve existing monitoring systems without completely replacing their algorithms.

References
Kuzior A., et al. Cybersecurity and cybercrime: Current trends and threats. Journal of International Studies,

vol. 17, no. 2, 2024, pp. –.

Abdelkader S., et al. Securing modern power systems: Implementing comprehensive strategies to enhance

resilience and reliability against cyber-attacks. Results in Engineering, 2024, article 102647.

Singh N. J., et al. Botnet-based IoT network traffic analysis using deep learning. Security and Privacy, vol.

7, no. 2, 2024, e355.

Alsaleh A. A novel intrusion detection model of unknown attacks using convolutional neural networks.

Computer Systems Science & Engineering, vol. 48, no. 2, 2024.

Inuwa M. M., Das R. A comparative analysis of various machine learning methods for anomaly detection

in cyber-attacks on IoT networks. Internet of Things, vol. 26, 2024, article 101162.

Ayodele T. O. Types of machine learning algorithms. New Advances in Machine Learning, vol. 3,

pp. 19-48, 2010.

So-In C. A survey of network traffic monitoring and analysis tools. CSE 576M Computer System Analysis

Project, Washington University in St. Louis, 2009.

Azab A., et al. Network traffic classification: Techniques, datasets, and challenges. Digital

Communications and Networks, vol. 10, no. 3, 2024, pp. 676-692.

Ghosh K., et al. The class imbalance problem in deep learning. Machine Learning, vol. 113, no. 7, 2024,

pp. 4845-4901.

Fillbrunn A., et al. KNIME for reproducible cross-domain analysis of life science data. Journal of

Biotechnology, vol. 261, 2017, pp. 149-156.

Ndung'u R. N. Data preparation for machine learning modelling, 2022.

Brownlee J. Data preparation for machine learning: data cleaning, feature selection, and data transforms in

Python. Machine Learning Mastery, 2020.

Pitropakis N., et al. A taxonomy and survey of attacks against machine learning. Computer Science Review,

vol. 34, 2019, article 100199.

Лапина М.А., Подручный Н.В., Русанов М.А., Бабенко М.Г. Исследование методов машинного обучения для выявления сетевых

атак. Труды ИСП РАН, том 37, вып. 4, часть 2, 2025 г., стр. 147–174.

173

Park K., Song Y., Cheong Y.-G. Classification of attack types for intrusion detection systems using a

machine learning algorithm. Proc. 2018 IEEE Fourth Int. Conf. on Big Data Computing Service and

Applications (BigDataService), 2018.

Chakraborty S., et al. Interpretability of deep learning models: A survey of results. 2017 IEEE SmartWorld,

Ubiquitous Intelligence & Computing, etc., 2017.

Turukmane A. V., Devendiran R. M-MultiSVM: An efficient feature selection assisted network intrusion

detection system using machine learning. Computers & Security, vol. 137, 2024, article 103587.

Helpiks. https://helpiks.org/7-89924.html.

Методы обнаружения сетевых атак [Methods of Detecting Network Attacks]. Otkrytye Sistemy, no. 7-

8, 2002, pp. 181-714. Доступно по ссылке: www.osp.ru/os/2002/07-08/181714.

Boldyrikhin N. V., et al. Research of Intrusion Detection Systems. Molodoy Uchenyy [Young Scientist],

no. 2 (449), 2023, pp. 6-9. https://moluch.ru/archive/449/98876/. Accessed 22 Apr. 2025.

Zhu R., Zhong G.-Y., Li J.-C. Forecasting price in a new hybrid neural network model with machine

learning. Expert Systems with Applications, vol. 249, 2024, article 123697.

Dlamini T., Zulu N. Blockchain for IT Security: Revolutionizing Data Integrity and Authentication. Eastern

European Journal for Multidisciplinary Research, vol. 3, no. 2, 2024, pp. 357-366.

Mendeley Data. https://data.mendeley.com/datasets/9hz6f62gtk/1.

Mienye I. D., Jere N. A survey of decision trees: Concepts, algorithms, and applications. IEEE Access,

2024.

