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Abstract. The congestion control algorithms in the TCP protocol use RTT predictions indirectly or directly to 

determine congestion. The main algorithm for predicting RTT based on a weighted moving average is the 

Jacobson Algorithm. However, this algorithm may not work quite efficiently if the RTT is subject to a heavy-

tailed distribution. In this paper, we propose an RTT prediction method based on supervised learning in both 

the offline and online cases. The results show improvement in the performance of algorithms based on 

supervised learning compared to the classical Jacobson algorithm in terms of MAPE, MAE, and MSE metrics. 

In addition, the high efficiency of online learning in comparison with offline learning in the case of data drift 

is shown. 
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Аннотация. Время приема-передачи (RTT, Round-Trip Time) – время, которое требуется для отправки 

пакета от отправителя к получателю и возврата подтверждения, что пакет был получен. Алгоритмы 

управления перегрузками в протоколе TCP косвенно или напрямую используют предсказанные 

значения RTT для определения перегрузки сети. Основным алгоритмом для прогнозирования RTT на 

основе взвешенного скользящего среднего является алгоритм Джейкобсона. Однако этот алгоритм 

может работать не совсем эффективно, если RTT имеет распределение с тяжёлым хвостом, т.е. 

существуют редкие, но очень большие значения RTT. В этой статье мы предлагаем метод 

прогнозирования RTT, основанный на обучении с учителем, который может работать как в оффлайн 

режиме (с заранее собранной обучающей выборкой), так и в онлайн режиме (с поступлением данных в 

реальном времени и их последовательной обработкой). Полученные результаты показывают улучшение 

алгоритмов, основанных на машинном обучении, по сравнению с классическим алгоритмом 

Джейкобсона с точки зрения показателей MAPE, MAE и MSE. Кроме того, показана высокая 

эффективность онлайн обучения по сравнению с оффлайн обучением в случае дрейфа концепции или 

дрейфа данных. 

Ключевые слова: транспортный протокол TCP; прогнозирование времени приема-передачи (RTT); 

онлайн-обучение; адаптивная регрессия случайного леса. 

Для цитирования: Степанов И.А., Пономаренко Р.Е., Головаш Д.Р., Покидько А.Ю., Гетьман А.И. 

Предсказание RTT с использованием оффлайн и онлайн обучения. Труды ИСП РАН, том 37, вып. 5, 

2025 г., стр. 53–66 (на английском языке). DOI: 10.15514/ISPRAS–2025–37(5)–4. 

1. Introduction and Motivation 

RTT (round-trip time) is the time required to send a data packet from the source to the recipient and 

back to the source. This is an important parameter in network performance. In addition, the 

retransmission timer (RTO) has an important role in the TCP protocol. This timer is set when sending 

a segment and its expiration serves as a congestion signal. The problem of choosing this timer is 

related to the fact that the RTT has a high variance from the point of view of a random variable, 

which significantly complicates the prediction of this value. 

The prediction of RTT is an important component of congestion control algorithms (CCA). Packet 

loss-based CCAs such as TCP Reno and TCP Cubic indirectly use RTT information to determine 

congestion. In addition to loss-based CCA, there are CCAs that detect congestion directly from RTT: 

TCP Vegas, TCP Vegas-A. Therefore, for such methods, it is extremely important to accurately 

predict RTT one step ahead. Also, multipath technology has recently become very popular, allowing 
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the client to transfer data over multiple network paths. The scheduler, which determines the path to 

send the packet, makes decisions based on certain metrics, one of which is RTT. In this case, RTT 

prediction can also be very important. 

They are usually based on the Jacobson algorithm, which predicts RTT using the moving average 

method. However, as some researchers have noted, the moving average method may not work well 

for values from distributions with a heavy tail, which may well include RTT. Therefore, a number 

of papers have been proposed that predict RTT using recurrent neural networks. Since recurrent 

neural networks require a large training dataset, its collection is an important component of the RTT 

prediction task. However, models of this class can often work inefficiently in terms of decision-

making time, which can be critical in terms of congestion control. 

In addition, due to the high variability of RTT, a model trained in one network environment (with a 

low RTT value) may be less effective in another network environment (with a high RTT value). This 

behaviour is due in part to data drift. 

In order to avoid a drop in predictive ability during the transition from one environment to another, 

it makes sense to detect drift during model runtime, and in case of drift, online learning it based on 

new data. 

Therefore, in this paper there is propose an online machine learning method with drift detection. The 

results obtained show an improvement in RTT prediction using this method compared to the 

Jacobson algorithm. At the same time, an improved prediction is observed in various network 

scenarios, in terms of the RTT value. 

