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Abstract. The congestion control algorithms in the TCP protocol use RTT predictions indirectly or directly to
determine congestion. The main algorithm for predicting RTT based on a weighted moving average is the
Jacobson Algorithm. However, this algorithm may not work quite efficiently if the RTT is subject to a heavy-
tailed distribution. In this paper, we propose an RTT prediction method based on supervised learning in both
the offline and online cases. The results show improvement in the performance of algorithms based on
supervised learning compared to the classical Jacobson algorithm in terms of MAPE, MAE, and MSE metrics.
In addition, the high efficiency of online learning in comparison with offline learning in the case of data drift

is shown.
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AunHoTauus. Bpems npuema-niepenaun (RTT, Round-Trip Time) — Bpemsi, KoTropoe TpeOyeTcst st OTIIPABKU
MaKeTa OT OTMPABHUTEIN K IOIyYaTeNi0 M BO3BpaTa MOATBEP KICHHSA, YTO MAKeT ObUI MONydeH. AITOPUTMBI
ympaBieHusi mneperpy3kamu B InpoTokone TCP KoCBEHHO WM HampsIMylO HCIOIB3YIOT IpeACKa3aHHbBIC
3HauyeHust RTT mis onpenenenus neperpys3ku cetd. OCHOBHBIM aJITOPUTMOM Aiisl porHo3zupoBanust RTT Ha
OCHOBE B3BEIICHHOTO CKOJB3SIIET0 CpeqHero siBisiercs: anroputM Jhxeiikoocona. OqHAKO 3TOT aIrOpUTM
MOXeT paboraTh He coBceM 3¢ ¢extuBHo, ecnmm RTT mmeer pacmpeneneHne ¢ TSKEIBIM XBOCTOM, T.C.
CYIIECTBYIOT peAKHe, HO od4eHb Oouspinme 3HaueHnss RTT. B oarolf cratbe MBI Ipe/uiaraeM MeToJ
nporHosupoBanus RTT, ocHOBaHHBI Ha O0YYEHUH C yYUTEIEeM, KOTOPBIH MOXeT paboTaTh Kak B oQduaiin
pexume (¢ 3apaHee coOpaHHON 00ydJaromell BRIOOPKO#), TaK M B OHJIAHH pexXuMe (C IIOCTYIUICHHEM JaHHBIX B
peanbHOM BPEMEHH H HX MOCIIe0BaTeNbHOI 00paboTkoit). [TomydeHHbIe pe3yIbTaThl HOKAa3bIBAIOT YITyUIICHHE
ITOPUTMOB, OCHOBAaHHBIX HAa MAIIMHHOM OOYYeHHWH, IO CpPaBHEHMIO C KIACCHYECKHM alTrOPHTMOM
Jlxeiikobcona ¢ Touku 3peHus mokaszatened MAPE, MAE u MSE. Kpome TOoro, mokasaHa BBICOKas
3¢ dexkTHBHOCTE OHNaMH 00yueHus 1o cpaBHEHHIO ¢ o duiaiiH oOyueHHeM B citydae apeiida KOHIENINT Hin
npeiida TaHHBIX.

KioueBble cioBa: TpaHcnopTHbii mpotokon TCP; mporro3upoBaHue BpemeHH mnpuema-nepeaadu (RTT);
OHITaIfH-00y4eHHe; aTaNTHBHAS PETPECCHs CIYJaifHOTO Jeca.

Jas uutupoBanusi: CrenanoB U.A., [lonomapenko P.E., ['omosam /I.P., [Tokunpko A.1O., 'ereman A.W.
[penckazanue RTT ¢ ucnonszoBannem odduaiia u onnaita o0yuenus. Tpyasr UCIT PAH, tom 37, BeIm. 5,
2025 r., ctp. 53-66 (Ha anrnuiickom s3eike). DOI: 10.15514/ISPRAS-2025-37(5)—4.

1. Introduction and Motivation

RTT (round-trip time) is the time required to send a data packet from the source to the recipient and
back to the source. This is an important parameter in network performance. In addition, the
retransmission timer (RTO) has an important role in the TCP protocol. This timer is set when sending
a segment and its expiration serves as a congestion signal. The problem of choosing this timer is
related to the fact that the RTT has a high variance from the point of view of a random variable,
which significantly complicates the prediction of this value.

