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Abstract. The paper presents the development of a Knowledge-based Intelligence for Sustainability 

Assessment (KISA) system for the comprehensive assessment of the sustainability of Russian regions, which 

uses a large language model (LLM) with retrieval-augmented generation (RAG) technology and Rosstat data. 

KISA automatically selects relevant indicators based on users’ textual queries, determines their weights, and 

calculates regional ratings, overcoming the limitations of traditional methods associated with high resource 

costs, subjectivity, and low adaptability. The system reduces the time required for rating formation to 10 

minutes – 140 times faster than existing approaches; financial costs are reduced by a factor of 16 due to the 

minimization of expert participation. The agreement with expert evaluations is 68%, confirming the validity of 

the method. KISA provides a web interface with map visualization, enhancing flexibility in analysis; the 

possibility of improvement through the addition of new sources ensures the continuous incorporating experts’ 

experience. The results of the study contribute to the improvement of regional sustainability assessment and 

can be used in management decision-making. 
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Аннотация. В статье представлено описание процесса разработки системы интеллектуальной оценки 

устойчивости на основе знаний (KISA) для комплексной оценки устойчивости российских регионов, 

которая использует большую языковую модель (LLM) с технологией дополненной генерации поиска 

(RAG) и данные Росстата. KISA автоматически отбирает релевантные показатели на основе текстовых 

запросов пользователей, определяет их веса и рассчитывает региональные рейтинги, преодолевая 

ограничения традиционных методов, связанные с высокими ресурсными затратами, субъективностью 

и низкой адаптивностью. Система сокращает время, необходимое для формирования рейтинга, до 10 

минут – в 140 раз быстрее существующих подходов; финансовые затраты снижаются в 16 раз за счет 

минимизации участия экспертов. Согласованность с экспертными оценками составляет 68%, что 

подтверждает валидность метода. KISA предоставляет веб-интерфейс с картографической 

визуализацией, повышая гибкость анализа; возможность совершенствования посредством добавления 

новых источников обеспечивает непрерывное включение экспертного опыта. Результаты исследования 

способствуют совершенствованию оценки региональной устойчивости и могут использоваться при 

принятии управленческих решений. 
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1. Introduction 

The problem of sustainable development of the regions of the Russian Federation has been an urgent 

interdisciplinary task that requires a comprehensive approach. Regional sustainability is defined as 

the ability of a region to maintain the quality of life of the population, resist negative impacts, adapt 

to changes and utilize opportunities for long-term development [1-2]. 

According to the World Bank [3], Russia ranks third in terms of interregional inequality in Europe 

and Central Asia, which, in combination with Presidential Decree No. 309 “On the National 

Development Goals of the Russian Federation for the Period up to 2030 and in Perspective up to 

2036” [4], emphasizes the need for a systematic regional sustainability assessment (SA) to reduce 

the socio-economic gap between regions. This conclusion is confirmed by the studies of Russian 

scientists [5-6]. 

At present, assessments are predominantly based on authors’ methods and expert approaches 

implemented through information systems (IS) for calculating indexes and compiling ratings of 

regions. Nevertheless, as Ramos notes [7], existing solutions face serious limitations. 

The key problems include significant resource costs associated with attracting experts, as well as, 

the subjectivity and narrow focus of methods that often address a single area, ignoring a 
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comprehensive approach. Moreover, these systems show low adaptability to modern challenges such 

as climate change and geopolitical crises due to the rigid structure of the indicators used. 

The solution to these problems is the development of the Knowledge-based Intelligence for 

Sustainability Assessment (KISA) system, which utilizes large language model (LLM) with 

retrieval-augmented generation (RAG) technology and Rosstat data for regional SA. Based on users’ 

text queries, the system automatically selects relevant indicators, determines their weighting 

coefficients and calculates the integral rating of regions, overcoming the limitations of traditional 

methods. 

2. Problem Statement 

The aim of this research is to develop the KISA system capable of generating ratings of Russian 

regions based on individual user requests, thereby enhancing the objectivity of assessment while 

reducing the resource intensity of the process. 