The rest of the article is structured as follows. Section II provides information on the structure of 

RTT and the classical methods of its measurement. Section III describes RTT prediction methods 

that use both probability distributions and machine learning. Section IV contains a statement of the 

problem of online learning and drift detection. Section V provides a description of our method. 

Section VI contains comparisons of the method implemented in this paper with the Jacobson 

algorithm. 

2. Background 

Using different concepts of RTT, it can be stated that: 

𝑅𝑇𝑇 ≈ 𝑑𝑒𝑙𝑎𝑦𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 + 𝑑𝑒𝑙𝑎𝑦𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑢𝑒𝑖𝑛𝑔 + 𝑑𝑒𝑙𝑎𝑦𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 

 𝑑𝑒𝑙𝑎𝑦𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛– the propagation delay is the time it takes for a signal to move from the 

sender to the receiver through physical media (such as cables or radio waves). It depends 

on the distance between the nodes and the speed of signal propagation in the environment. 

 𝑑𝑒𝑙𝑎𝑦𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛– the transmission delay is the time required to transmit a data packet over 

a communication channel. The transmission delay depends on the packet size and 

bandwidth of the communication channel. 

 𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑢𝑒𝑖𝑛𝑔– the queue delay is the time during which a data packet is queued on the 

forwarding devices, waiting for the next packets to be transmitted. 

 𝑑𝑒𝑙𝑎𝑦𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔– the processing delay is the time required for packet processing on routers 

and end nodes. It includes the time required to process headers, check for errors, and 

perform other operations related to packet routing and processing. 

It makes sense to consider RTT between sender and recipient as the sum of two main components: 

the constant component, which includes propagation delay and transmission delay, and the variable 

component, which includes queuing delay and processing delay. Queuing delay and processing 

delay are the main source of uncertainty in the prediction of RTT, as they depend on various 

components. 
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2.1 RTT measurement methods 

To predict RTT using machine learning models, it is necessary to collect a dataset containing 

information about the RTT sequence. There are two ways to do this with ready-made tools. 

The first is to use the ping command and send ICMP packets. However, ping does not always 

measure an accurate RTT. For example, when routers process ICMP packets during congestion, 

certain application flows may be prioritized. Thus, ICMP packets will generate RTTs that do not 

reflect the RTT that the priority traffic is encountering. In addition, some networks may block ICMP 

traffic, which also complicates the data collection process. The second way is to use the Wireshark 

tool: tcp.analysis.rtt. The third way to get an RTT value is by using TCP packet parameters such as 

Tsecr and Texp. However, in this case, the RTT accuracy will be limited to milliseconds. 

2.2 The Jacobson algorithm 

The first classical RTT prediction algorithm was the Jacobson algorithm, introduced in TCP 

Reno [1]. In this algorithm, the predicted RTT is subsequently used to calculate the RTO in the 

following form: 

𝐸𝑅𝑅 = |(𝑅𝑇𝑇𝑛 − 𝑆𝑅𝑇𝑇𝑛−1)| 

𝑆𝑅𝑇𝑇𝑛 =
7

8
𝑆𝑅𝑇𝑇𝑛−1 +

1

8
𝑅𝑇𝑇𝑛 

𝑉𝐴𝑅𝑛 =
3

4
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Based on the moving average formula, we can see that: 
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The usual estimate proposed by Jacobson works well in Gaussian distributed delay environments. 

However, as some researchers have noted, this algorithm may be inaccurate in environments with a 

different RTT distribution. 

3. Related Work 

There are two areas of work on RTT prediction: based on probability distributions and based on 

machine learning. 

In several papers, RTT and, as a result, RTO are predicted based on the assumption that they are 

subject to a certain distribution. Thus, in [2], a method for approximate estimate of RTT was 

proposed based on the assumption that RTT is subject to the Weibull distribution. In [3], a method 

was proposed for a more detailed assessment of RTT based on the assumption that RTT is subject 

to a normal distribution. In [4], the authors proposed a method based on the calculation that the 

difference between neighboring values of RTT is subject to the Cauchy distribution. Using this 

assumption and Chebyshev's inequality, the authors can obtain the following estimate for the RTO: 

𝑅𝑇𝑂(𝑘) = 𝑅𝑇𝑇(𝑘 − 1) + √(
2𝛾𝜖

𝑡𝑎𝑛(𝜋𝜙)
) + 𝜖2 − 𝛾2 

 𝛾– jitter dispersion 

 𝜙– defined quality of service (QoS) parameter, which indicates the minimum fraction of 

time during which the prediction error is below the acceptable error 𝜖. 
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These methods rely on assumptions about the distribution of RTT. However, the dynamic variability 

of RTT negatively affects the ability to accurately predict RTT in these methods, because the 

distribution of RTT can vary depending on the network environment. 

