Tpyowr UCIT PAH, mom 37, eoin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-5 @H

Coloring Symbolic Memory Graphs
to Detect DRM-Specific Errors in Linux Drivers

E.M. Orlova, ORCID: 0009-0003-1654-3085 <e.orlova@ispras.ru>
A.A. Vasilyev, ORCID: 0000-0002-5738-9171 <vasilyev@ispras.ru>
O.M. Petrov, ORCID: 0009-0004-6245-9615 <o.petrov@ispras.ru>

Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

Abstract. This paper discusses a particular type of subtle use-after-free errors in the Direct Rendering Manager
(DRM) subsystem of the Linux kernel. These errors occur due to incorrectly allocated memory for structures
accessible from user space via device callbacks. To detect these errors, we use a shape analysis based on the
Symbolic Memory Graph (SMG) domain. We introduce the coloring of allocated memory to track its origin.
Among 186 Linux DRM drivers, we have found 6 violations of the proposed rule.

Keywords: Linux drivers; use-after-free; shape analysis; software model checking; symbolic memory graphs.

For citation: Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-
Specific Errors in Linux Drivers. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80. DOI:
10.15514/ISPRAS-2025-37(5)-5.

Acknowledgements. The authors would like to thank VVadim Mutilin, colleagues from the Linux Verification
Center, and the maintainers of the Linux DRM subsystem for their feedback and comments.

67

Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80.

OkpalwuBaHue CUMBOJbHbIX rpad)oB NaMATY ANA BbIABNEeHUA
ownboK, cneuncpuyHbix ana DRM-gpanBepoB Linux

E.M. Opaosa, ORCID: 0009-0003-1654-3085 <e.orlova@ispras.ru=>
A.A. Bacumves, ORCID: 0000-0002-5738-9171 <vasilyev@ispras.ru>
O.M. Ilempos, ORCID: 0009-0004-6245-9615 <o.petrov@ispras.ru>

HUnemumym cucmemnozo npocpammuposanus PAH,
Poccus, 109004, . Mockea, ya. A. Comxcenuyvina, 0. 25.

AnHoTaums. B cratee paccmaTpuBaeTcsi OJHA TPYAHOBOCIPOM3BOAMMAs ommbka Tuma use-after-free B
noxcucteme Direct Rendering Manager (DRM) sinpa onepanronHoii cucremsl Linux. E€ mpuunHoii sipisercst
HEKOPPEKTHBII CIIOCOO BBIAENEHHs] HMaMsTH, JOCTYMHOHW MU ITOJb30BATEIHCKOTO KOZa dYepe3 oOpaTHbIe
BBI30BHI YCTpO#cTBa. J[J1st o¥cka omMO0K paboTHI C TaMATBHIO MBI HCIIONIB3YeM aHaJIHN3 Ha OCHOBE CHMBOJIBHBIX
rpadoB namstu (SMG). Yto6bl OTCIIEAUTH CIOCOO BBIICICHUS aMsTH, Mbl 1o0aBuiu el user. Cpenu 186
poaHaIM3UpOBaHHBIX JIpaiiBepoB DRM OC Linux 6suto HaiigeHo 6 HapyIIeHHH MPeJIOKEHHOTO PpaBUIIa.

KuaroueBble cioBa: paiiBeppl Linux; ys3Bumocts use-after-free; amanu3 anHaMu4Yeckod mHamsITH,
aBTOMAaTHYECKasl CTaTUYeCKasi BepU(HKAIHs; CHMBOJIBHBIE TPadbl MaMITH.

s uurupoBanusi: Opnosa E.M., Bacunses A.A., [Tetpos O.M. OkpamrBanie CHMBOJIBHBIX Ipad)0B MaMsATH
IUISL BBISIBIICHHS OIIHOOK, crienuduunsix mist DRM-mpaiisepos Linux. Tpyaet ICIT PAH, tom 37, Beim. 5,
2025 r., ctp. 67-80 (Ha anrimiickom si3eike). DOI: 10.15514/ISPRAS-2025-37(5)-5

BaaromapHocTu: ABTOPHI BRIpaXarT OnarogapHocts Bagumy MyTHIIUHY, KoJuleraM u3 TeXHOJIOTHYEeCKOTo
LEHTpa UccleaoBanus Ge3omacHocTH sapa Linux, a Takke pa3paboT4ynKaM, MOAACPKHUBAOLINM MOACHCTEMY
DRM B Linux, 3a ux OT3BIBBI I KOMMEHTapHH.

1. Introduction

The Linux operating system kernel is a widely used software system consisting of 25 million lines
of code. Put simply, it consists of the kernel core and various subsystems and device drivers. To use
a graphics processing unit (GPU), a user program invokes a system call so that the kernel core
dispatches the appropriate callback in the corresponding device driver in the Direct Rendering
Manager (DRM) kernel subsystem.

This paper discusses a particular type of errors related to the incorrect use of device resource
management (devres) in the DRM subsystem. Incorrect memory allocation of structures accessible
from user space can lead to a use-after-free memory access. Such outcomes can be detected with
dynamic analysis, but situations in which the target errors cause the kernel to crash are specific and
quite rare.

On the other hand, static verification methods [1] aim at detecting such subtle errors. Klever [2-3]
is a software verification platform capable of automated static verification of industrial software
systems using software model checking tools such as CPAchecker [4]. As many Linux errors are in
its device drivers [5], Klever is tailored for bug-finding in the Linux subsystems.

