
Труды ИСП РАН, том 37, вып. 5, 2025 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025 

67 

DOI: 10.15514/ISPRAS-2025-37(5)-5 

Coloring Symbolic Memory Graphs 
to Detect DRM-Specific Errors in Linux Drivers 

E.M. Orlova, ORCID: 0009-0003-1654-3085 <e.orlova@ispras.ru> 

A.A. Vasilyev, ORCID: 0000-0002-5738-9171 <vasilyev@ispras.ru> 

O.M. Petrov, ORCID: 0009-0004-6245-9615 <o.petrov@ispras.ru> 

Institute for System Programming of the Russian Academy of Sciences, 

25, Alexander Solzhenitsyn st., Moscow, 109004, Russia. 

Abstract. This paper discusses a particular type of subtle use-after-free errors in the Direct Rendering Manager 

(DRM) subsystem of the Linux kernel. These errors occur due to incorrectly allocated memory for structures 

accessible from user space via device callbacks. To detect these errors, we use a shape analysis based on the 

Symbolic Memory Graph (SMG) domain. We introduce the coloring of allocated memory to track its origin. 

Among 186 Linux DRM drivers, we have found 6 violations of the proposed rule. 

Keywords: Linux drivers; use-after-free; shape analysis; software model checking; symbolic memory graphs. 

For citation: Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-

Specific Errors in Linux Drivers. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80. DOI: 

10.15514/ISPRAS-2025-37(5)-5. 

Acknowledgements. The authors would like to thank Vadim Mutilin, colleagues from the Linux Verification 

Center, and the maintainers of the Linux DRM subsystem for their feedback and comments. 

 

 



Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP 

RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80. 

68 

Окрашивание символьных графов памяти для выявления 
ошибок, специфичных для DRM-драйверов Linux 

Е.М. Орлова, ORCID: 0009-0003-1654-3085 <e.orlova@ispras.ru> 

А.А. Васильев, ORCID: 0000-0002-5738-9171 <vasilyev@ispras.ru> 

О.М. Петров, ORCID: 0009-0004-6245-9615 <o.petrov@ispras.ru> 

Институт системного программирования РАН, 

Россия, 109004, г. Москва, ул. А. Солженицына, д. 25. 

Аннотация. В статье рассматривается одна трудновоспроизводимая ошибка типа use-after-free в 

подсистеме Direct Rendering Manager (DRM) ядра операционной системы Linux. Её причиной является 

некорректный способ выделения памяти, доступной для пользовательского кода через обратные 

вызовы устройства. Для поиска ошибок работы с памятью мы используем анализ на основе символьных 

графов памяти (SMG). Чтобы отследить способ выделения памяти, мы добавили ей цвет. Среди 186 

проанализированных драйверов DRM ОС Linux было найдено 6 нарушений предложенного правила. 

Ключевые слова: драйверы Linux; уязвимость use-after-free; анализ динамической памяти; 

автоматическая статическая верификация; символьные графы памяти. 

Для цитирования: Орлова Е.М., Васильев А.А., Петров О.М. Окрашивание символьных графов памяти 

для выявления ошибок, специфичных для DRM-драйверов Linux. Труды ИСП РАН, том 37, вып. 5, 

2025 г., стр. 67-80 (на английском языке). DOI: 10.15514/ISPRAS–2025–37(5)-5 

Благодарности: Авторы выражают благодарность Вадиму Мутилину, коллегам из Технологического 

центра исследования безопасности ядра Linux, а также разработчикам, поддерживающим подсистему 

DRM в Linux, за их отзывы и комментарии. 

1. Introduction 

The Linux operating system kernel is a widely used software system consisting of 25 million lines 

of code. Put simply, it consists of the kernel core and various subsystems and device drivers. To use 

a graphics processing unit (GPU), a user program invokes a system call so that the kernel core 

dispatches the appropriate callback in the corresponding device driver in the Direct Rendering 

Manager (DRM) kernel subsystem. 

This paper discusses a particular type of errors related to the incorrect use of device resource 

management (devres) in the DRM subsystem. Incorrect memory allocation of structures accessible 

from user space can lead to a use-after-free memory access. Such outcomes can be detected with 

dynamic analysis, but situations in which the target errors cause the kernel to crash are specific and 

quite rare. 

On the other hand, static verification methods [1] aim at detecting such subtle errors. Klever [2-3] 

is a software verification platform capable of automated static verification of industrial software 

systems using software model checking tools such as CPAchecker [4]. As many Linux errors are in 

its device drivers [5], Klever is tailored for bug-finding in the Linux subsystems. 

Klever decomposes the kernel source code into modules, provides the environment models based 

on typical device usage, runs the verification tool, and displays the results, e.g. visualizes the 

reported error traces. Using this method, several hundred bugs in Linux subsystems were found and 

reported [6]. 

To verify memory safety, CPAchecker uses a shape analysis based on the Symbolic Memory Graph 

domain [7-10]. The analysis represents a program memory state as a bipartite graph, with its nodes 

being memory objects (concrete regions and abstracted linked lists) and symbolic values. 