A hybrid RTT prediction method based on geographical distance was proposed in [5]. The RTT 

prediction algorithm consisted of several stages. The first is an estimate of the distance between two 

IP addresses (sender and recipient). If the distance is less than 120 km, the RTT value was 

determined based on the database. If the distance is greater than 120 km, the RTT value was 

determined based on the trained model. The trained model was based on a decision tree that 

contained three features: Internet service provider, geographical distance between pairs of IP 

addresses and time of day. It is worth noting that distance is not always an informative feature, as it 

can change rapidly due to dynamic changes in network routes. 

Recurrent neural networks have shown good predictive ability for predicting time series. As a result, 

a number of papers have appeared that predicted RTT based on previous values of RTT. The 

algorithm proposed in [6] has the following form: 

𝐸𝑅𝑅 = |(𝑅𝑇𝑇𝑛 − 𝑆𝑅𝑇𝑇𝑛−1)| 

𝑆𝑅𝑇𝑇𝑛 = 𝐹(𝑅𝑇𝑇1 , 𝑅𝑇𝑇2. . . 𝑅𝑇𝑇188) 

𝑉𝐴𝑅𝑛 =
3

4
𝑉𝐴𝑅𝑛−1 +

1

4
𝐸𝑅𝑅 

𝑅𝑇𝑂 = 𝑆𝑅𝑇𝑇𝑛 + 4𝑉𝐴𝑅𝑛 

Here, F is a function implemented by a recurrent neural network. In [7], an RTT prediction method 

was proposed based on passive measurements collected at an intermediate node. The recurrent 

neural network (LSTM) was chosen as the prediction model. In [8], a lightweight version of the 

recurrent neural network GRU was proposed. 

However, neural networks can require high computational costs, which is critical in the context of 

RTT prediction. Therefore, it makes sense to consider classical machine learning models (Random 

Forest, Linear regression). 

It is worth noting that the RTT prediction study in the above papers was given only for the offline 

case. However, the efficiency of the algorithm in the offline and online case may vary greatly. 

Therefore, both offline and online scenarios will be considered in this paper. 

4. Online learning 

The task of online learning can be formulated as follows. Let's give a sequence of features and target 

values (𝑥𝑖 , 𝑦𝑖)𝑖=1
𝑛 . 𝑎(𝑥, 𝑤) - parametric model, 𝐿(𝑤, 𝑦) – loss function. At each step i, the following 

set of actions is performed: 

 getting object features 𝑥𝑖 

 the prediction is made based on the received object 𝑎(𝑥𝑖 , 𝑤𝑖−1) 

 getting 𝑦𝑖  

 calculation of the loss function 𝐿(𝑦𝑖 , 𝑎(𝑥𝑖 , 𝑤𝑖−1)) 

 updating the weights of the model based on the loss function 𝑤𝑖  

It is worth noting that incremental learning, unlike online learning, works with batches, while online 

learning uses only one object at each step. Otherwise, the two approaches are very similar in the 

context of the task under consideration. 

4.1 Drift detection 

Data drift is a phenomenon in which the statistical properties of the data used to train a machine 

learning model change over time. This means that the distribution of the input data in the real world 
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no longer corresponds to the distribution of the data on which the model was trained. Ultimately, 

due to this phenomenon, the accuracy of the model degrades. 

More strictly, let there be some target variable and a set of features defining this variable. The drift 

is understood as a change in the distribution of the input data 𝑃(𝑋), the target variable 𝑃(𝑌), or the 

relationship between them 𝑃(𝑌|𝑋) over time. It is worth noting that there are several types of drift 

detection in research. 