Klever decomposes the kernel source code into modules, provides the environment models based
on typical device usage, runs the verification tool, and displays the results, e.g. visualizes the
reported error traces. Using this method, several hundred bugs in Linux subsystems were found and
reported [6].

To verify memory safety, CPAchecker uses a shape analysis based on the Symbolic Memory Graph
domain [7-10]. The analysis represents a program memory state as a bipartite graph, with its nodes
being memory objects (concrete regions and abstracted linked lists) and symbolic values.
Contribution. We manually analyzed the Linux DRM subsystem and found a documented
recommendation [11] on correct allocation that had been overlooked in 13 files [12]. This can lead

68

https://www.zotero.org/google-docs/?ZLsfSB
https://www.zotero.org/google-docs/?UVkmIi
https://www.zotero.org/google-docs/?SwlDIy
https://www.zotero.org/google-docs/?IdtO5M
https://www.zotero.org/google-docs/?RGdZNQ
https://www.zotero.org/google-docs/?uNQV4I
https://www.zotero.org/google-docs/?UB1K2R
https://www.zotero.org/google-docs/?8O2dmz

Opiosa E.M., BacuibseB A.A., TTetpos O.M. OkpaliBaHie CHMBOJIBHBIX I'padyOB MaMSITH JUIsl BBISIBICHHUS OLIKOOK, crieiuuaHbix 111 DRM-
npaiisepos Linux. Tpyow: UCIT PAH, 2025, tom 37 Bbim. 5, c. 67-80.

to potential use-after-free errors, some of which have already been reported by Kernel Address
Sanitizer (KASAN).

We formulated a more general rule in natural language and formally specified it using Klever. To
verify this rule, we adapted the memory analysis in the CPAchecker verification tool by adding color
to the symbolic memory graphs. We evaluated this approach on 186 DRM modules, with all 6
reported violations of the rule manually confirmed. The results are discussed in comparison with the
violations we found using Coccinelle [13]. The corresponding Coccinelle rule (semantic patch) was
submitted to the kernel [14]. Finally, we are working on fixes for the discovered errors, and one
patch has already been accepted upstream [15].

2. Problem Statement

There is a static driver structure through which device instances are managed. Through a certain
interface, a device instance is accessible from the user space. Even if the driver is disabled, the
device instance will still exist as long as it has at least one user. If memory is allocated incorrectly,
the DRM device structure (or structures used by it) is automatically freed when the driver is
unbound. Thus, while the device instance still exists, a user can cause access to this freed structure.

2.1 DRM device instance

At the core of every DRM driver is a drm_driver structure. It contains static information that
describes the driver and features it supports, and pointers to methods that implement the DRM API.
This structure is also used to create a device instance, which is then initialized and registered,
providing callbacks accessible from the user space.

A device instance for the DRM driver is represented by the drm_device structure. It is allocated
and initialized with devm drm dev _alloc() (or deprecated drm dev alloc()). After
initialization of all the various DRM device subsystems when everything is ready for user space, the
device instance can be published using drm dev register () [11].

When cleaning up, everything is done in reverse. First, the device instance is unpublished with
drm_dev unregister (). Then any other resources allocated at device initialization are cleaned
up and drop the driver’s reference to drm_device USing drm_dev _put (). It is important to note
that if drm_device still has some resource handles open when the driver is unbounded, the release
of drm_device instance does not happen immediately, but only after the last handle is closed.
Before that, drm_device remains user-accessible. This is why any allocation or resource which is
visible to user space must be released only when the final drm_dev_put () is called, and not when
the driver is unbound from the underlying physical struct device. Otherwise, using the device
may result in accessing freed memory.

This imposes a restriction on which functions can be used to allocate structures that are accessible
from user space through a drm_device instance.

2.2 Some Linux kernel memory allocation functions
Let’s look at some of the memory allocation functions in more depth.

e kmalloc() — a kernel-space function similar to user-space malloc (). The memory
allocated with this function must be freed by calling the xfree () function.

e devm kmalloc () —devres-managed kmalloc (). Memory allocated with this function is
automatically freed on driver detach. Its lifetime is linked to the device structure, a pointer
to which is passed as a parameter.

e drmm kmalloc () — DRM-managed kmalloc (). Memory allocated with this function is
automatically freed on the final drm_dev put (). Its lifetime is linked to the drm device
structure, a pointer to which is passed as a parameter.

69

https://www.zotero.org/google-docs/?DzNEw8
https://www.zotero.org/google-docs/?eUYpNW
https://www.zotero.org/google-docs/?DuN2a9
https://www.zotero.org/google-docs/?1J8fjN

Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80.

drmm_kmalloc () is recommended to allocate the memory for the aforementioned structures
accessible from user space. Then the memory will be automatically released when the drm_device
is destroyed and only after its registration is canceled, as there will be no risk of accessing the
released memory. The correct work of a DRM driver is shown in Fig. 1.

. auxiliary structures usin, . .
accessible from user space v & are placed in drm_device

i fi
. Creating drm_device, later Allocating memory for References to allocated memory W
kzalloc() or drmm_kzalloc()

. . Using the device drm_device is registered and
Driver unbounding B - X
instance becomes accessible from user space
There are no
drm_device
destruction
P

open handles
Freeing memory allocated for
auxiliary structures

There are some
open handles

Accessing the
r=——=—=--- auxiliary structure
via drm_device

Closing the last handle

drm_device is
accessible from user
space while there are
any open handlers

Fig. 1. A correct operation of a DRM driver.