The project considers only the constitutionally enshrined constituent entities of the Russian 

Federation (as of 2020), with the analysis based on Rosstat’s open data on environmental, economic, 

and social indicators for the period 2000-2024. While Rosstat provides the most comprehensive 

official statistics available, it is important to acknowledge potential limitations such as reporting 

delays and methodological changes, though these constraints remain consistent across all analytical 

approaches to regional assessment. 

Project success criteria: 

 Achieving at least an 80% similarity with expert assessments using quality metrics. 

 Reducing resource costs for assessment: time by a factor of 7, finances by a factor of 5 

compared to traditional expert methods. 

The KISA system will not only ensure increased efficiency, adaptability and objectivity of regional 

SA, but will also simplify the decision-making process for stakeholders, such as government 

agencies, think tanks and business structures. 

3. Related Works 

This section focuses on ways to overcome the identified limitations: enhancing the adaptability of 

evaluation criteria, ensuring objectivity, and optimizing costs compared to traditional approaches. 

Special attention is paid to the prospects of using artificial intelligence (AI) technologies to address 

these problems. 

3.1 Expert Methods for Sustainability Assessment 

Methods for SA usually include sets of statistical indicators and algorithms for calculating an 

integral index reflecting the level of sustainability of the territory. Numerous such methods have 

been proposed by both foreign researchers [8-10] and Russian researchers [11-13]. However, many 

of them have disadvantages: low adaptability due to the use of static indicators and high resource 

consumption, requiring large research teams. 

A methodological review by Lindfors [14] examined the biases that arise when applying such 

methods, where an excess or deficiency of criteria can distort the evaluation results. This emphasizes 

the need to develop more efficient, objective and adaptive approaches. 

The next subsection examines existing IS for SA, most of which are based on the methods described 

previously, thus inheriting their limitations. 

3.2 Information Systems for Sustainability Assessment 

IS for SA were analyzed to identify their strengths and weaknesses for project development. 

Three systems were considered: SberAnalytics “Monitoring of regional economies” [15], which 

provides economic indicators for analyzing regions; Foresight Analytics Platform [16], which has a 
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modular architecture and analytical models; CSA-system [17], which focuses on environmental 

sustainability of buildings. 

These IS applied expert methods for SA, which resulted in the problems of resource intensity, 

subjectivity and low flexibility. For example, SberAnalytics requires regular participation from 

experts to customize indicators, and the rigid set of these indicators makes it difficult to adapt to 

new conditions. Although Foresight allows customization of indicators, the final decisions still 

depend on expert opinion. 

Previously, the current authors (Fedoseev et al.) developed an IS for regional SA [18], which also 

inherited the limitations of expert methods: the user must independently select indicators and set 

weighting coefficients, thus preserving the outlined problems. 

Despite the advantages of IS in data processing [19], existing solutions only partially solve the 

problems. The development of an intelligent system is needed to overcome these limitations. The 

use of AI techniques is promising for creating an effective SA tool [20]. 

3.3 Application of Artificial Intelligence for Sustainability Assessment 

The application of AI in the SA area significantly improves the efficiency of solutions [21]. In 

particular, the use of Russian-adapted LLMs such as RuAdaptQwen-2.5 [22] with the Chain of 

Thought approach [23] will allow the KISA system to flexibly customize criteria based on users’ 

textual queries, thereby increasing the adaptability of the system. 

The addition of RAG to the LLM will provide the KISA system with the ability to utilize validated 

data when selecting indicators and setting weights, ensuring a high degree of objectivity in SA. 

Studies in related fields confirm the effectiveness of this approach: Bronzini et al. [24] applied it to 

extract information from sustainability reports, and Arslan et al. [25] developed a chatbot for the 

sustainable energy transition. However, an integrated AI-based regional SA system has not yet been 

developed. 

Systems combining LLM and RAG show significant superiority over traditional methods. 

According to a study by Ren et al. [26], LLMs outperform humans in all environmental and 

economic metrics, reducing costs by more than 150 times (from $12.1 to $0.08), which solves the 

problem of high resource costs associated with expert involvement. 

Thus, integrating LLM and RAG into the KISA system will create the first comprehensive system 

for regional SA, overcoming the key limitations of traditional methods: low adaptability, 

subjectivity, and high resource costs. 