Input data drift: let’s give the initial distribution of input data (features) 𝑃0(𝑋) and some distribution 

of data 𝑃𝑡(𝑋) at time t. It is said that there is a drift in the input data if: 

𝑃0(𝑋) ≠ 𝑃𝑡(𝑋) 

Drift of the target variable (Label Drift): let’s give the initial distribution of the target variable 

𝑃0(𝑌)and some target variable 𝑃𝑡(𝑌) at time t. To say that there is a drift in the label data if: 

𝑃0(𝑌) ≠ 𝑃𝑡(𝑌) 

Concept Drift: let’s give the initial dependence distribution 𝑃0(𝑌|𝑋) and 𝑃𝑡(𝑌|𝑋) at time t. To say 

that there is a concept drift in the data if: 

𝑃0(𝑌|𝑋) ≠ 𝑃𝑡(𝑌|𝑋) 

There are a large number of ways to detect drift. These include statistical methods: the 

Kolmogorov—Smirnov test [9], the Chi-square test [10], the Darling-Anderson test [11], methods 

based on autoencoders [12], as well as methods based on the ARIMA model [13]. 

4.2 ADWIN 

The ADWIN (Adaptive Windowing) [14] algorithm is a method that solves the problem of detecting 

changes in statistical characteristics of data, such as mean or variance. ADWIN uses the hypothesis 

of equality of the averages between different parts of the data window. If these hypotheses are 

rejected, it means that data drift has occurred. 

The algorithm divides the window 𝑊into two sub-parts: 𝑊0and 𝑊1. Then, for each part, the 

following are calculated: 𝑛0, 𝑛1- size of window 𝑊0and 𝑊1𝜇0, 𝜇1- average values 𝑊0and 𝑊1. If the 

difference between the observed mean values |(𝜇0 − 𝜇1)|exceeds 𝜖𝑐𝑢𝑡, the algorithm considers that 

the distributions in 𝑊0and 𝑊1are different, and deletes the old part 𝑊0of the window. In this case, 

𝜖𝑐𝑢𝑡is calculated as follows: 

𝑚 =
𝑛0 ⋅ 𝑛1
𝑛0 + 𝑛1

 

𝛿′ =
𝛿

𝑛
 

𝜖𝑐𝑢𝑡 = √(
1

2𝑚
) ⋅ 𝑙𝑛 (

4

𝛿′
) 

4.3 Adaptive Random Forest regressor 

Adaptive Random Forest (ARF) [15-16] is an online learning algorithm that adapts to concept drift. 

The main idea of the algorithm is to have an ADWIN-based drift detector for each tree of a Random 

Forest. If the detector detects a change, the corresponding one is removed and retrained on the new 

dataset. Thus, the ensemble of trees adapts to the new distribution. 

4.4 Online learning and drift detection 

The general scheme of online learning used in this work is shown in Fig. 1. 
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The online learning process consists of several important parts: the main dataset, an Adaptive 

Random Forest, and a drift detector based on the ADWIN method. In the process of online learning, 

new objects are received at the input of the algorithm. The drift detector checks for drift between 

new objects and the main dataset, which is constantly being updated. If drift is detected, the Adaptive 

Random Forest is updated based on new data; if not, the Adaptive Random Forest remains 

unchanged. Thus, the model's stability to changing environmental conditions is achieved. 

In this case, the ADWIN algorithm determines the drift for the normalized value: 

|(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡)|. Thus, if the distribution of |(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡)|changes significantly, the 

ADWIN algorithm detects the drift. 

 

Fig. 1. Online learning and drift detection scheme. 

5. Implementation 

5.1 Problem formulation 

From the point of view of supervised learning, the RTT prediction task is a regression task. 

𝑓: 𝑋 → 𝑌 

 𝑋– features object 

 𝑌- predicted RTT value 

It makes sense to consider the following characteristics of a TCP stream as features. 

RTT: In most studies, it is proposed to use sequential RTT values as features. This paper also 

examines these values for RTT prediction. 
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TTL: As noted earlier, the geographical distance between two hosts can change dynamically and 

is not always an informative feature in the RTT prediction task. However, it makes sense to 

use the TTL parameter, which is the IPv4 field of the packet header that specifies the 

maximum number of routers (hop count) through which the packet can pass before it is 

dropped. Each time a packet passes through the router, the TTL value decreases by one. 

Therefore, this parameter can be used as features for RTT prediction. In IPv6, the Hop Limit 

field is an analogue of the TTL parameter from IPv4. From the point of view of the problem 

under consideration, the Hop Limit and TTL are equivalent parameters. 

Bytes in Flight: This value indicates how much data (in bytes) have been sent from the sender, but 

have not yet been confirmed by the recipient. The congestion control algorithm strives to 

maximize the use of the transmission channel so that the number of bytes in flight is 

approximately equal to BDP (Bandwidth-delay Product). Therefore, it can be stated that there 

is some connection between RTT and the number of bytes in the flight and use this feature 

in the task under consideration. 