Contrarily, using devm_kmalloc () in most of these cases is a mistake, since the release may occur
ahead of time. The driver will still work, but sudden crashes will happen periodically. The reason is
shown in Fig. 2. If the device still has a user after the driver detach, the user can try to access the
structure previously allocated with devm kmalloc () and released on driver detach. There are
vulnerabilities of this type in the Linux kernel. Therefore, structures accessible from the user space
after drm_device registration should not be allocated with devres-managed functions like
devm kmalloc().

Accordingly, there is a documented restriction on the second argument of 5 functions that initialize
preallocated DRM-specific structures — drm encoder init, drm connector init,
drm connector init with ddc, drm crtc init with planes, and
drm universal plane init — namely, the second argument should not be allocated with
devm_kzalloc or similar devres functions. This is a more obvious violation of the general rule.

3. Related Work

There is a wide variety of approaches and tools for bug finding in industrial software systems. Here,
we limit the discussion to those most relevant to the Linux kernel [16].

3.1 Dynamic analysis

Dynamic analysis tools [17] typically look for a class of issues occurring in the running kernel. One
example is Kernel Address Sanitizer (KASAN) [18] which can detect invalid memory accesses such
as out-of-bounds and use-after-free errors.

The presence of the target errors in the code poses a risk of accessing freed memory, so they can be
detected by KASAN. Indeed, it is mentioned in comments of some target error fixes accepted into
the kernel and can be used to confirm the fix.

70

https://www.zotero.org/google-docs/?AncLMU
https://www.zotero.org/google-docs/?zk7LvT
https://www.zotero.org/google-docs/?I05AnI

Opiosa E.M., BacuibseB A.A., TTetpos O.M. OkpaliBaHie CHMBOJIBHBIX I'padyOB MaMSITH JUIsl BBISIBICHHUS OLIKOOK, crieiuuaHbix 111 DRM-
npaiisepos Linux. Tpyow: UCIT PAH, 2025, tom 37 Bbim. 5, c. 67-80.

~
. . Allocating memory for
Creating drm_device, later L s y . References to allocated memory
. auxiliary structures using . g
accessible from user space are placed in drm_device

devm_kzalloc()

AN J

-

Automatically freeing
memory allocated
with devm_kzalloc()

~

Using the device drm_device is registered and
instance becomes accessible from user space

Driver unbounding

There are no

open handles ‘ drm_device
destruction
There are some

open handles

Accessing
freed memory
via drm_device

drm_device is
accessible from user

space while there are
any open handlers

Fig. 2. An operation of a DRM driver with a target error.

However, dynamic analysis can only check the parts of the code that are reachable through the tests.
Moreover, the target errors can cause races in very specific situations. Another drawback is the need
for particular hardware to run certain drivers. These limitations effectively prevent dynamic analysis
from reliably detecting the target errors.

3.2 Static analysis

Lightweight static analysis, such as abstract syntactic tree (AST) analysis and data-flow analysis
(DFA), searches for defects in the program source code without execution. It can detect potential
errors, vulnerabilities and non-compliance with standards at early stages of development, thereby
saving time and resources. The tools most closely tied to the Linux kernel and used by its
development community include Coccinelle, Sparse, and Smatch [16].

Coccinelle [13] is a program matching and transformation tool focused on patterns in source code
structure. It operates on semantic patches — high-level patterns that resemble git patches but are
abstracted with metavariables and ellipses. The tool employs a temporal logic (extended CTL [19])
to reason about a function’s control flow. The strength of the tool is the relative ease of writing
semantic patches for known patterns and its ability to generate patches automatically. However, its
major limitation for our purposes is the lack of any data-flow reasoning and the very limited support
for interprocedural analysis.

Sparse [20] is a source parser and analyzer that extends the C type system with kernel-specific
annotations. These include address-space qualifiers to prevent mixing user and kernel pointers, and
endianness markers to detect incorrect byte-order handling. Sparse also performs simple
intraprocedural DFA for context-tracking [21] (i.e. matching context counters on entry and exit
against annotations) and uses this together with locking annotations to warn about imbalanced or
missing lock acquisition and release. Applying type-checking to the target errors would require
manually annotating pointers along the data flow, which is more effort than manual inspection of
the DRM drivers.

More conventional static analyzers, such as Smatch and Svace, use full-fledged data-flow analysis.
Smatch [22] builds on Sparse by adding a “cross-function flow analysis” [23]. It is path-sensitive
and can track a range or multiple values for a given variable. Svace [24], used by the Linux

71

https://www.zotero.org/google-docs/?6Fli6Y
https://www.zotero.org/google-docs/?dMumCJ
https://www.zotero.org/google-docs/?KyY3yn
https://www.zotero.org/google-docs/?zUxOq7
https://www.zotero.org/google-docs/?o98YE9
https://www.zotero.org/google-docs/?sKRsDC
https://www.zotero.org/google-docs/?SRIhXr
https://www.zotero.org/google-docs/?CAcRV0

Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80.

Verification Center (LVC) [25, 26], employs both syntactic and flow analysis. It leverages a bottom-
up technique: functions lower in the call graph are summarized using data-flow analysis and
symbolic execution, and these summaries are then reused at call sites when analyzing functions
higher in the call graph.