Contribution. We manually analyzed the Linux DRM subsystem and found a documented 

recommendation [11] on correct allocation that had been overlooked in 13 files [12]. This can lead 

https://www.zotero.org/google-docs/?ZLsfSB
https://www.zotero.org/google-docs/?UVkmIi
https://www.zotero.org/google-docs/?SwlDIy
https://www.zotero.org/google-docs/?IdtO5M
https://www.zotero.org/google-docs/?RGdZNQ
https://www.zotero.org/google-docs/?uNQV4I
https://www.zotero.org/google-docs/?UB1K2R
https://www.zotero.org/google-docs/?8O2dmz


Орлова Е.М., Васильев А.А., Петров О.М. Окрашивание символьных графов памяти для выявления ошибок, специфичных для DRM-

драйверов Linux. Труды ИСП РАН, 2025, том 37 вып. 5, с. 67-80. 

69 

to potential use-after-free errors, some of which have already been reported by Kernel Address 

Sanitizer (KASAN). 

We formulated a more general rule in natural language and formally specified it using Klever. To 

verify this rule, we adapted the memory analysis in the CPAchecker verification tool by adding color 

to the symbolic memory graphs. We evaluated this approach on 186 DRM modules, with all 6 

reported violations of the rule manually confirmed. The results are discussed in comparison with the 

violations we found using Coccinelle [13]. The corresponding Coccinelle rule (semantic patch) was 

submitted to the kernel [14]. Finally, we are working on fixes for the discovered errors, and one 

patch has already been accepted upstream [15]. 

2. Problem Statement 

There is a static driver structure through which device instances are managed. Through a certain 

interface, a device instance is accessible from the user space. Even if the driver is disabled, the 

device instance will still exist as long as it has at least one user. If memory is allocated incorrectly, 

the DRM device structure (or structures used by it) is automatically freed when the driver is 

unbound. Thus, while the device instance still exists, a user can cause access to this freed structure. 

2.1 DRM device instance 

At the core of every DRM driver is a drm_driver structure. It contains static information that 

describes the driver and features it supports, and pointers to methods that implement the DRM API. 

This structure is also used to create a device instance, which is then initialized and registered, 

providing callbacks accessible from the user space. 

A device instance for the DRM driver is represented by the drm_device structure. It is allocated 

and initialized with devm_drm_dev_alloc() (or deprecated drm_dev_alloc()). After 

initialization of all the various DRM device subsystems when everything is ready for user space, the 

device instance can be published using drm_dev_register() [11]. 

When cleaning up, everything is done in reverse. First, the device instance is unpublished with 

drm_dev_unregister(). Then any other resources allocated at device initialization are cleaned 

up and drop the driver’s reference to drm_device using drm_dev_put(). It is important to note 

that if drm_device still has some resource handles open when the driver is unbounded, the release 

of drm_device instance does not happen immediately, but only after the last handle is closed. 

Before that, drm_device remains user-accessible. This is why any allocation or resource which is 

visible to user space must be released only when the final drm_dev_put() is called, and not when 

the driver is unbound from the underlying physical struct device. Otherwise, using the device 

may result in accessing freed memory. 

This imposes a restriction on which functions can be used to allocate structures that are accessible 

from user space through a drm_device instance. 

2.2 Some Linux kernel memory allocation functions 

Let’s look at some of the memory allocation functions in more depth. 

 kmalloc() – a kernel-space function similar to user-space malloc(). The memory 

allocated with this function must be freed by calling the kfree() function. 

 devm_kmalloc() – devres-managed kmalloc(). Memory allocated with this function is 

automatically freed on driver detach. Its lifetime is linked to the device structure, a pointer 

to which is passed as a parameter. 

 drmm_kmalloc() – DRM-managed kmalloc(). Memory allocated with this function is 

automatically freed on the final drm_dev_put(). Its lifetime is linked to the drm_device 

structure, a pointer to which is passed as a parameter. 

https://www.zotero.org/google-docs/?DzNEw8
https://www.zotero.org/google-docs/?eUYpNW
https://www.zotero.org/google-docs/?DuN2a9
https://www.zotero.org/google-docs/?1J8fjN


Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP 

RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80. 

70 

drmm_kmalloc() is recommended to allocate the memory for the aforementioned structures 

accessible from user space. Then the memory will be automatically released when the drm_device 

is destroyed and only after its registration is canceled, as there will be no risk of accessing the 

released memory. The correct work of a DRM driver is shown in Fig. 1. 

 

Fig. 1. A correct operation of a DRM driver. 

Contrarily, using devm_kmalloc() in most of these cases is a mistake, since the release may occur 

ahead of time. The driver will still work, but sudden crashes will happen periodically. The reason is 

shown in Fig. 2. If the device still has a user after the driver detach, the user can try to access the 

structure previously allocated with devm_kmalloc() and released on driver detach. There are 

vulnerabilities of this type in the Linux kernel. Therefore, structures accessible from the user space 

after drm_device registration should not be allocated with devres-managed functions like 

devm_kmalloc(). 

Accordingly, there is a documented restriction on the second argument of 5 functions that initialize 

preallocated DRM-specific structures – drm_encoder_init, drm_connector_init, 

drm_connector_init_with_ddc, drm_crtc_init_with_planes, and 

drm_universal_plane_init – namely, the second argument should not be allocated with 

devm_kzalloc or similar devres functions. This is a more obvious violation of the general rule. 

