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Abstract. This research proposes a hybrid approach for implementing performance-oriented compiler
intrinsics. Compiler intrinsics are special functions that provide low-level functionality and performance
improvements in high-level languages. Current implementations typically use either in-place expansion or call-
based methods. In-place expansion can create excessive code size and increase compile time but it can produce
more efficient code in terms of execution time. Call-based approaches can lose at performance due to call
instruction overhead but win at compilation time and code size. We survey intrinsics implementation in several
modern virtual machine compilers: HotSpot Java Virtual Machine, and Android RunTime. We implement our
hybrid approach in the LLVM-based compiler of Ark VM. Ark VM is an experimental bytecode virtual
machine with garbage collection and dynamic and static compilation. We evaluate our approach against in-
place expansion and call approaches using a large set of benchmarks. Results show the hybrid approach
provides considerable performance improvements. For string-related benchmarks, the hybrid approach is 6.8%
faster compared to the no-inlining baseline. Pure in-place expansion achieves only 0.7% execution time
improvement of the hybrid implementation. We explore two versions of our hybrid approach. The "untouched"
version lets LLVM control inlining decisions. The "heuristic" approach was developed after we observed
LLVM's tendency to inline code too aggressively. This research helps compiler developers balance execution
speed with reasonable code size and compile time when implementing intrinsics.
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AnHoTanms. [laHHOe wucclenoBaHUE MpeJlaraeT THOPUIOHBIA IOAXOA K peaau3alud BCTPaMBACMbIX
KOMIWIATOPHBIX ~ (YHKLMH, HampaBlICHHBIX Ha YJIy4lIeHHE IPOU3BOIUTEIBLHOCTH. BcTpanBaeMmble
KOMIWIATOPHbIE (YHKIMH — 0coOble (YHKIHH, KOTOPBIE NPENOCTaBIAT JOCTYN K HHU3KOYPOBHEBBIM
BO3MO>KHOCTSIM HJIX YJTy4IIAlOT IPOU3BOJUTEIILHOCT. TeKyIne peaan3alyi, KaK PaBuio, HCIOIB3YIOT JIN0O0
packphITHEe Ha MecTe, OO IIOIXOJbl, OCHOBaHHBIC Ha BBI30BE. PacKphITHE Ha MeCTe MOXKET H30BITOYHO
YBEJIMYUTH pa3Mep KOJa U BpeMsl KOMITHIISIIIAH, HO c0o3/1aTh Ooiiee 3 (heKTUBHEIN KO/ IT0 BpEMEHHU HCIOTHEHS.
Tlonaxoxpl, OCHOBaHHBIE HA BHI30BE, MOTYT IIPOMIPHIBATH 110 IMPOU3BOJMTEIBHOCTH B CBS3U C BBI30BOM
(YHKINY, HO BBIMTPHIBAIOT MO pa3Mepy KOJAa M BPEMEHH KOMIHMJIALUH. MBI pacCMaTpUBaeM peaan3aIluu
BCTpanBaeMbIX (YHKIHI B HECKONBKUX COBPEMEHHBIX KOMIIIIIITOPAX BUPTYAIbHBIX MAIIUH: B BUPTYaIbHOMN
mamuHe Java HotSpot u B Android RunTime. Me1 peanu3zyem rubpuansiii moaxon 8 LLVM-kommusTope amst
BHUPTYyaJbHOUM MamuHBI Ark. Ark — 3TO 3KcliepuMeHTalnbHass OalTKOAHAS BUPTyaJbHAs MalldHA CO COOPKOM
Mycopa, AWHAaMHYECKHMM M CTaTHYeCKHM KOMIMIATOpaMH. MBI CpaBHHMBaeM Haml T'MOPHIHBIA MOIXOX C
pacKphITHEM Ha MeCTe M IIOAX0/I0M, OCHOBAaHHOM Ha BBI30BaX, Ha O0JIbIIOM Habope OeHIMapKoB. Pe3ynbrarsl
MOKa3bIBAIOT, YTO THOPWIHBIA MOAXOJA MO BPEMEHH HCIIOJHEHHS MOKa3bIBAeT 3HAUMTENBHOE YIIy4IICHHE.
CTpokoBble OCHUMApKH BBIMOTHIIOTCA OBICTpee Ha 6.8% MO CpPaBHEHHIO C TOJXOJOM, OCHOBaHHOM
HCKIIIOUUTENIFHO HAa BBI30BAaX, B TO K€ BPEMs, YHCTOE PAacKphITHE Ha MecTe ObicTpee Ha 0.7% rubpuaHoro
moaxoaa. Mel paccMaTpuBaeM JiBe Bepcud THbpuaHoro moaxoxa. "Untouched” Bepcust mossonsier LLVM
caMOMy NpUHHMATh peIIeHHEe O BCTpamBaHMM (pyHKUMU wiu BeiOOpe BbI3oBa. Iloaxon "heuristic" mbl
pa3paboTanu mocie Toro, kKak 3amerwid, 4yto LLVM B "untouched" momxome NpOW3BOAWT H3JIHIIHE
arpeccMBHOE BCTpauBaHHe (QYHKUMMA. JlaHHAs cTaThsl MOMOXKET pa3paboTYNKaM KOMIWIISITOPOB HAlTH OanaHc
MEX]ly BpEMEHEM HCIOJIHEHHs, pa3MepoM KoJa U BpEeMEHEM KOMIMJIALMH IPH pealnu3alyd BCTPaHBaeMBIX
GbyHKUIMiL.