Although Smatch and Svace are effective at detecting various generic and kernel-specific errors,
lightweight static analysis is generally unable to find the target errors in the complex scenarios
characteristic of our target errors. The inherent trade-off between scalability and false positive rate
forces the use of heuristics, which sacrifices soundness and precision.

3.3 Software model checking

Software model checking, or static verification, can be considered a heavyweight form of static
analysis. The approach aims at thorough exploration of a program’s state space, which allows
detecting subtle errors, e.g. data races, and thus is used for critical system verification [1]. The
drawbacks of the approach are high resource consumption and the frequent need for handwritten
formal specifications.

Klever [2, 3] is a verification platform designed to automate the software model checking for
industrial systems. For scalability, Klever decomposes large codebases into smaller, verifiable
modules. Specifications needed for particular requirements or missing function bodies can be written
in C [27]. The environment model, i.e. calls to the module, is provided based on the typical scenarios
of device usage [28-29].

Klever together with the CPAchecker static verification tool have been used to find several hundred
errors in the kernel, including memory safety violations [7], data races [30], and errors specific to
Linux device drivers [3, 5]. To find the target errors, we need both write the specification for our
DRM-specific rule and modify the underlying memory analysis to remember the allocating function
for allocated memory regions.

4. Colored Symbolic Memory Graphs

To verify memory safety, CPAchecker [4] uses a shape analysis based on the Symbolic Memory
Graph (SMG) domain [7-8] that first appeared in the Predator shape analyzer [9-10, 31].

The analysis represents a program memory state as a labeled bipartite graph of memory objects and
symbolic values, and edges between them. A “has-value” edge from a memory object to a symbolic
value means that the value is stored in the object (the offset and bitsize are labeled on the edge). A
“points-to” edge from a symbolic value to a memory object means that the value points to the object
(again, the offset from the start of the object is labeled on the edge).

To distinguish objects allocated in a certain way, we have introduced memory coloring for the
analysis. The color of an allocated region is determined by the allocating function:

e DRM for the drm device structures allocated by drm dev alloc() or
devm drm dev _alloc(),

e DEVM for the devm kmalloc () -allocated memory,

¢ and default (colorless) memory is allocated by all other functions.
Now, we can reformulate our rule in terms of the colored memory graphs: DRM-colored memory
objects should not store pointers to DEVM-colored memory objects.
Simplified erroneous code is provided in Listing 1. A probe driver method allocates its own device
structure and drm_device structure. When the analysis traverses the first line with a call to
devm_kzalloc (), it adds a new heap object (shown as “DEVM” in Fig. 3) and a new symbolic
value (“s17) that points to its start. As the pointer to the new allocation is stored in the variable 1dev,
a has-value edge 1dev — sl is added, too. As devm_kzalloc () isacolored function, the allocation
gets the corresponding color (shown as red).

72

https://www.zotero.org/google-docs/?JnBLSu
https://www.zotero.org/google-docs/?jVNnyJ
https://www.zotero.org/google-docs/?erooh4
https://www.zotero.org/google-docs/?aSwpee
https://www.zotero.org/google-docs/?Y4OZPX
https://www.zotero.org/google-docs/?sj2CpK
https://www.zotero.org/google-docs/?pk8K4T
https://www.zotero.org/google-docs/?rtFs20
https://www.zotero.org/google-docs/?1KHTWe
https://www.zotero.org/google-docs/?wfw5G2
https://www.zotero.org/google-docs/?bkShJb

Opiosa E.M., BacuibseB A.A., TTetpos O.M. OkpaliBaHie CHMBOJIBHBIX I'padyOB MaMSITH JUIsl BBISIBICHHUS OLIKOOK, crieiuuaHbix 111 DRM-
npaiisepos Linux. Tpyowr HUCII PAH, 2025, tom 37 Boim. 5, ¢. 67-80.

// allocate DRM device ddev with the given dev as parent
struct drm device *ddev = drm dev alloc(&drv_driver, é&pdev->dev);
// allocate the specific device with actually the same dev as parent

struct ltdc device *ldev =
devm kzalloc (ddev->dev, sizeof (*ldev), GFP KERNEL);

// the rule violation
ddev->dev private = (void *)ldev;
// ldev may be accessed after it is released before ddev is released

Listing 1. Simplified erroneous code (before the patch)
from drivers/gpu/drm/stm/drv. c, functions stm drm platform probe and drv load

The ddev initialization is analyzed in the same manner, with the new allocation colored DRM
(shown as green). The result SMG (without the labels on the edges) can be seen in Fig. 3 on the left;
unimportant parts (such as previous stack frames and global variables) are not shown. After the
assignment in the last line, the SMG looks like in Fig. 3 on the right. Note that DRM-colored
allocation now has a field (DRM - sl) that points to a DEVM-colored allocation (s1 - DEVM).
When such an assignment happens, the analysis reports an error.

ldev ddev ldev ddev

Fig. 3. Left: the symbolic memory graph for Listing 1 before assignment.
Right: the symbolic memory graph after assignment;
the presence of DRM — s2 — DEVM path is a violation of the proposed rule.

5. Specification of DRM subsystem in Klever

Klever decomposes the kernel into modules, with the result that CPAchecker runs on each of the
modules separately [29]. This solves the issue of running heavy analysis on large code, but there is
a problem with functions defined in other modules. Their bodies are not visible to CPAchecker, so
during the verification of a module, it assumes that such a function is pure, i.e. it does not affect the
analyzed code. If a function is important for finding the target error (e.g. it initializes a pointer
important for the analysis), one has to write a model for it that CPAchecker will traverse instead of
the original function.