3. Related Work 

There is a wide variety of approaches and tools for bug finding in industrial software systems. Here, 

we limit the discussion to those most relevant to the Linux kernel [16]. 

3.1 Dynamic analysis 

Dynamic analysis tools [17] typically look for a class of issues occurring in the running kernel. One 

example is Kernel Address Sanitizer (KASAN) [18] which can detect invalid memory accesses such 

as out-of-bounds and use-after-free errors. 

The presence of the target errors in the code poses a risk of accessing freed memory, so they can be 

detected by KASAN. Indeed, it is mentioned in comments of some target error fixes accepted into 

the kernel and can be used to confirm the fix. 

https://www.zotero.org/google-docs/?AncLMU
https://www.zotero.org/google-docs/?zk7LvT
https://www.zotero.org/google-docs/?I05AnI


Орлова Е.М., Васильев А.А., Петров О.М. Окрашивание символьных графов памяти для выявления ошибок, специфичных для DRM-

драйверов Linux. Труды ИСП РАН, 2025, том 37 вып. 5, с. 67-80. 

71 

 

Fig. 2. An operation of a DRM driver with a target error. 

However, dynamic analysis can only check the parts of the code that are reachable through the tests. 

Moreover, the target errors can cause races in very specific situations. Another drawback is the need 

for particular hardware to run certain drivers. These limitations effectively prevent dynamic analysis 

from reliably detecting the target errors. 

3.2 Static analysis 

Lightweight static analysis, such as abstract syntactic tree (AST) analysis and data-flow analysis 

(DFA), searches for defects in the program source code without execution. It can detect potential 

errors, vulnerabilities and non-compliance with standards at early stages of development, thereby 

saving time and resources. The tools most closely tied to the Linux kernel and used by its 

development community include Coccinelle, Sparse, and Smatch [16]. 

Coccinelle [13] is a program matching and transformation tool focused on patterns in source code 

structure. It operates on semantic patches – high-level patterns that resemble git patches but are 

abstracted with metavariables and ellipses. The tool employs a temporal logic (extended CTL [19]) 

to reason about a function’s control flow. The strength of the tool is the relative ease of writing 

semantic patches for known patterns and its ability to generate patches automatically. However, its 

major limitation for our purposes is the lack of any data-flow reasoning and the very limited support 

for interprocedural analysis. 

Sparse [20] is a source parser and analyzer that extends the C type system with kernel-specific 

annotations. These include address-space qualifiers to prevent mixing user and kernel pointers, and 

endianness markers to detect incorrect byte-order handling. Sparse also performs simple 

intraprocedural DFA for context-tracking [21] (i.e. matching context counters on entry and exit 

against annotations) and uses this together with locking annotations to warn about imbalanced or 

missing lock acquisition and release. Applying type-checking to the target errors would require 

manually annotating pointers along the data flow, which is more effort than manual inspection of 

the DRM drivers. 

More conventional static analyzers, such as Smatch and Svace, use full-fledged data-flow analysis. 

Smatch [22] builds on Sparse by adding a “cross-function flow analysis” [23]. It is path-sensitive 

and can track a range or multiple values for a given variable. Svace [24], used by the Linux 

https://www.zotero.org/google-docs/?6Fli6Y
https://www.zotero.org/google-docs/?dMumCJ
https://www.zotero.org/google-docs/?KyY3yn
https://www.zotero.org/google-docs/?zUxOq7
https://www.zotero.org/google-docs/?o98YE9
https://www.zotero.org/google-docs/?sKRsDC
https://www.zotero.org/google-docs/?SRIhXr
https://www.zotero.org/google-docs/?CAcRV0


Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP 

RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80. 

72 

Verification Center (LVC) [25, 26], employs both syntactic and flow analysis. It leverages a bottom-

up technique: functions lower in the call graph are summarized using data-flow analysis and 

symbolic execution, and these summaries are then reused at call sites when analyzing functions 

higher in the call graph. 

Although Smatch and Svace are effective at detecting various generic and kernel-specific errors, 

lightweight static analysis is generally unable to find the target errors in the complex scenarios 

characteristic of our target errors. The inherent trade-off between scalability and false positive rate 

forces the use of heuristics, which sacrifices soundness and precision. 

3.3 Software model checking 

Software model checking, or static verification, can be considered a heavyweight form of static 

analysis. The approach aims at thorough exploration of a program’s state space, which allows 

detecting subtle errors, e.g. data races, and thus is used for critical system verification [1]. The 

drawbacks of the approach are high resource consumption and the frequent need for handwritten 

formal specifications. 

Klever [2, 3] is a verification platform designed to automate the software model checking for 

industrial systems. For scalability, Klever decomposes large codebases into smaller, verifiable 

modules. Specifications needed for particular requirements or missing function bodies can be written 

in C [27]. The environment model, i.e. calls to the module, is provided based on the typical scenarios 

of device usage [28-29]. 

Klever together with the CPAchecker static verification tool have been used to find several hundred 

errors in the kernel, including memory safety violations [7], data races [30], and errors specific to 

Linux device drivers [3, 5]. To find the target errors, we need both write the specification for our 

DRM-specific rule and modify the underlying memory analysis to remember the allocating function 

for allocated memory regions. 