The prediction of RTT is an important component of congestion control algorithms (CCA). Packet
loss-based CCAs such as TCP Reno and TCP Cubic indirectly use RTT information to determine
congestion. In addition to loss-based CCA, there are CCAs that detect congestion directly from RTT:
TCP Vegas, TCP Vegas-A. Therefore, for such methods, it is extremely important to accurately
predict RTT one step ahead. Also, multipath technology has recently become very popular, allowing
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the client to transfer data over multiple network paths. The scheduler, which determines the path to
send the packet, makes decisions based on certain metrics, one of which is RTT. In this case, RTT
prediction can also be very important.

They are usually based on the Jacobson algorithm, which predicts RTT using the moving average
method. However, as some researchers have noted, the moving average method may not work well
for values from distributions with a heavy tail, which may well include RTT. Therefore, a number
of papers have been proposed that predict RTT using recurrent neural networks. Since recurrent
neural networks require a large training dataset, its collection is an important component of the RTT
prediction task. However, models of this class can often work inefficiently in terms of decision-
making time, which can be critical in terms of congestion control.

In addition, due to the high variability of RTT, a model trained in one network environment (with a
low RTT value) may be less effective in another network environment (with a high RTT value). This
behaviour is due in part to data drift.

In order to avoid a drop in predictive ability during the transition from one environment to another,
it makes sense to detect drift during model runtime, and in case of drift, online learning it based on
new data.

Therefore, in this paper there is propose an online machine learning method with drift detection. The
results obtained show an improvement in RTT prediction using this method compared to the
Jacobson algorithm. At the same time, an improved prediction is observed in various network
scenarios, in terms of the RTT value.

The rest of the article is structured as follows. Section Il provides information on the structure of
RTT and the classical methods of its measurement. Section 111 describes RTT prediction methods
that use both probability distributions and machine learning. Section IV contains a statement of the
problem of online learning and drift detection. Section V provides a description of our method.
Section VI contains comparisons of the method implemented in this paper with the Jacobson
algorithm.

2. Background
Using different concepts of RTT, it can be stated that:

RTT = delaypropagation + delaYtransmission + delayqueueing + delayprocessing

o delayyropagation— the propagation delay is the time it takes for a signal to move from the
sender to the receiver through physical media (such as cables or radio waves). It depends
on the distance between the nodes and the speed of signal propagation in the environment.

o delay;,ansmission— the transmission delay is the time required to transmit a data packet over
a communication channel. The transmission delay depends on the packet size and
bandwidth of the communication channel.

o delaygyeyueing— the queue delay is the time during which a data packet is queued on the
forwarding devices, waiting for the next packets to be transmitted.

o delayprocessing— the processing delay is the time required for packet processing on routers
and end nodes. It includes the time required to process headers, check for errors, and
perform other operations related to packet routing and processing.

It makes sense to consider RTT between sender and recipient as the sum of two main components:
the constant component, which includes propagation delay and transmission delay, and the variable
component, which includes queuing delay and processing delay. Queuing delay and processing
delay are the main source of uncertainty in the prediction of RTT, as they depend on various
components.
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2.1 RTT measurement methods

To predict RTT using machine learning models, it is necessary to collect a dataset containing
information about the RTT sequence. There are two ways to do this with ready-made tools.

The first is to use the ping command and send ICMP packets. However, ping does not always
measure an accurate RTT. For example, when routers process ICMP packets during congestion,
certain application flows may be prioritized. Thus, ICMP packets will generate RTTs that do not
reflect the RTT that the priority traffic is encountering. In addition, some networks may block ICMP
traffic, which also complicates the data collection process. The second way is to use the Wireshark
tool: tcp.analysis.rtt. The third way to get an RTT value is by using TCP packet parameters such as
Tsecr and Texp. However, in this case, the RTT accuracy will be limited to milliseconds.