Klever allows us to write such models for functions and replaces every call to the original function
in the module with a call to the given model [28]. This is implemented using aspect-oriented
programming [27]. Suppose there is a function foo () in the kernel code that we want to replace

73

https://www.zotero.org/google-docs/?Dnro4f
https://www.zotero.org/google-docs/?XQ3a2X
https://www.zotero.org/google-docs/?1rTjiZ

Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80.

with a model. Then we write a 1dv_foo () function in the . c file, and we specify in the .aspect
file that instead of foo () calls, 1dv_foo () should be actually called.

The capability to replace a function with a model is also useful if it needs to be abstracted from
insignificant details (simplified) or given a new feature, such as color for memory it allocates.

In our case, some memory allocation and releasing should be colored appropriately. To do this, a
special “color” function was called in the bodies of the models (1dv_color drm kmalloc () Of
1dv_color_ devm kmalloc (), depending on the desired color). Models were also required for a
number of imported functions in which bindings between structures were created. Basically, instead
of a function initializing all fields of the structure, a model filled in several pointers, the value of
which influenced the success of the target error search.

For the DRM subsystem, we have modelled the following functions in Klever:

o Devres specification. It includes devm kmalloc () and its analogs (devm kzalloc (),
devm_kcalloc(), devm kmalloc array). Memory allocated with this function is
automatically freed on driver detach. These functions paint memory in the color DEVM. If
a reference to memory of the color DEVM appears in drm_device, an error is reported.

e drm device managed resources specification. It includes memory allocation functions
(drmm_kmalloc () and its analogs, which paint memory in the color DRM) and
implementation of various ways to free it.

e Special functions used to allocate and deallocate drm device and drm_driver memory
and to initialize them: drm dev _alloc(), drm dev_init (), drm dev release (),
etc. The function models responsible for initialization create references needed to find
target errors.

e Models of functions that initialize structures used by DRM device. drm encoder init ()
for srtuct drm encoder,drm universal plane init () for srtuct drm plane,
and so on. In them, the structures are linked to drm device, and if their memory was
allocated incorrectly — i.e., with the DEVM color — an error is detected at the moment of
storing a reference to such memory.

e Models of other functions that create and destroy links between structures:
drm dev put (), get device ()/put_device (), kref init () /kref_put ().

6. Evaluation

We applied our approach to 186 loadable DRM driver modules from drivers/gpu/drm/ in Linux
5.10.238, targeting the ARM architecture with the al1modconfig build configuration.

The experiment was carried out with Klever, derived from version 4.0.1 [32], together with our fork
of CPAchecker [33] on a machine with an Intel Core i7-11700 2.50GHz CPU (8 cores, 16 threads),
2x16 GB DDR4 RAM, and an SSD.

In total, verification has taken 10 h of CPU time (40 min of wall time). We have limited the
CPAchecker verification tool to 270 s per module; it has used up to 1.3 GB for a module and
consumed 4.2 h of CPU time in total. Table 1 details the results of the verification.

e 108 modules were verified as safe, with CPAchecker exhausting all reachable states
without detecting any target or generic memory safety error.

e 33 modules resulted in verifier timeout, where CPAchecker did not complete within the
allotted time.

e For 3 modules, CPAchecker stopped after encountering a recursive call.

e 17 driver modules were not verified due to a composition problem, where Klever was
unable to compose a module to verify due to atypical module init or exit, or missing
declarations.

74

https://www.zotero.org/google-docs/?QnXvMt
https://www.zotero.org/google-docs/?sXyx7Z

Opiosa E.M., BacuibseB A.A., TTetpos O.M. OkpaliBaHie CHMBOJIBHBIX I'padyOB MaMSITH JUIsl BBISIBICHHUS OLIKOOK, crieiuuaHbix 111 DRM-
npaiisepos Linux. Tpyow: UCIT PAH, 2025, tom 37 Bbim. 5, c. 67-80.

The analysis reported 25 modules as unsafe:

e 6 target errors;
1 generic memory error, specifically a non-target use-after-free;
18 false alarms for generic memory errors. These were primarily due to analysis
imprecision (e.g., inability to calculate a dereferenced address). One of them was caused
by inline assembler code in the sources.

Table 1. Verification results for the 186 Linux 5.10.238 DRM drivers.

Verdict Count %
Unsafe 25 13
target error 6 3.2
use-after-free 1 0.5
false alarm 18 9.7
Safe 108 58
Unknown 53 28
verifier timeout 33 17.7
recursion in module 3 1.6
composition problem 17 9.1
Total: 186 100

6.1 Estimating Missed Errors with Coccinelle

We used Coccinelle to estimate the amount of the target errors in the kernel code and to assess the
false negative rate of our approach. As the presence of an error-prone pattern implies the need to fix
multiple files in a module, we count the reported modules instead of matches for Coccinelle.
Following the documented restriction, we wrote the arg rule illustrated in Listing 2. It finds a devres-
managed memory pointer passed as the second argument to one of the 5 drm-init functions with the
documented restriction discussed in Section 2. We used Coccinelle to find 5 more functions —
drm writeback connector init, drm crtc_init, drm plane init
drm bridge connector init,anddrm simple encoder init —thatare simple wrappersto
those and should thus have the same restriction applied. While we can continue to elaborate the rule,
in practice we do not expect much more alarms.!

devm =@p devm kzalloc(...);

drm crtc init with planes(@g e,<+...devm...+>,...)