4. Colored Symbolic Memory Graphs 

To verify memory safety, CPAchecker [4] uses a shape analysis based on the Symbolic Memory 

Graph (SMG) domain [7-8] that first appeared in the Predator shape analyzer [9-10, 31]. 

The analysis represents a program memory state as a labeled bipartite graph of memory objects and 

symbolic values, and edges between them. A “has-value” edge from a memory object to a symbolic 

value means that the value is stored in the object (the offset and bitsize are labeled on the edge). A 

“points-to” edge from a symbolic value to a memory object means that the value points to the object 

(again, the offset from the start of the object is labeled on the edge). 

To distinguish objects allocated in a certain way, we have introduced memory coloring for the 

analysis. The color of an allocated region is determined by the allocating function: 

 DRM for the drm_device structures allocated by drm_dev_alloc() or 

devm_drm_dev_alloc(), 

 DEVM for the devm_kmalloc()-allocated memory, 

 and default (colorless) memory is allocated by all other functions. 

Now, we can reformulate our rule in terms of the colored memory graphs: DRM-colored memory 

objects should not store pointers to DEVM-colored memory objects. 

Simplified erroneous code is provided in Listing 1. A probe driver method allocates its own device 

structure and drm_device structure. When the analysis traverses the first line with a call to 

devm_kzalloc(), it adds a new heap object (shown as “DEVM” in Fig. 3) and a new symbolic 

value (“s1”) that points to its start. As the pointer to the new allocation is stored in the variable ldev, 

a has-value edge ldev → s1 is added, too. As devm_kzalloc() is a colored function, the allocation 

gets the corresponding color (shown as red). 

https://www.zotero.org/google-docs/?JnBLSu
https://www.zotero.org/google-docs/?jVNnyJ
https://www.zotero.org/google-docs/?erooh4
https://www.zotero.org/google-docs/?aSwpee
https://www.zotero.org/google-docs/?Y4OZPX
https://www.zotero.org/google-docs/?sj2CpK
https://www.zotero.org/google-docs/?pk8K4T
https://www.zotero.org/google-docs/?rtFs20
https://www.zotero.org/google-docs/?1KHTWe
https://www.zotero.org/google-docs/?wfw5G2
https://www.zotero.org/google-docs/?bkShJb


Орлова Е.М., Васильев А.А., Петров О.М. Окрашивание символьных графов памяти для выявления ошибок, специфичных для DRM-

драйверов Linux. Труды ИСП РАН, 2025, том 37 вып. 5, с. 67-80. 

73 

// allocate DRM device ddev with the given dev as parent 

struct drm_device *ddev = drm_dev_alloc(&drv_driver, &pdev->dev); 

// allocate the specific device with actually the same dev as parent 

struct ltdc_device *ldev = 

  devm_kzalloc(ddev->dev, sizeof(*ldev), GFP_KERNEL); 

// the rule violation 

ddev->dev_private = (void *)ldev; 

// ldev may be accessed after it is released before ddev is released 

Listing 1. Simplified erroneous code (before the patch) 

from drivers/gpu/drm/stm/drv.c, functions stm_drm_platform_probe and drv_load. 

The ddev initialization is analyzed in the same manner, with the new allocation colored DRM 

(shown as green). The result SMG (without the labels on the edges) can be seen in Fig. 3 on the left; 

unimportant parts (such as previous stack frames and global variables) are not shown. After the 

assignment in the last line, the SMG looks like in Fig. 3 on the right. Note that DRM-colored 

allocation now has a field (DRM → s1) that points to a DEVM-colored allocation (s1 → DEVM). 

When such an assignment happens, the analysis reports an error. 

 
Fig. 3. Left: the symbolic memory graph for Listing 1 before assignment. 

Right: the symbolic memory graph after assignment; 

the presence of DRM → s2 → DEVM path is a violation of the proposed rule. 

5. Specification of DRM subsystem in Klever 

Klever decomposes the kernel into modules, with the result that CPAchecker runs on each of the 

modules separately [29]. This solves the issue of running heavy analysis on large code, but there is 

a problem with functions defined in other modules. Their bodies are not visible to CPAchecker, so 

during the verification of a module, it assumes that such a function is pure, i.e. it does not affect the 

analyzed code. If a function is important for finding the target error (e.g. it initializes a pointer 

important for the analysis), one has to write a model for it that CPAchecker will traverse instead of 

the original function. 

Klever allows us to write such models for functions and replaces every call to the original function 

in the module with a call to the given model [28]. This is implemented using aspect-oriented 

programming [27]. Suppose there is a function foo() in the kernel code that we want to replace 

https://www.zotero.org/google-docs/?Dnro4f
https://www.zotero.org/google-docs/?XQ3a2X
https://www.zotero.org/google-docs/?1rTjiZ


Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP 

RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80. 

74 

with a model. Then we write a ldv_foo() function in the .c file, and we specify in the .aspect 

file that instead of foo() calls, ldv_foo() should be actually called. 

The capability to replace a function with a model is also useful if it needs to be abstracted from 

insignificant details (simplified) or given a new feature, such as color for memory it allocates. 