2.2 The Jacobson algorithm

The first classical RTT prediction algorithm was the Jacobson algorithm, introduced in TCP
Reno [1]. In this algorithm, the predicted RTT is subsequently used to calculate the RTO in the
following form:

ERR = |(RTT, — SRTT,_,)|

7 1
SRTT, = =SRTT,_, + =RTT,

8 8
3 1
VAR, = JVAR,_, + 7 ERR

RTO = SRTT, + 4VAR,,

Based on the moving average formula, we can see that:

1 7\ 1 7\ 1
SRTT, = §RTTn + <§) -§RTT,1_1 + (§) -gRTTn_2+. .
The usual estimate proposed by Jacobson works well in Gaussian distributed delay environments.
However, as some researchers have noted, this algorithm may be inaccurate in environments with a
different RTT distribution.

3. Related Work

There are two areas of work on RTT prediction: based on probability distributions and based on
machine learning.

In several papers, RTT and, as a result, RTO are predicted based on the assumption that they are
subject to a certain distribution. Thus, in [2], a method for approximate estimate of RTT was
proposed based on the assumption that RTT is subject to the Weibull distribution. In [3], a method
was proposed for a more detailed assessment of RTT based on the assumption that RTT is subject
to a normal distribution. In [4], the authors proposed a method based on the calculation that the
difference between neighboring values of RTT is subject to the Cauchy distribution. Using this
assumption and Chebyshev's inequality, the authors can obtain the following estimate for the RTO:

_ Zye 2 2
RTO(K) = RTT(k — 1) + j(wn - qb)) +er—y
e y—jitter dispersion

e (b defined quality of service (QoS) parameter, which indicates the minimum fraction of
time during which the prediction error is below the acceptable error €.
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These methods rely on assumptions about the distribution of RTT. However, the dynamic variability
of RTT negatively affects the ability to accurately predict RTT in these methods, because the
distribution of RTT can vary depending on the network environment.

A hybrid RTT prediction method based on geographical distance was proposed in [5]. The RTT
prediction algorithm consisted of several stages. The first is an estimate of the distance between two
IP addresses (sender and recipient). If the distance is less than 120 km, the RTT value was
determined based on the database. If the distance is greater than 120 km, the RTT value was
determined based on the trained model. The trained model was based on a decision tree that
contained three features: Internet service provider, geographical distance between pairs of IP
addresses and time of day. It is worth noting that distance is not always an informative feature, as it
can change rapidly due to dynamic changes in network routes.

Recurrent neural networks have shown good predictive ability for predicting time series. As a result,
a number of papers have appeared that predicted RTT based on previous values of RTT. The
algorithm proposed in [6] has the following form:

ERR = |(RTT, — SRTT,_,)|
SRTT, = F(RTT,, RTT,...RTTg;)

3 1
VAR, = JVAR,_, + 7 ERR

RTO = SRTT, + 4VAR,,

Here, F is a function implemented by a recurrent neural network. In [7], an RTT prediction method
was proposed based on passive measurements collected at an intermediate node. The recurrent
neural network (LSTM) was chosen as the prediction model. In [8], a lightweight version of the
recurrent neural network GRU was proposed.

However, neural networks can require high computational costs, which is critical in the context of
RTT prediction. Therefore, it makes sense to consider classical machine learning models (Random
Forest, Linear regression).

It is worth noting that the RTT prediction study in the above papers was given only for the offline
case. However, the efficiency of the algorithm in the offline and online case may vary greatly.
Therefore, both offline and online scenarios will be considered in this paper.

4. Online learning

The task of online learning can be formulated as follows. Let's give a sequence of features and target
values (x;, y;)i=. a(x, w) - parametric model, L(w, y) — loss function. At each step i, the following
set of actions is performed:

e getting object features x;

o the prediction is made based on the received object a(x;, w;_;)
e getting y;

o calculation of the loss function L(y;, a(x;, w;_1))

e updating the weights of the model based on the loss function w;

It is worth noting that incremental learning, unlike online learning, works with batches, while online
learning uses only one object at each step. Otherwise, the two approaches are very similar in the
context of the task under consideration.