Listing 2. A snippet of the arg rule for DEVM-allocated second argument to a drm_* _init function.

All target errors identified by Klever involved an assignment of DEVVM-allocated memory pointer
to the dev_private field of a DRM-allocated drm_structure. Moreover, 3 modules reported by
Klever were not reported by the arg rule. This motivated a second Coccinelle rule, field (Listing 3)
designed to detect assignments of a DEVVM-allocated pointer to a field of a DRM-allocated structure.
See more elaborated rules as submitted to the kernel in [14].

! There are a considerable number of cases where a DEVM-allocated pointer is first assigned to
another local variable which is later passed to a drm-init function. However, these occur in modules
already reported by the simpler rule.

75

https://www.zotero.org/google-docs/?PBqbxU

Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80.

drm = drm dev_alloc(...);

devm = devm kzalloc(...);

drm->f =@p <+...devm...+>;

Listing 3. A snippet of the field rule for assigning a DEVM-allocated pointer to a DRM-allocated field.

Table 2 presents a per-module comparison between the findings from Klever and the two Coccinelle
rules, 27 modules in total. The column Klever shows the outcomes of our verification runs, while
Coccinelle/field and Coccinelle/arg mark the modules in which the corresponding rule found
violations. All 27 modules are reported by one of the Coccinelle rules; notably, only 4 are reported
by both. Although our analysis targeted Linux 5.10.238, many of the bugs are still present in recent
versions (6.17). In the Klever column, the outcomes are encoded as follows:

e target error — analysis reported a violation of the color rule (true positive);

e non-target alarm — a reported generic memory error turned out to be a false alarm;

o safe — full state-space exploration without detecting violations of the color rule or generic
memory safety;

unknown (timeout) — CPAchecker exceeded the allocated CPU time;

unknown (recursion) — CPAchecker stopped on encountering a recursive function call;
unknown (oom) — out-of-memory during module composition;

unknown (comp. iss.) — compilation issue during module composition;

unknown (arch) — module not included in the ARM build.

6.2 Error classification

True Positives. As shown in Table 2, Klever successfully identified target errors in 6 modules. All
6 modules were also reported by at least one Coccinelle rule: 5 modules were reported by the field
rule and 3 by the arg rule. Notably, the assignment to the field in stm/stm-drm module was not
reported by the field rule because one of the allocations happens in another function, and handling
such interprocedural cases is limited in Coccinelle.

True Negatives. We did not assess true negatives.

False Positives. We found no false positives among the 6 target errors reported by Klever.

False Negatives. Klever missed a violation in 21 modules reported by Coccinelle: 8 reported by the
field rule and 15 modules reported by the arg rule, respectively. Of these, 11 misses can be attributed
to the limitations of our approach (timeouts, recursion, oom, comp. arch, non-target alarms). For the
10 modules reported as safe, the coverage appears to be lacking, as the relevant functions were not
reached. This suggests the need to refine or add the specifications for the modules so the analysis
can reach the DRM functions.

7. Conclusion

We have discussed a subtle use-after-free error in Linux DRM drivers that originates from misusing
managed memory allocation for device structures. To find such errors, we proposed a coloring rule,
introduced such coloring to the SMG analysis in the CPAchecker verification tool, and wrote
specifications for the respective functions of the DRM subsystem.

For the specification and component-wise verification of 186 modules in the DRM subsystem, we
have used the Klever verification platform. Klever was able to carry out the verification for 169
modules and reported 25 of them as unsafe. Among these, 6 modules contain a target error, and 1
module contains a generic memory error (use-after-free).

Moreover, we developed two Coccinelle rules: arg, which finds violations of the documented
restriction, and field, which was motivated by the pattern in the errors found by Klever. While arg

76

Opiosa E.M., BacuibseB A.A., TTetpos O.M. OkpaliBaHie CHMBOJIBHBIX I'padyOB MaMSITH JUIsl BBISIBICHHUS OLIKOOK, crieiuuaHbix 111 DRM-
npaiisepos Linux. Tpyow: UCIT PAH, 2025, tom 37 Bbim. 5, c. 67-80.

reports errors in 18 modules, field reports 9 additional modules. Together, these approaches provide
complementary coverage and demonstrate the effectiveness of combining lightweight and
heavyweight methods.

Future work. We plan to continue submitting patches for the discovered errors. We also intend to
refine and extend the specifications to improve the coverage across DRM modules.

Table 2. Comparison of target errors found by Klever and Coccinelle.

DRM module Klever Coccinelle
arc/arcpgu non-target alarm arg
arm/hdlcd safe field arg
arm/mali-dp unknown (timeout) field
atmel-hlcdc/atmel-hlcdc-dc non-target alarm arg
fsl-dcu/fsl_dcu_drm target error field
ingenic/ingenic-drm non-target alarm arg
lima/lima target error field
meson/meson-drm unknown (recursion) field arg
meson/meson_dw_hdmi safe arg
msm/msm unknown (oom) arg
panfrost/panfrost unknown (arch) field
pl111/pl111 _drm safe field
rcar-du/rcar_du non-target alarm field
rockchip/rockchip_drm unknown (timeout) field
shmobile/shmob _drm target error field arg
sti/sti-drm safe arg
stm/stm-drm target error arg
sun4i/sundi-drm unknown (timeout) field
5 modules: sundi/sundi-

{backend,drm-hdmi,tcon,tv} 5 safe 5arg
and sun4i/sun8i-mixer

tilcdc/tilcde target error field arg
tve200/tve200 target error field

vcdived unknown (timeout) arg
zte/zx_drm safe arg
Modules with target errors: 6 (22%) 13 (48%) 18 (67%)

References

[1]. E.M. Clarke, T.A. Henzinger, H. Veith, and R. Bloem. Handbook of Model Checking. Springer
International Publishing, Cham. 2018. DOI: 10.1007/978-3-319-10575-8.