In our case, some memory allocation and releasing should be colored appropriately. To do this, a 

special “color” function was called in the bodies of the models (ldv_color_drm_kmalloc() or 

ldv_color_devm_kmalloc(), depending on the desired color). Models were also required for a 

number of imported functions in which bindings between structures were created. Basically, instead 

of a function initializing all fields of the structure, a model filled in several pointers, the value of 

which influenced the success of the target error search. 

For the DRM subsystem, we have modelled the following functions in Klever: 

 Devres specification. It includes devm_kmalloc() and its analogs (devm_kzalloc(), 

devm_kcalloc(), devm_kmalloc_array). Memory allocated with this function is 

automatically freed on driver detach. These functions paint memory in the color DEVM. If 

a reference to memory of the color DEVM appears in drm_device, an error is reported. 

 drm_device managed resources specification. It includes memory allocation functions 

(drmm_kmalloc() and its analogs, which paint memory in the color DRM) and 

implementation of various ways to free it. 

 Special functions used to allocate and deallocate drm_device and drm_driver memory 

and to initialize them: drm_dev_alloc(), drm_dev_init(), drm_dev_release(), 

etc. The function models responsible for initialization create references needed to find 

target errors. 

 Models of functions that initialize structures used by DRM device. drm_encoder_init() 

for srtuct drm_encoder, drm_universal_plane_init() for srtuct drm_plane, 

and so on. In them, the structures are linked to drm_device, and if their memory was 

allocated incorrectly – i.e., with the DEVM color – an error is detected at the moment of 

storing a reference to such memory. 

 Models of other functions that create and destroy links between structures: 

drm_dev_put(), get_device()/put_device(), kref_init()/kref_put(). 

6. Evaluation 

We applied our approach to 186 loadable DRM driver modules from drivers/gpu/drm/ in Linux 

5.10.238, targeting the ARM architecture with the allmodconfig build configuration. 

The experiment was carried out with Klever, derived from version 4.0.1 [32], together with our fork 

of CPAchecker [33] on a machine with an Intel Core i7-11700 2.50GHz CPU (8 cores, 16 threads), 

2x16 GB DDR4 RAM, and an SSD. 

In total, verification has taken 10 h of CPU time (40 min of wall time). We have limited the 

CPAchecker verification tool to 270 s per module; it has used up to 1.3 GB for a module and 

consumed 4.2 h of CPU time in total. Table 1 details the results of the verification. 

 108 modules were verified as safe, with CPAchecker exhausting all reachable states 

without detecting any target or generic memory safety error. 

 33 modules resulted in verifier timeout, where CPAchecker did not complete within the 

allotted time. 

 For 3 modules, CPAchecker stopped after encountering a recursive call. 

 17 driver modules were not verified due to a composition problem, where Klever was 

unable to compose a module to verify due to atypical module init or exit, or missing 

declarations. 

https://www.zotero.org/google-docs/?QnXvMt
https://www.zotero.org/google-docs/?sXyx7Z


Орлова Е.М., Васильев А.А., Петров О.М. Окрашивание символьных графов памяти для выявления ошибок, специфичных для DRM-

драйверов Linux. Труды ИСП РАН, 2025, том 37 вып. 5, с. 67-80. 

75 

The analysis reported 25 modules as unsafe: 

 6 target errors; 

 1 generic memory error, specifically a non-target use-after-free; 

 18 false alarms for generic memory errors. These were primarily due to analysis 

imprecision (e.g., inability to calculate a dereferenced address). One of them was caused 

by inline assembler code in the sources. 

Table 1. Verification results for the 186 Linux 5.10.238 DRM drivers. 

Verdict Count % 

Unsafe 25 13 

target error 6 3.2 

use-after-free 1 0.5 

false alarm 18 9.7 

Safe 108 58 

Unknown 53 28 

verifier timeout 33 17.7 

recursion in module 3 1.6 

composition problem 17 9.1 

Total: 186 100 

6.1 Estimating Missed Errors with Coccinelle 

We used Coccinelle to estimate the amount of the target errors in the kernel code and to assess the 

false negative rate of our approach. As the presence of an error-prone pattern implies the need to fix 

multiple files in a module, we count the reported modules instead of matches for Coccinelle. 

Following the documented restriction, we wrote the arg rule illustrated in Listing 2. It finds a devres-

managed memory pointer passed as the second argument to one of the 5 drm-init functions with the 

documented restriction discussed in Section 2. We used Coccinelle to find 5 more functions – 

drm_writeback_connector_init, drm_crtc_init, drm_plane_init 

drm_bridge_connector_init, and drm_simple_encoder_init – that are simple wrappers to 

those and should thus have the same restriction applied. While we can continue to elaborate the rule, 

in practice we do not expect much more alarms.1 

devm =@p devm_kzalloc(...); 

... 

drm_crtc_init_with_planes(@q e,<+...devm...+>,...) 

Listing 2. A snippet of the arg rule for DEVM-allocated second argument to a drm_*_init function. 

All target errors identified by Klever involved an assignment of DEVM-allocated memory pointer 

to the dev_private field of a DRM-allocated drm_structure. Moreover, 3 modules reported by 

Klever were not reported by the arg rule. This motivated a second Coccinelle rule, field (Listing 3) 

designed to detect assignments of a DEVM-allocated pointer to a field of a DRM-allocated structure. 