4.1 Drift detection

Data drift is a phenomenon in which the statistical properties of the data used to train a machine
learning model change over time. This means that the distribution of the input data in the real world
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no longer corresponds to the distribution of the data on which the model was trained. Ultimately,
due to this phenomenon, the accuracy of the model degrades.

More strictly, let there be some target variable and a set of features defining this variable. The drift
is understood as a change in the distribution of the input data P(X), the target variable P(Y), or the
relationship between them P(Y|X) over time. It is worth noting that there are several types of drift
detection in research.

Input data drift: let’s give the initial distribution of input data (features) P,(X) and some distribution
of data P.(X) at time t. It is said that there is a drift in the input data if:

Py(X) # P(X)

Drift of the target variable (Label Drift): let’s give the initial distribution of the target variable
P,(Y)and some target variable P.(Y) at time t. To say that there is a drift in the label data if:

Py(Y) # P(Y)

Concept Drift: let’s give the initial dependence distribution Py (Y|X) and P.(Y|X) at time t. To say
that there is a concept drift in the data if:

Py(Y1X) # P.(Y]X)

There are a large number of ways to detect drift. These include statistical methods: the
Kolmogorov—Smirnov test [9], the Chi-square test [10], the Darling-Anderson test [11], methods
based on autoencoders [12], as well as methods based on the ARIMA model [13].

4.2 ADWIN

The ADWIN (Adaptive Windowing) [14] algorithm is a method that solves the problem of detecting
changes in statistical characteristics of data, such as mean or variance. ADWIN uses the hypothesis
of equality of the averages between different parts of the data window. If these hypotheses are
rejected, it means that data drift has occurred.
The algorithm divides the window Winto two sub-parts: Wyand W;. Then, for each part, the
following are calculated: n,, n,- size of window Wyand W, u,, 114 - average values Wyand W;. If the
difference between the observed mean values |(1, — u,)|exceeds €, the algorithm considers that
the distributions in Wyand W;are different, and deletes the old part W,of the window. In this case,
€15 Calculated as follows:
N "Ny
T ng+my
1)

8=~
n

1 4
Cout = (ﬁ in (5)

4.3 Adaptive Random Forest regressor

Adaptive Random Forest (ARF) [15-16] is an online learning algorithm that adapts to concept drift.
The main idea of the algorithm is to have an ADWIN-based drift detector for each tree of a Random
Forest. If the detector detects a change, the corresponding one is removed and retrained on the new
dataset. Thus, the ensemble of trees adapts to the new distribution.

4.4 Online learning and drift detection
The general scheme of online learning used in this work is shown in Fig. 1.
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The online learning process consists of several important parts: the main dataset, an Adaptive
Random Forest, and a drift detector based on the ADWIN method. In the process of online learning,
new objects are received at the input of the algorithm. The drift detector checks for drift between
new objects and the main dataset, which is constantly being updated. If drift is detected, the Adaptive
Random Forest is updated based on new data; if not, the Adaptive Random Forest remains
unchanged. Thus, the model's stability to changing environmental conditions is achieved.

In this case, the ADWIN algorithm determines the drift for the normalized value:

|(Verue — Ypreaice)|- Thus, if the distribution of |(Verue — Ypreaice)|changes significantly, the
ADWIN algorithm detects the drift.

periodic
- updates -
: main
dataset
X4
new Xo Drift Detector
objects i ADWIN
n

Adaptive Detection
Random

Forest

updating
the

Model prediction model

on new objects

Fig. 1. Online learning and drift detection scheme.
5. Implementation

5.1 Problem formulation
From the point of view of supervised learning, the RTT prediction task is a regression task.
f:X-Y
o X features object
e Y-predicted RTT value

It makes sense to consider the following characteristics of a TCP stream as features.

RTT: In most studies, it is proposed to use sequential RTT values as features. This paper also
examines these values for RTT prediction.
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TTL: As noted earlier, the geographical distance between two hosts can change dynamically and
is not always an informative feature in the RTT prediction task. However, it makes sense to
use the TTL parameter, which is the IPv4 field of the packet header that specifies the
maximum number of routers (hop count) through which the packet can pass before it is
dropped. Each time a packet passes through the router, the TTL value decreases by one.
Therefore, this parameter can be used as features for RTT prediction. In IPv6, the Hop Limit
field is an analogue of the TTL parameter from IPv4. From the point of view of the problem
under consideration, the Hop Limit and TTL are equivalent parameters.