[2]. I.S. Zakharov, M.U. Mandrykin, V.S. Mutilin, E.M. Novikov, A.K. Petrenko, and A.V. Khoroshilov.
Configurable toolset for static verification of operating systems kernel modules. Programming and
Computer Software, vol. 41, no. 1. 01.01.2015. pp. 49-64. DOI: 10.1134/S0361768815010065.

[3]. I. Zakharov, E. Novikov, and I. Shchepetkov. Klever: Verification Framework for Critical Industrial C
Programs. 2023. DOI: 10.48550/arXiv.2309.16427.

[4]. D. Baier, D. Beyer, P.-C. Chien, M.-C. Jakobs, M. Jankola, M. Kettl, N.-Z. Lee, T. Lemberger, M.
Lingsch-Rosenfeld, H. Wachowitz, and P. Wendler. Software Verification with CPAchecker 3.0: Tutorial
and User Guide. Formal Methods. 2025. pp. 543-570. DOI: 10.1007/978-3-031-71177-0_30.

77

Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80.

[5].

[6].
7.
8.

[al.

[10].
[11].
[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].
[21].
[22].
[23].

[24].

[25].

[26].

78

V.S. Mutilin, E.M. Novikov, and A.V. Khoroshilov. Analysis of typical faults in Linux operating system
drivers. Trudy ISP RAN/Proc. ISP RAS, 2012, vol. 22, pp. 349-374 (in Russian). DOI: 10.15514/ispras-
2012-22-19.

Found Bugs by Klever. [Online]. Available at: https:/github.com/Idv-klever/klever?tab=readme-ov-
file#found-bugs, accessed 09.09.2025.

A.A. Vasilyev. Static verification for memory safety of Linux kernel drivers. Trudy ISP RAN/Proc. ISP
RAS, 2018, vol. 30, issue 6, pp. 143—160. DOI: 10.15514/ISPRAS-2018-30(6)-8.

A.A. Vasilyev and V.S. Mutilin. Predicate Extension of Symbolic Memory Graphs for the Analysis of
Memory Safety Correctness. Programming and Computer Software, vol. 46, no. 8, 01.12.2020, pp. 747—
754. DOI: 10.1134/S0361768820080071.

K. Dudka, P. Peringer, and T. VVojnar. Byte-Precise Verification of Low-Level List Manipulation. in F.
Logozzo and M. Féhndrich (eds). Static Analysis. Springer Berlin Heidelberg, Berlin, Heidelberg. 2013.
pp.215-237. DOI: 10.1007/978-3-642-38856-9_13.

K. Dudka, P. Muller, P. Peringer, V. Sokova, and T. Vojnar. Algorithmic Details behind the Predator
Shape Analyser. 2024. DOI: 10.48550/arXiv.2403.18491.

DRM Internals — The Linux Kernel documentation. [Online]. Available at:
https://www.kernel.org/doc/html/latest/gpu/drm-internals.html, accessed 29.09.2025.

E. Orlova. [PATCH v4] drm/stm: Avoid use-after-free issues with crtc and plane. [Online]. Available at:
https://lore.kernel.org/all/20240216125040.8968-1-e.orlova@ispras.ru/, accessed 06.10.2025.

J.L. Lawall and G. Muller. Coccinelle: 10 Years of Automated Evolution in the Linux Kernel. USENIX
Annual Technical Conference. 2018. [Online]. Available at:
https://www.usenix.org/system/files/conference/atc18/atc18-lawall.pdf, accessed 06.10.2025.

O. Petrov. [PATCH] cocci: drm: report devm-allocated arguments and fields. [Online]. Available at:
https://lore.kernel.org/all/20250924140126.23027-1-0.petrov@ispras.ru/, accessed 24.09.2025.

E. Orlova. drm/stm: Avoid use-after-free issues with crtc and plane. [Online]. Available at:
https://web.git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=19dd9780b7ac673be95
bf6fd6892a184c9dh611f, accessed 15.07.2024.

M. Schmitt. Linux kernel device driver testing. How are device drivers being tested? Master’s Thesis,
Institute of Mathematics and Statistics, University of Sdo Paulo, Sdo Paulo. 17.10.2022. DOI:
10.11606/D.45.2022.tde-30112022-152524.

A. Konovalov. Sanitizing the Linux kernel: On KASAN and other Dynamic Bug-finding Tools. Linux
Security Summit Europe. 2022. [Online]. Available at:
https://www.youtube.com/watch?v=KmFVPyHyfqQ.

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. AddressSanitizer: A Fast Address Sanity
Checker. USENIX ATC 2012. 2012. [Online]. Available at:
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-
sanity-checker, accessed 06.10.2025.