See more elaborated rules as submitted to the kernel in [14]. 

                                                           
1 There are a considerable number of cases where a DEVM-allocated pointer is first assigned to 

another local variable which is later passed to a drm-init function. However, these occur in modules 

already reported by the simpler rule. 

https://www.zotero.org/google-docs/?PBqbxU


Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP 

RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80. 

76 

drm = drm_dev_alloc(...); 

... 

devm = devm_kzalloc(...); 

... 

drm->f =@p <+...devm...+>; 

Listing 3. A snippet of the field rule for assigning a DEVM-allocated pointer to a DRM-allocated field. 

Table 2 presents a per-module comparison between the findings from Klever and the two Coccinelle 

rules, 27 modules in total. The column Klever shows the outcomes of our verification runs, while 

Coccinelle/field and Coccinelle/arg mark the modules in which the corresponding rule found 

violations. All 27 modules are reported by one of the Coccinelle rules; notably, only 4 are reported 

by both. Although our analysis targeted Linux 5.10.238, many of the bugs are still present in recent 

versions (6.17). In the Klever column, the outcomes are encoded as follows: 

 target error – analysis reported a violation of the color rule (true positive); 

 non-target alarm – a reported generic memory error turned out to be a false alarm; 

 safe – full state-space exploration without detecting violations of the color rule or generic 

memory safety; 

 unknown (timeout) – CPAchecker exceeded the allocated CPU time; 

 unknown (recursion) – CPAchecker stopped on encountering a recursive function call; 

 unknown (oom) – out-of-memory during module composition; 

 unknown (comp. iss.) – compilation issue during module composition; 

 unknown (arch) – module not included in the ARM build. 

6.2 Error classification 

True Positives. As shown in Table 2, Klever successfully identified target errors in 6 modules. All 

6 modules were also reported by at least one Coccinelle rule: 5 modules were reported by the field 

rule and 3 by the arg rule. Notably, the assignment to the field in stm/stm-drm module was not 

reported by the field rule because one of the allocations happens in another function, and handling 

such interprocedural cases is limited in Coccinelle. 

True Negatives. We did not assess true negatives. 

False Positives. We found no false positives among the 6 target errors reported by Klever. 

False Negatives. Klever missed a violation in 21 modules reported by Coccinelle: 8 reported by the 

field rule and 15 modules reported by the arg rule, respectively. Of these, 11 misses can be attributed 

to the limitations of our approach (timeouts, recursion, oom, comp. arch, non-target alarms). For the 

10 modules reported as safe, the coverage appears to be lacking, as the relevant functions were not 

reached. This suggests the need to refine or add the specifications for the modules so the analysis 

can reach the DRM functions. 

7. Conclusion 

We have discussed a subtle use-after-free error in Linux DRM drivers that originates from misusing 

managed memory allocation for device structures. To find such errors, we proposed a coloring rule, 

introduced such coloring to the SMG analysis in the CPAchecker verification tool, and wrote 

specifications for the respective functions of the DRM subsystem. 

For the specification and component-wise verification of 186 modules in the DRM subsystem, we 

have used the Klever verification platform. Klever was able to carry out the verification for 169 

modules and reported 25 of them as unsafe. Among these, 6 modules contain a target error, and 1 

module contains a generic memory error (use-after-free). 

Moreover, we developed two Coccinelle rules: arg, which finds violations of the documented 

restriction, and field, which was motivated by the pattern in the errors found by Klever. While arg 



Орлова Е.М., Васильев А.А., Петров О.М. Окрашивание символьных графов памяти для выявления ошибок, специфичных для DRM-

драйверов Linux. Труды ИСП РАН, 2025, том 37 вып. 5, с. 67-80. 

77 

reports errors in 18 modules, field reports 9 additional modules. Together, these approaches provide 

complementary coverage and demonstrate the effectiveness of combining lightweight and 

heavyweight methods. 

Future work. We plan to continue submitting patches for the discovered errors. We also intend to 

refine and extend the specifications to improve the coverage across DRM modules. 

Table 2. Comparison of target errors found by Klever and Coccinelle. 

DRM module Klever Coccinelle 

arc/arcpgu non-target alarm  arg 

arm/hdlcd safe field arg 

arm/mali-dp unknown (timeout) field  

atmel-hlcdc/atmel-hlcdc-dc non-target alarm  arg 

fsl-dcu/fsl_dcu_drm target error field  

ingenic/ingenic-drm non-target alarm  arg 

lima/lima target error field  

meson/meson-drm unknown (recursion) field arg 

meson/meson_dw_hdmi safe  arg 

msm/msm unknown (oom)  arg 

panfrost/panfrost unknown (arch) field  

pl111/pl111_drm safe field  

rcar-du/rcar_du non-target alarm field  

rockchip/rockchip_drm unknown (timeout) field  

shmobile/shmob_drm target error field arg 

sti/sti-drm safe  arg 

stm/stm-drm target error  arg 

sun4i/sun4i-drm unknown (timeout) field  

5 modules: sun4i/sun4i- 
{backend,drm-hdmi,tcon,tv} 
and sun4i/sun8i-mixer 

5 safe  5 arg 

tilcdc/tilcdc target error field arg 

tve200/tve200 target error field  

vc4/vc4 unknown (timeout)  arg 

zte/zx_drm safe  arg 

Modules with target errors: 6 (22%) 13 (48%) 18 (67%) 

References 

[1]. E.M. Clarke, T.A. Henzinger, H. Veith, and R. Bloem. Handbook of Model Checking. Springer 

International Publishing, Cham. 2018. DOI: 10.1007/978-3-319-10575-8. 