Bytes in Flight: This value indicates how much data (in bytes) have been sent from the sender, but
have not yet been confirmed by the recipient. The congestion control algorithm strives to
maximize the use of the transmission channel so that the number of bytes in flight is
approximately equal to BDP (Bandwidth-delay Product). Therefore, it can be stated that there
is some connection between RTT and the number of bytes in the flight and use this feature
in the task under consideration.

Thus, the following features vector is used for prediction RTT,:
RTT,_4...RTT,_y, bytes,,_1...bytes, _j, TTL,_1...TTL,_}

In this formula, k is a parameter that indicates the number of previous values used for prediction.
The search for the optimal value of k, which preserves the high performance of the algorithm, will
be described later in the paper.

5.2 Machine learning models

In this paper, the following machine learning algorithms were investigated within the framework of
the problem under consideration: Linear regression with regularization, Decision Tree and Random
Forest, as well as recurrent neural networks.

After examining the collected dataset, a high linear relationship was found between the predicted
RTT and the features discussed above. This behavior motivates the use of linear regression with L1
and L2 regularization in the context of the task.

Random Forest is an algorithm that has proven itself well in working with data containing a large
number of noises. In terms of RTT prediction, an abnormal value of this value caused by some
external factors can be considered noise. Therefore, it makes sense to consider this model in the
context of the task under consideration.

Recurrent neural networks have proven themselves well in the context of sequence prediction.
Classical RNNs can have gradient attenuation problems when the network needs to remember
information from the distant past: RTT prediction based on a large humber of previous values.
LSTM has a better ability to store information over long time intervals, but this model has a complex
structure and may require high computing resources. The GRU model is simpler in terms of
structure. In this paper, all three models for solving the RTT prediction problem will be investigated
for a detailed analysis.

5.3 Training data
In the training process, the following dataset was collected, simulating 3 situations: a user is
uploading files, an online game, and a regular web interaction.

For a wide variety of data and, consequently, for more efficient prediction of the model in a variety
of network scenarios, a dataset was collected in a wide range of network characteristics: bandwidth
from 10 Mbps to 100 Mbps, distance between sender and receiver from 100 km to 1200 km, as well
as the use of both IPv4 and IPv6 protocols.

The characteristics of the collected dataset are shown in Table 1.
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Table 1. Training Data.

Scenario Ngg}gi::f URTT, ms 02 RTT, ms?
Uploading files 922063 60.37 1344
Uploading files 1791633 9.89 144
Uploading files 1731034 40.75 58
Online game 30012 31.85 738
Web interaction 38250 10.10 140

e L —average of RTT value

e 0% —variance of RTT value

It should be noted that the number of objects in the case of loading is significantly higher than in the
other two scenarios. This is due to the fact that the complexity of obtaining objects in an online game
scenario and in a web interaction scenario is much more complicated than in an upload scenario.
However, section VI explores this problem for both balanced dataset and unbalanced dataset
(number of objects in the loading scenario).

As noted above, a dataset with a true RTT value is needed to train the model. Experiments have
shown that using the TCP packet option to measure accurate RTT does not provide significant
advantages over tcp.analysis.rtt in the context of the task under consideration. Therefore, in this
work, a tcp.analysis.rtt was used to obtain the correct RTT values.

6. Evaluation

This section presents the main results of the implemented algorithms in both offline and online
scenarios. In addition, a comparison of machine learning algorithms with the classical Jacobson
algorithm is presented.

6.1 Offline scenario balanced dataset

In this subsection, the considered models are trained on a balanced dataset containing objects from
the upload scenario, the online game scenario, and the web interaction scenario. The models are
tested on a dataset that also contains an equal proportion of objects in all three scenarios. The results
obtained are presented in Table 2.

From the results obtained, it can be stated that in this scenario, a Random Forest shows the best
result in terms of all metrics. It can also be noted that neural networks do not provide significant
improvements compared to simpler algorithms in the context of the problem under consideration.
The best value of k is understood as the smallest k, with an increase in which the error decreases
slightly.