Thus, the following features vector is used for prediction 𝑅𝑇𝑇𝑛: 

𝑅𝑇𝑇𝑛−1. . . 𝑅𝑇𝑇𝑛−𝑘 , 𝑏𝑦𝑡𝑒𝑠𝑛−1. . . 𝑏𝑦𝑡𝑒𝑠𝑛−𝑘, 𝑇𝑇𝐿𝑛−1. . . 𝑇𝑇𝐿𝑛−𝑘 

In this formula, k is a parameter that indicates the number of previous values used for prediction. 

The search for the optimal value of k, which preserves the high performance of the algorithm, will 

be described later in the paper. 

5.2 Machine learning models 

In this paper, the following machine learning algorithms were investigated within the framework of 

the problem under consideration: Linear regression with regularization, Decision Tree and Random 

Forest, as well as recurrent neural networks. 

After examining the collected dataset, a high linear relationship was found between the predicted 

RTT and the features discussed above. This behavior motivates the use of linear regression with L1 

and L2 regularization in the context of the task. 

Random Forest is an algorithm that has proven itself well in working with data containing a large 

number of noises. In terms of RTT prediction, an abnormal value of this value caused by some 

external factors can be considered noise. Therefore, it makes sense to consider this model in the 

context of the task under consideration. 

Recurrent neural networks have proven themselves well in the context of sequence prediction. 

Classical RNNs can have gradient attenuation problems when the network needs to remember 

information from the distant past: RTT prediction based on a large number of previous values. 

LSTM has a better ability to store information over long time intervals, but this model has a complex 

structure and may require high computing resources. The GRU model is simpler in terms of 

structure. In this paper, all three models for solving the RTT prediction problem will be investigated 

for a detailed analysis. 

5.3 Training data 

In the training process, the following dataset was collected, simulating 3 situations: a user is 

uploading files, an online game, and a regular web interaction. 

For a wide variety of data and, consequently, for more efficient prediction of the model in a variety 

of network scenarios, a dataset was collected in a wide range of network characteristics: bandwidth 

from 10 Mbps to 100 Mbps, distance between sender and receiver from 100 km to 1200 km, as well 

as the use of both IPv4 and IPv6 protocols. 

The characteristics of the collected dataset are shown in Table 1. 
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Table 1. Training Data. 

Scenario 
Number of 

objects 
𝜇 RTT, ms 𝜎2 RTT, ms2 

Uploading files 922063 60.37 1344 

Uploading files 1791633 9.89 144 

Uploading files 1731034 40.75 58 

Online game 30012 31.85 738 

Web interaction 38250 10.10 140 

 𝜇 – average of RTT value 

 𝜎2 – variance of RTT value 

It should be noted that the number of objects in the case of loading is significantly higher than in the 

other two scenarios. This is due to the fact that the complexity of obtaining objects in an online game 

scenario and in a web interaction scenario is much more complicated than in an upload scenario. 

However, section VI explores this problem for both balanced dataset and unbalanced dataset 

(number of objects in the loading scenario). 

As noted above, a dataset with a true RTT value is needed to train the model. Experiments have 

shown that using the TCP packet option to measure accurate RTT does not provide significant 

advantages over tcp.analysis.rtt in the context of the task under consideration. Therefore, in this 

work, a tcp.analysis.rtt was used to obtain the correct RTT values. 

6. Evaluation 

This section presents the main results of the implemented algorithms in both offline and online 

scenarios. In addition, a comparison of machine learning algorithms with the classical Jacobson 

algorithm is presented. 

6.1 Offline scenario balanced dataset 

In this subsection, the considered models are trained on a balanced dataset containing objects from 

the upload scenario, the online game scenario, and the web interaction scenario. The models are 

tested on a dataset that also contains an equal proportion of objects in all three scenarios. The results 

obtained are presented in Table 2. 

From the results obtained, it can be stated that in this scenario, a Random Forest shows the best 

result in terms of all metrics. It can also be noted that neural networks do not provide significant 

improvements compared to simpler algorithms in the context of the problem under consideration. 

The best value of k is understood as the smallest k, with an increase in which the error decreases 

slightly. 

6.2 Offline scenario unbalanced dataset 

In this subsection, the considered models are trained on an unbalanced dataset containing objects 

only from the loading scenario. The models are tested on a dataset that contains an equal proportion 

of objects in all three scenarios. The results obtained are presented in Table 3. 

The results show that from the point of view of RTT prediction, the scenarios of different network 

situations do not differ. 
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Table 2. Offline scenario (balanced dataset). 