[2]. I.S. Zakharov, M.U. Mandrykin, V.S. Mutilin, E.M. Novikov, A.K. Petrenko, and A.V. Khoroshilov. 

Configurable toolset for static verification of operating systems kernel modules. Programming and 

Computer Software, vol. 41, no. 1. 01.01.2015. pp. 49–64. DOI: 10.1134/S0361768815010065. 

[3]. I. Zakharov, E. Novikov, and I. Shchepetkov. Klever: Verification Framework for Critical Industrial C 

Programs. 2023. DOI: 10.48550/arXiv.2309.16427. 

[4]. D. Baier, D. Beyer, P.-C. Chien, M.-C. Jakobs, M. Jankola, M. Kettl, N.-Z. Lee, T. Lemberger, M. 

Lingsch-Rosenfeld, H. Wachowitz, and P. Wendler. Software Verification with CPAchecker 3.0: Tutorial 

and User Guide. Formal Methods. 2025. pp. 543–570. DOI: 10.1007/978-3-031-71177-0_30. 



Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP 

RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80. 

78 

[5]. V.S. Mutilin, E.M. Novikov, and A.V. Khoroshilov. Analysis of typical faults in Linux operating system 

drivers. Trudy ISP RAN/Proc. ISP RAS, 2012, vol. 22, pp. 349–374 (in Russian). DOI: 10.15514/ispras-

2012-22-19. 

[6]. Found Bugs by Klever. [Online]. Available at: https://github.com/ldv-klever/klever?tab=readme-ov-

file#found-bugs, accessed 09.09.2025. 

[7]. A.A. Vasilyev. Static verification for memory safety of Linux kernel drivers. Trudy ISP RAN/Proc. ISP 

RAS, 2018, vol. 30, issue 6, pp. 143–160. DOI: 10.15514/ISPRAS-2018-30(6)-8. 

[8]. A.A. Vasilyev and V.S. Mutilin. Predicate Extension of Symbolic Memory Graphs for the Analysis of 

Memory Safety Correctness. Programming and Computer Software, vol. 46, no. 8, 01.12.2020, pp. 747–

754. DOI: 10.1134/S0361768820080071. 

[9]. K. Dudka, P. Peringer, and T. Vojnar. Byte-Precise Verification of Low-Level List Manipulation. in F. 

Logozzo and M. Fähndrich (eds). Static Analysis. Springer Berlin Heidelberg, Berlin, Heidelberg. 2013. 

pp. 215–237. DOI: 10.1007/978-3-642-38856-9_13. 

[10]. K. Dudka, P. Muller, P. Peringer, V. Šoková, and T. Vojnar. Algorithmic Details behind the Predator 

Shape Analyser. 2024. DOI: 10.48550/arXiv.2403.18491. 

[11]. DRM Internals – The Linux Kernel documentation. [Online]. Available at: 

https://www.kernel.org/doc/html/latest/gpu/drm-internals.html, accessed 29.09.2025. 

[12]. E. Orlova. [PATCH v4] drm/stm: Avoid use-after-free issues with crtc and plane. [Online]. Available at: 

https://lore.kernel.org/all/20240216125040.8968-1-e.orlova@ispras.ru/, accessed 06.10.2025. 

[13]. J.L. Lawall and G. Muller. Coccinelle: 10 Years of Automated Evolution in the Linux Kernel. USENIX 

Annual Technical Conference. 2018. [Online]. Available at: 

https://www.usenix.org/system/files/conference/atc18/atc18-lawall.pdf, accessed 06.10.2025. 

[14]. O. Petrov. [PATCH] cocci: drm: report devm-allocated arguments and fields. [Online]. Available at: 

https://lore.kernel.org/all/20250924140126.23027-1-o.petrov@ispras.ru/, accessed 24.09.2025. 

[15]. E. Orlova. drm/stm: Avoid use-after-free issues with crtc and plane. [Online]. Available at: 

https://web.git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=19dd9780b7ac673be95

bf6fd6892a184c9db611f, accessed 15.07.2024. 

[16]. M. Schmitt. Linux kernel device driver testing. How are device drivers being tested? Master’s Thesis, 

Institute of Mathematics and Statistics, University of São Paulo, São Paulo. 17.10.2022. DOI: 

10.11606/D.45.2022.tde-30112022-152524. 

[17]. A. Konovalov. Sanitizing the Linux kernel: On KASAN and other Dynamic Bug-finding Tools. Linux 

Security Summit Europe. 2022. [Online]. Available at: 

https://www.youtube.com/watch?v=KmFVPyHyfqQ. 

[18]. K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. AddressSanitizer: A Fast Address Sanity 

Checker. USENIX ATC 2012. 2012. [Online]. Available at: 

https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-

sanity-checker, accessed 06.10.2025. 