6.2 Offline scenario unbalanced dataset

In this subsection, the considered models are trained on an unbalanced dataset containing objects
only from the loading scenario. The models are tested on a dataset that contains an equal proportion
of objects in all three scenarios. The results obtained are presented in Table 3.

The results show that from the point of view of RTT prediction, the scenarios of different network
situations do not differ.
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Table 2. Offline scenario (balanced dataset).

Algorithm best k MSE MAE R? MAPE
ElasticNet 7 45.65 2.10 0.94 8.43
Random Forest 4 40.36 1.80 0.94 6.75
RNN 14 48.33 2.21 0.92 12.91
LSTM 14 47.98 2.13 0.93 11.29
GRU 14 48.50 2.20 0.92 12.58
;Zf)fﬁﬁ%bs"” . 59.50 2.45 . 2231

Table 3. Offline scenario (unbalanced dataset).

Algorithm best k MSE MAE R? MAPE
ElasticNet 8 43.37 2.00 0.94 7.97
Random Forest 4 38.32 1.70 0.95 6.40
RNN 11 48.24 2.19 0.92 12.84
LSTM 11 47.84 2.11 0.93 11.17
GRU 11 48.03 2.17 0.92 12.44
;gifi?ﬁfnbson . 59.30 267 . 23.24

From the results obtained, it can be argued that in this scenario, a Random Forest shows the best
result in terms of all metrics. It can also be noted that neural networks do not provide significant
improvements compared to simpler algorithms in the context of the problem under consideration.
The best value of k is understood to be the smallest value of k, with an increase in which the error
decreases slightly.

6.3 Online scenario

Due to the high dynamism of network environments, machine learning models trained on one traffic
may not work well enough in traffic with other characteristics.

In this subsection, an online learning method based on an Adaptive Regression Forest with drift
detection using the ADWIN method is proposed. The code implementing this training uses the River
library [17].

The first dataset was collected in a low RTT network environment objects: 60000, u =
8.67ms,d = 1.24ms?, while the second dataset was collected in an environment with high RTT
objects: 20000, u = 73.93ms, o = 2759.20ms? and RTT have distribution with a heavy tail
(Fig. 2).

A Random Forest was trained based on 50,000 objects in the first dataset, and then Random Forest
tested on 10,000 objects of the first dataset and 20,000 objects of the second dataset. Thus, the case
was considered when a model trained on a dataset with certain network characteristics was tested on
a dataset with other network characteristics.
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Fig. 2. Distribution with a heavy tail.

In the second experiment, the Adaptive Random Forest was trained on the 50000 objects of first
dataset. On the second dataset, the algorithm was trained online using drift detection. This detection
was used to more accurately train a Random Forest, in which the forest trees that solved the problem
were most poorly replaced by new trees. The results obtained are shown in Fig. 3. The results
obtained show the effectiveness of online learning in this task: the overall value of the MAPE metric
does not deteriorating as critically as in the case of offline learning.

In the second pair of experiments, the dataset with a higher RTT objects:60000,u =
68.69ms, 0% = 2039.15ms? value was the first, while the dataset with a lower RTT
objects: 20000, u = 8.70ms, 0 = 1.22ms? value was the second. The results obtained are shown
in Fig. 4.

In this case, online learning also shows improvement. At the same time, offline learning shows very
bad results.

7. Conclusions

In this paper, algorithms for RTT prediction using offline and online learning were presented. The
results show that the algorithms based on learning works better in terms of MAPE, MSE, and MAE
metrics in network environments with a wide range of network characteristics than the classic
Jacobson algorithm.

However, as shown in this article, offline learning can be ineffective in dynamically changing
network environments. To solve this problem, an online learning method with drift detection was
proposed. The results show that in the case of online learning, the prediction efficiency does not
deteriorate or deteriorates slightly when the environment changes.

The results obtained allow us to identify the following areas of future work:

e integration of online learning algorithms implemented in this paper into classical
congestion control algorithms (TCP Reno, TCP CUBIC),

¢ study of the performance of classical congestion control algorithms using RTT prediction
using online learning.
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