4. System Design 

For the systematized storage and processing of statistical data obtained from Rosstat, a database in 

the form of an ER-diagram was designed (Fig. 1). The central entity “indicator” links numerical 

indicators with a specific region and time period. The “indicator_type” entity contains the names of 

specific indicators (e.g., “Unemployment rate”), which are categorized through the 

“indicator_type_group” entity (e.g., “Economic sphere”). The entity “external_service_data” allows 

for the integration of information from external sources. 

The KISA system is designed using a modular multi-layered architecture with clear separation of 

responsibilities between components: web interface, controllers, services, and repositories. This 

approach ensures independent modules and facilitates maintenance and scalability of the application. 

The C4 model, which divides the system into Context, Container, Component and Code levels, was 

used as a design methodology [27]. 

The component-level architecture is represented in the diagram (Fig. 2), while the detailed 

description of the main modules and their functions is provided in Table 1. 
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Fig. 1. Entity-Relationship Model of the Database. 

 

Fig. 2. Backend Components Architecture in C4 Model. 

Table 1. Main Modules and Functions. 

Module Functionality 

Web Client User Interface in React 

API Gateway HTTP request processing and routing 

AuthService User authentication and authorization 

DataService Import, validation and structured storage of statistical data using ETL approach 

RatingService 
Data normalization, removal of outliers, calculation of indexes by weighted 

sum of indicators and compilation of region rankings 

AIComponent 
Dynamic selection of relevant indicators and their weights based on text 

queries using integrated LLM and RAG technologies 

Repository Data access abstraction and database interaction 
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DataService uses the Extract, Transform and Load (ETL) approach to integrate open statistical data 

of Rosstat, which ensures a uniform format and correctness of input data [28]. This is important for 

data unification and subsequent analysis, although possible incompleteness or inaccuracy of the 

original information should be taken into account. 

The algorithm for generating the ratings includes (Fig. 3): 

1. User input of a text query defining the SA parameters. 

2. Application of RAG technology to extract relevant scientific data from the knowledge base. 

3. Transmission of the context, the user’s query, and the full list of indicators to the LLM. 

4. Automatic selection of relevant indicators by the LLM and determination of their weighting 

coefficients. 

5. Extraction of selected statistical data from PostgreSQL and calculating the integral rating 

of regions. 

6. Visualization of the results with cartographic representation. 

The result is a rating reflecting the relative position of each region in terms of regional sustainability. 

 

Fig. 3. Rating Formation Process. 

5. Implementation 

For the development of the KISA system prototype, a technology stack was chosen, including 

Python, FastAPI for creating a RESTful API [29], and SQLAlchemy for working with a PostgreSQL 

database. The frontend is developed using React to create an interactive user interface with dynamic 

graphs and map-based visualization. 

LangChain and OpenAI libraries are used to implement RAG and LLM methods. The open-source 

RuAdaptQwen-2.5 (32 billion parameters), which uses the Chain-of-Thought approach to improve 

query efficiency, was chosen as the LLM. However, the use of such models requires significant 

computational power, which may limit query-processing speed. This limitation can be overcome by 

using powerful servers. 

The developed prompts follow effective engineering principles: clear task definition, structured 

input data presentation, explicit step-by-step reasoning requirements, and formalized output format 
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(Fig. 4). The system prompt defines the model's role as a data analysis expert and establishes basic 

operational principles. The user prompt includes a specific task (selecting up to a given number of 

indicators), user query, knowledge base context, available indicators list, and required response 

format with examples. 

 

Fig. 4. Prompt Template Structure for Indicator Selection 

For the RAG knowledge base, publications from leading socio-economic journals indexed in Scopus 

and Web of Science were selected. A total of 243 scientific journals were loaded, covering a wide 

spectrum of research in regional economics, sustainable development, and methods for assessing 

territorial entities. The publications were cleaned using regular expressions and segmented into 

chunks, resulting in 398,290 text fragments. These fragments were then stored in the FAISS vector 

database using embeddings [30]. 

KISA integrates RAG technology to access scientific literature for regional sustainability 

assessments, expanding domain knowledge without costly retraining. By retrieving information 

from published research, the system bases indicator selection on established methodologies rather 

than pre-trained knowledge. This integration addresses three critical challenges: resource intensity 

is reduced through automated analysis, adaptability improves as the LLM flexibly selects indicators 

based on user text queries, and subjectivity decreases as evaluations rely on published research rather 

than individual judgment. 