[19]. J.L. Lawall, J. Brunel, N. Palix, R.R. Hansen, H. Stuart, and G. Muller. WYSIWIB: A declarative approach 

to finding API protocols and bugs in Linux code. DSN’09 – The 39th Annual IEEE/IFIP International 

Conference on Dependable Systems and Networks. 2009. pp. 43–52. DOI: 10.1109/DSN.2009.5270354. 

[20]. N. Brown. Sparse: a look under the hood. 2016. [Online]. Available at: https://lwn.net/Articles/689907/, 

accessed 06.10.2025. 

[21]. L. Torvalds. Sparse ‘context’ checking. [Online]. Available at: https://lwn.net/Articles/109066/, accessed 

18.09.2025. 

[22]. N. Brown. Smatch: pluggable static analysis for C. 22.06.2016. [Online]. Available at: 

https://lwn.net/Articles/691882/, accessed 06.10.2025. 

[23]. D. Alden. Finding locking bugs with Smatch. 11.06.2025. Write-up of Dan Carpenter’s talk at Linaro 

Connect 2025. [Online]. Available at: https://lwn.net/Articles/1023646/, accessed 06.10.2025. 

[24]. A. Belevantsev, A. Borodin, I. Dudina, V. Ignatiev, A. Izbyshev, S. Polyakov, E. Velesevich, and D. 

Zhurikhin. Design and Development of Svace Static Analyzers. 2018 Ivannikov Memorial Workshop 

(IVMEM). 2018. pp. 3–9. DOI: 10.1109/IVMEM.2018.00008. 

[25]. Linux Verification Center — Static Analysis (in Russian). [Online]. Available at: 

https://portal.linuxtesting.ru/activity.html#menu3, accessed 29.09.2025. 

[26]. Found by Linux Verification Center (linuxtesting.org) with SVACE. [Online]. Available at: 

https://web.git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&q=Found+by+Linux

+Verification+Center+(linuxtesting.org)+with+SVACE, accessed 29.09.2025. 



Орлова Е.М., Васильев А.А., Петров О.М. Окрашивание символьных графов памяти для выявления ошибок, специфичных для DRM-

драйверов Linux. Труды ИСП РАН, 2025, том 37 вып. 5, с. 67-80. 

79 

[27]. E.M. Novikov. An approach to implementation of aspect-oriented programming for C. Programming and 

Computer Software, vol. 39, no. 4. 07.2013. pp. 194–206. 

[28]. I.S. Zakharov, V.S. Mutilin, and A.V. Khoroshilov. Pattern-based environment modeling for static 

verification of Linux kernel modules. Programming and Computer Software, vol. 41, no. 3. 05.2015. 

pp. 183–195. DOI: 10.1134/S036176881503007X. 

[29]. I. Zakharov and E. Novikov. Compositional Environment Modelling for Verification of GNU C Programs. 

2018 Ivannikov ISPRAS Open Conference. 2018. pp. 39–44. DOI: 10.1109/ISPRAS.2018.00013. 

[30]. P.S. Andrianov. Analysis of Correct Synchronization of Operating System Components. Programming 

and Computer Software, vol. 46, no. 8. 01.12.2020. pp. 712–730. DOI: 10.1134/S0361768820080022. 

[31]. Predator. [Online]. Available at: https://www.fit.vut.cz/research/group/verifit/public/tools/predator/, 

accessed 29.09.2025. 

[32]. Klever 4.0.1. [Online]. Available at: https://github.com/ldv-klever/klever/tree/v4.0.1/, accessed 

18.03.2025. 

[33]. CPAchecker 702bc1a. [Online]. Available at: https://github.com/ldv-

klever/cpachecker/commit/702bc1a36f663d0e1bac13e6c6752e61828e6ac8, accessed 21.03.2025. 

Информация об авторах / Information about authors 

Екатерина Михайловна ОРЛОВА – студентка магистратуры факультета вычислительной 

математики и кибернетики МГУ, лаборант Института системного программирования РАН. 

Сфера научных интересов: статический анализ и верификация ядра Linux. 

Ekaterina Mikhaylovna ORLOVA – Master’s student at the Faculty of Computational Mathematics 

and Cybernetics of Lomonosov Moscow State University (MSU), lab assistant at the Institute for 

System Programming of the RAS. Research interests: static analysis and verification of the Linux 

kernel. 

Антон Александрович ВАСИЛЬЕВ – младший научный сотрудник Института системного 

программирования им. В.П. Иванникова РАН. Сфера научных интересов: статическая 

верификация и анализ программ. 

Anton Aleksandrovich VASILYEV – junior researcher at the Ivannikov Institute for System 

Programming of the RAS. Research interests: static verification, software model checking, static 

program analysis. 

Олег Максимович ПЕТРОВ – аспирант и стажёр-исследователь Института системного 

программирования им. В.П. Иванникова РАН. Сфера научных интересов: статическая 

верификация и анализ исходного кода программ, delta debugging. 

Oleg Maximovich PETROV – postgraduate student and intern researcher at the Ivannikov Institute 

for System Programming of the RAS. His research interests include software model checking, static 

program analysis, delta debugging. 

  



Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP 

RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80. 

80 

 