Algorithm best k MSE MAE R2 MAPE 

ElasticNet 7 45.65 2.10 0.94 8.43 

Random Forest 4 40.36 1.80 0.94 6.75 

RNN 14 48.33 2.21 0.92 12.91 

LSTM 14 47.98 2.13 0.93 11.29 

GRU 14 48.50 2.20 0.92 12.58 

The Jacobson 

algorithm 
- 59.50 2.45 - 22.31 

Table 3. Offline scenario (unbalanced dataset). 

Algorithm best k MSE MAE R2 MAPE 

ElasticNet 8 43.37 2.00 0.94 7.97 

Random Forest 4 38.32 1.70 0.95 6.40 

RNN  11 48.24 2.19 0.92 12.84 

LSTM 11 47.84 2.11 0.93 11.17 

GRU 11 48.03 2.17 0.92 12.44 

The Jacobson 

algorithm  
- 59.30 2.67 - 23.24 

From the results obtained, it can be argued that in this scenario, a Random Forest shows the best 

result in terms of all metrics. It can also be noted that neural networks do not provide significant 

improvements compared to simpler algorithms in the context of the problem under consideration. 

The best value of k is understood to be the smallest value of k, with an increase in which the error 

decreases slightly. 

6.3 Online scenario 

Due to the high dynamism of network environments, machine learning models trained on one traffic 

may not work well enough in traffic with other characteristics. 

In this subsection, an online learning method based on an Adaptive Regression Forest with drift 

detection using the ADWIN method is proposed. The code implementing this training uses the River 

library [17]. 

The first dataset was collected in a low RTT network environment 𝑜𝑏𝑗𝑒𝑐𝑡𝑠: 60000, 𝜇 =
8.67𝑚𝑠, 𝜎 = 1.24𝑚𝑠2, while the second dataset was collected in an environment with high RTT 

𝑜𝑏𝑗𝑒𝑐𝑡𝑠: 20000, 𝜇 = 73.93𝑚𝑠, 𝜎 = 2759.20𝑚𝑠2 and RTT have distribution with a heavy tail 

(Fig. 2). 

A Random Forest was trained based on 50,000 objects in the first dataset, and then Random Forest 

tested on 10,000 objects of the first dataset and 20,000 objects of the second dataset. Thus, the case 

was considered when a model trained on a dataset with certain network characteristics was tested on 

a dataset with other network characteristics. 
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Fig. 2. Distribution with a heavy tail. 

In the second experiment, the Adaptive Random Forest was trained on the 50000 objects of first 

dataset. On the second dataset, the algorithm was trained online using drift detection. This detection 

was used to more accurately train a Random Forest, in which the forest trees that solved the problem 

were most poorly replaced by new trees. The results obtained are shown in Fig. 3. The results 

obtained show the effectiveness of online learning in this task: the overall value of the MAPE metric 

does not deteriorating as critically as in the case of offline learning. 

In the second pair of experiments, the dataset with a higher RTT 𝑜𝑏𝑗𝑒𝑐𝑡𝑠: 60000, 𝜇 =
68.69𝑚𝑠, 𝜎2 = 2039.15𝑚𝑠2 value was the first, while the dataset with a lower RTT 

𝑜𝑏𝑗𝑒𝑐𝑡𝑠: 20000, 𝜇 = 8.70𝑚𝑠, 𝜎 = 1.22𝑚𝑠2 value was the second. The results obtained are shown 

in Fig. 4. 

In this case, online learning also shows improvement. At the same time, offline learning shows very 

bad results. 

7. Conclusions 

In this paper, algorithms for RTT prediction using offline and online learning were presented. The 

results show that the algorithms based on learning works better in terms of MAPE, MSE, and MAE 

metrics in network environments with a wide range of network characteristics than the classic 

Jacobson algorithm. 

However, as shown in this article, offline learning can be ineffective in dynamically changing 

network environments. To solve this problem, an online learning method with drift detection was 

proposed. The results show that in the case of online learning, the prediction efficiency does not 

deteriorate or deteriorates slightly when the environment changes. 

The results obtained allow us to identify the following areas of future work: 

 integration of online learning algorithms implemented in this paper into classical 

congestion control algorithms (TCP Reno, TCP CUBIC), 

 study of the performance of classical congestion control algorithms using RTT prediction 

using online learning. 
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Fig. 3. Offline and Online learning (the first pair of experiments). 

 
Fig. 4. Offline and Online learning (the second pair of experiments). 
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