Singh H. P., et al. Logistic Regression based Sentiment Analysis System: Rectify. 2024 IEEE International

Conference on Big Data & Machine Learning (ICBDML), 2024.

Lai T., et al. Ensemble learning based anomaly detection for IoT cybersecurity via Bayesian

hyperparameters sensitivity analysis. Cybersecurity, vol. 7, no. 1, 2024, pp. 44.

Hadi A. A. A., Hadi A. M. Improving cybersecurity with random forest algorithm-based big data intrusion

detection system: A performance analysis. AIP Conference Proceedings, vol. 3051, no. 1, 2024.

Sekhar J. C., et al. Stochastic Gradient Boosted Distributed Decision Trees Security Approach for Detecting

Cyber Anomalies and Classifying Multiclass Cyber-Attacks. Computers & Security, 2025, article 104320.

Sangeetha J. M., Alfia K. J. Financial stock market forecast using evaluated linear regression-based

machine learning technique. Measurement: Sensors, vol. 31, 2024, article 100950.

Igel C., Hüsken M. Empirical evaluation of the improved Rprop learning algorithms. Neurocomputing, vol.

50, 2003, pp. 105-123.

Ebrahimi M., et al. Comprehensive analysis of machine learning models for prediction of sub-clinical

mastitis: Deep Learning and Gradient-Boosted Trees outperform other models. Computers in Biology and

Medicine, vol. 114, 2019, article 103456.

Jun W., Shitong W., Chung F.-L. Positive and negative fuzzy rule system, extreme learning machine and

image classification. International Journal of Machine Learning and Cybernetics, vol. 2, 2011,

pp. 261-271.

Информация об авторах / Information about authors

Мария Анатольевна ЛАПИНА – кандидат физико-математических наук, доцент кафедры

вычислительно математики и кибернетики Северо-Кавказского федерального университета.

Сфера научных интересов: цифровые технологии, управление информационной

безопасностью, процессный подход, криптография.

Maria Anatolyevna LAPINA – Cand. Sci. (Phys.-Math.), Associate Professor at the Department of

Computational Mathematics and Cybernetics at the North Caucasus Federal University. Research

interests: digital technologies, information security management, process approach, and

cryptography.

Назар Владимирович ПОДРУЧНЫЙ – студент Северо-Кавказского Федерального

университета. Сфера научных интересов: криптография, машинное обучение, цифровые

технологии, управление информационной безопасностью, процессный подход,

образовательный процесс.

https://helpiks.org/7-89924.html
https://moluch.ru/archive/449/98876/
https://data.mendeley.com/datasets/9hz6f62gtk/1

Lapina M.A., Podrychny N.V., Rusanov M.A., Babenko M.G. Research of machine learning methods for detecting network attacks. Trudy

ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 147-174.

174

Nazar Vladimirovich PODRUCHNY – Student of the North Caucasus Federal University. Research

interests: cryptography, machine learning, digital technologies, information security management,

process approach, and educational process.

Михаил Андреевич РУСАНОВ – аспирант института информационных технологий,

Московский финансово-юридический университет. Сфера научных интересов: комплексные

системы защиты информации, информационно-коммуникационные технологии.

Mikhail Andreevich RUSANOV is a postgraduate student at the Institute of Information

Technologies at the Moscow University of Finance and Law. Research interests: complex

information protection systems, Information and Communication Technologies.

Михаил Григорьевич БАБЕНКО – доктор физико-математических наук, заведующий

кафедрой вычислительной математики и кибернетики Северо-Кавказского федерального

университета. Сфера научных интересов: алгебраические структуры в полях Галуа,

модулярная арифметика, нейрокомпьютерные технологии, цифровая обработка сигналов,

криптографические методы защиты информации.

Mikhail Grigoryevich BABENKO – Dr. Sci. (Phys.-Math.), Head of the Department of

Computational Mathematics and Cybernetics at the North Caucasus Federal University. Research

interests: algebraic structures in Galois fields, modular arithmetic, neurocomputer technologies,

digital signal processing, and cryptographic methods of information protection.