KmioueBble cioBa: BcTpanBaemble (yHKIMH; KOMIWISTOpHas HHOpacTpykTypa LLVM; BHpTyanbHbIe
MaIlIiHBL.

Jas nuruposanus: 3asenees /1.B., XKyiikos P.A., Ckeopuos JI.B., [TantunumonoB M.B. BricTprie BEI30BBI
W PacKpBITHE HA MeCTe: TMOpHAHAS CTpaTeTHs IS BCTPAMBAaeMBIX (DYHKIWI BHPTYalbHBIX MAIIUH. TpyIIsl
UCII PAH, tom 37, Bbim. 6, gacts 1, 2025 r., crp. 121-134 (na anrnuiickom si3eike). DOI: 10.15514/ISPRAS—
2025-37(6)-7.

1. Introduction

Intrinsics are functions that compilers handle in a special way. They serve two primary purposes:
first, providing programmers access to low-level functionality within high-level languages like C or
C++ (suchasthe _ rdtsc function, which returns cycle count for a CPU) and second, enhancing
application performance (such as optimized implementations of Math. 1og in HotSpot JVM [1]).
This paper focuses specifically on performance-oriented intrinsics.

Compilers typically implement intrinsics using two main strategies: in-place expansion, where the
intrinsic call is expanded into a sequence of machine instructions directly at the call site; and the call
approach, which generates a call to precompiled or runtime-generated code. Our survey shows that
modern compilers utilize both approaches, though implementation practices vary across different
compiler systems.
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Virtual machine (VM) compilers often expand intrinsics without code size limitations, which can
lead to excessive memory usage and potential performance degradation. Conversely, some VM
compilers never use in-place expansion, instead relying exclusively on efficient calls. While this
approach preserves memory and reduces code size, it might introduce performance penalties. On the
other side, Damasio et al. propose using an inlining to reduce code size [2].

In this paper, we propose a hybrid approach that combines both in-place expansion and efficient
calls. This method aims to deliver performance benefits while maintaining reasonable code size and
compile time.

We implement the hybrid approach and evaluate its performance within the LLVM-based [3]
compiler of Ark Virtual Machine (Ark VM) [4]. Ark VM is an experimental bytecode virtual
machine with garbage collection, dynamic (Just in Time — JiT) and static (Ahead of Time — AoT)
compilers. It executes bytecode compiled from ETS, a statically typed language similar to
TypeScript (but other frontends are possible to the VM's bytecode).