6. Evaluation 

For the evaluation of the KISA system prototype, an expert commission was formed. The 

commission consisted of 11 members, including 7 Doctors of Science and 4 Candidates of Science 

in economics, engineering, history, and social sciences. The commission was tasked with creating 

three text-query assessment methods based on a set of indicators and the weighted-sum formula used 

in the KISA system. 

The results of the expert assessment and the KISA system were compared. The Recall metric (the 

ratio of the number of matching indicators to the number of indicators selected by the expert) was 

used to measure the similarity of the selected indicators, and the MAPE (Mean Absolute Percentage 

Error) metric, which evaluates the average percentage error between the weights, was used to 

compare the indicator weights. 
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The average similarity of the results was 68% (Fig. 5). It is worth noting that a 100% match was not 

expected, as it is impossible to claim that one method is unequivocally better than the other. The 

indicators chosen by KISA and experts were similar in meaning but differed in naming. For example, 

the expert commission chose “Level of education”, while KISA chose “Growth rate of education 

level”. Although the scope of assessment of the indicators is the same, the approaches to assessment 

differ, so the results are not completely the same. 

 

Fig. 5. Comparison of Recall and MAPE across Queries 

A straightforward comparison of the system and the experts is complicated, as their assessments 

may be subjective and reflect different points of view. The similarity of the results also depends on 

the composition of the expert commission, the specific query, and the content of the knowledge 

base. 

Now, consider comparing the resource costs of the KISA system and the expert commission. 

According to HeadHunter, an hour of an expert’s work costs 1,000 rubles. An expert commission of 

11 people spent three days (24 hours) to create one method, which amounted to 264,000 rubles and 

required the participation of the entire group. The development of the KISA system took four months 

with a workload of 160 hours per month. The average salary of a software engineer is 100,000 rubles 

per month, so the costs totaled about 400,000 rubles. 

KISA generates regional ratings on request in 10 minutes, including data input, which saves both 

financial and time resources. Time costs are reduced by a factor of 140: experts spent 1,440 minutes, 

and the system completes the same work in 10 minutes. This allows the system to pay for itself after 

the first request. 

Financial costs are reduced 16-fold when using KISA. An expert commission can create a maximum 

of six methods per month, which costs 1.58 million rubles. At the same time, KISA’s maintenance 

and infrastructure costs are about 100,000 rubles per month. Thus, the use of the KISA system 

significantly reduces both time and financial costs, ensuring the efficiency and accessibility of the 

tool for regional SA. 

7. Conclusion 

As a result of this study, a working prototype of the KISA system has been developed that addresses 

three key problems of existing approaches: 
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1. Resource intensity. Automation of data collection and processing through ETL pipelines 

and the use of the RuAdaptQwen-2.5 LLM has reduced the time required for rating 

generation to 10 minutes, which is 140 times faster. Financial costs are reduced 16-fold due 

to the minimization of expert involvement. 

2. Low adaptability. The system interprets text queries in natural language and adapts criteria 

for specific analysis purposes, providing flexibility and aligning with user needs. 

3. Subjectivity. Automated selection of indicators and their weights based on RAG technology 

eliminates subjective expert assessments. A transparent algorithm based on scientific data 

increases the reproducibility and validity of the results. The average similarity between the 

results and expert assessments is 68%. 

KISA facilitates the formation of regional ratings by calculating the final regional sustainability 

index and ranking, as well as visualizing the results through an interactive web interface with a map 

display. 

The key feature of KISA is the possibility of continuous improvement by adding new scientific 

sources to the knowledge base, allowing the system to be updated and incorporating experts’ 

experience. 

The KISA system’s database is registered in Rospatent [31]. The computer program has also been 

registered and received the corresponding certificate [32]. 

In the future, plans include introducing the function of forecasting sustainability indicators to 

provide a complete picture of regional development for the next 10 years. Moreover, additional 

formulas for calculating the sustainability index are expected to be implemented. 

The obtained results are important for improving the process of regional SA and can be used to 

support managerial decisions. Further research will be aimed at expanding the functionality of the 

system and updating it with new data. 
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