J.L. Lawall, J. Brunel, N. Palix, R.R. Hansen, H. Stuart, and G. Muller. WY SIWIB: A declarative approach
to finding API protocols and bugs in Linux code. DSN’09 — The 39th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. 2009. pp. 43-52. DOI: 10.1109/DSN.2009.5270354.
N. Brown. Sparse: a look under the hood. 2016. [Online]. Available at: https://lwn.net/Articles/689907/,
accessed 06.10.2025.

L. Torvalds. Sparse ‘context’ checking. [Online]. Available at: https://lwn.net/Articles/109066/, accessed
18.09.2025.

N. Brown. Smatch: pluggable static analysis for C. 22.06.2016. [Online]. Available at:
https://lwn.net/Articles/691882/, accessed 06.10.2025.

D. Alden. Finding locking bugs with Smatch. 11.06.2025. Write-up of Dan Carpenter’s talk at Linaro
Connect 2025. [Online]. Available at: https://lwn.net/Articles/1023646/, accessed 06.10.2025.

A. Belevantsev, A. Borodin, I. Dudina, V. Ignatiev, A. Izbyshev, S. Polyakov, E. Velesevich, and D.
Zhurikhin. Design and Development of Svace Static Analyzers. 2018 Ivannikov Memorial Workshop
(IVMEM). 2018. pp. 3-9. DOI: 10.1109/IVMEM.2018.00008.

Linux Verification Center — Static Analysis (in Russian). [Online]. Available at:
https://portal.linuxtesting.ru/activity.html#menu3, accessed 29.09.2025.

Found by Linux Verification Center (linuxtesting.org) with SVACE. [Online]. Available at:
https://web.git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&g=Found-+by+Linux
+Verification+Center+(linuxtesting.org)+with+SVACE, accessed 29.09.2025.

Opiosa E.M., BacuibseB A.A., TTetpos O.M. OkpaliBaHie CHMBOJIBHBIX I'padyOB MaMSITH JUIsl BBISIBICHHUS OLIKOOK, crieiuuaHbix 111 DRM-
npaiisepos Linux. Tpyow: UCIT PAH, 2025, tom 37 Bbim. 5, c. 67-80.

[27]. E.M. Novikov. An approach to implementation of aspect-oriented programming for C. Programming and
Computer Software, vol. 39, no. 4. 07.2013. pp. 194-206.

[28]. I.S. Zakharov, V.S. Mutilin, and A.V. Khoroshilov. Pattern-based environment modeling for static
verification of Linux kernel modules. Programming and Computer Software, vol. 41, no. 3. 05.2015.
pp. 183-195. DOI: 10.1134/S036176881503007X.

[29]. 1. Zakharov and E. Novikov. Compositional Environment Modelling for Verification of GNU C Programs.
2018 Ivannikov ISPRAS Open Conference. 2018. pp. 39—44. DOI: 10.1109/ISPRAS.2018.00013.

[30]. P.S. Andrianov. Analysis of Correct Synchronization of Operating System Components. Programming
and Computer Software, vol. 46, no. 8. 01.12.2020. pp. 712-730. DOI: 10.1134/S0361768820080022.

[31]. Predator. [Online]. Available at: https://www.fit.vut.cz/research/group/verifit/public/tools/predator/,
accessed 29.09.2025.

[32]. Klever 4.0.1. [Online]. Awvailable at: https://github.com/ldv-klever/klever/tree/v4.0.1/, accessed
18.03.2025.

[33]. CPAchecker 702bcla. [Online]. Available at: https://github.com/ldv-
klever/cpachecker/commit/702bc1a36f663d0elbacl3e6c6752e61828e6ac8, accessed 21.03.2025.

Ungpopmayusi 06 aemopax / Information about authors

Exarepuna MuxaiinoBaa OPJIOBA — cryneHTka marucTpaTypsl (haKysiabTeTa BBIYHCIMTEIBHOM
MmareMaTuk U kuoepHetuku MI'Y, nabopant MHcTuTyTa crcteMHoro nporpammupoBanust PAH.
Ciepa HayIHBIX HHTEPECOB: CTATHYECKUI aHAIU3 U Bepudukarus sapa Linux.

Ekaterina Mikhaylovna ORLOVA — Master’s student at the Faculty of Computational Mathematics
and Cybernetics of Lomonosov Moscow State University (MSU), lab assistant at the Institute for
System Programming of the RAS. Research interests: static analysis and verification of the Linux
kernel.

Anron Anexcanaposud BACUJIBEB — mmanmuii Hay4qHbl cOTpyAHUK WHCTHTYTa CHCTEMHOTO
nporpammupoBanns uM. B.I1. VBamamkoBa PAH. Cdepa HaydHBIX WHTEPECOB: CTaTHUYECKas
BepU(UKALUS U aHAIIU3 TIPOTPAMM.

Anton Aleksandrovich VASILYEV — junior researcher at the Ivannikov Institute for System
Programming of the RAS. Research interests: static verification, software model checking, static
program analysis.

Oner MaxkcumoBnu IIETPOB — acmupant u craxép-uccienoBarens MHCTHTyTa CHCTEMHOTO
nporpammupoBanust uMm. B.I1. MBannukoBa PAH. Cdepa HaydHbIX HHTEpEcOB: craTuuecKas
BepH(DHUKAIUS U aHAIN3 UCXOIHOTO Koma mporpamm, delta debugging.

Oleg Maximovich PETROV - postgraduate student and intern researcher at the Ivannikov Institute
for System Programming of the RAS. His research interests include software model checking, static
program analysis, delta debugging.

79

Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80.

80