The hybrid approach has experimental status, and shows promising results: for string-related
benchmarks execution time is 0.932 (6.8%) times of the no-inlining baseline, while the always in-
place expansion is only 0.993 (0.7%) times of the hybrid approach performance.

We have been working on LLVM-based compilation for Ark VM, thus we can experiment with
intrinsics optimizations with relative ease in the LLVVM-based compiler.

In this paper, we begin by introducing Ark VM in the 2nd section, where its essential components
are described. Next, we survey various ways to encode intrinsics in the HotSpot Java Virtual
Machine [5] and Android RunTime [6], while also including Ark VM for comparison in the 3rd
section. The 4th section then presents a hybrid approach that combines both call and in-place
expansion techniques.

Following this, the 5th section compares the in-place, calls, and hybrid approaches to intrinsics
encoding in Ark VM, focusing on code size, application performance, and compile time. To provide
empirical evidence, we run a comprehensive set of benchmarks, demonstrating how performance
varies across a wide range of scenarios. Additionally, a dedicated micro-benchmark for the
StringEquals intrinsic is developed, allowing us to analyze in detail the advantages and
disadvantages of each approach.

We also discuss two flavors of the hybrid approach: untouched and heuristic because our setup
reveals that LLVVM tends to be overly aggressive with inlining, as will be shown in the 5.4 section.
The paper concludes by summarizing the results.

2. Ark VM

2.1 Execution in Ark VM

Ark Virtual Machine is a bytecode virtual machine.

Compilers like Clang or GCC transform programs in a high-level language like C into a sequence
of machine instructions specific to the CPU. In this approach a program compiled for x86_64 CPU
cannot be run on aarch64 CPU directly.

We illustrate it in Fig. 1: compiler takes a program in C as an input, and produces an executable file,
which in turn runs on x86_64 CPU.

Compiler (GCC
or Clang)

Program (*.c) > = Executable file CPU (x86_64)

Fig. 1. Compilation and execution for compilers producing directly executable files.
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For VMs like Ark it is different: a compiler for high-level language transforms a program into a
sequence of bytecode instructions. Bytecode is a set of instructions for artificial processor that does
not exist but is a convenient abstraction. The VM emulates such a processor. Thus, a bytecode
program runs anywhere where the VM is available, despite environment.

Fig. 2 is specific to Ark VM: ETS is a programming language, ETS frontend is a program that
transforms ETS to bytecode, it takes a program in ETS language, and produces bytecode file (. abc),
which then runs on Ark VM.

Bytecode file
(*.abhc)

A

Ark VM

Y

Program (*.ets) ETS frontend

Fig. 2. Compilation from high-level language to bytecode file and execution in Ark VM.

Fig. 1 and Fig. 2 look similar but there is a huge difference: in the first case, the executable file runs
directly on CPU, in the second case Ark VM acts as an emulator for CPU (Ark VM is a program
itself). To emulate a CPU VM has an interpreter — a component which reads instructions from
bytecode file one by one and emulates their behavior. Such an interpreter in its simplest form is
implemented in the language of VM, e.g., C++, using a dispatch table. Modern VMs employ
different optimizations techniques to make interpretation faster, e.g., HotSpot JVM has a template
interpreter generated at runtime [7].

Despite improvements made to the interpreter, interpretation remains slow. To alleviate this, VMs
employ compilers. VM monitors itself during the execution, and for frequently executed functions
Just in Time compiler produces native code for the CPU where the VM runs at runtime. VMs also
employ Ahead of Time compilers which produce native code before the execution. AoT compiler is
used in different scenarios when upfront compilation is more profitable: e.g., to compile parts of the
standard library, or parts of an application. Ark VM has both JiT and AoT compilers.

2.2 Ahead of Time compilation in Ark VM

AoT compiler in Ark VM transforms bytecode file into a file with instructions executable by CPU
directly.

In Fig. 3 we show the inputs for Ark VM: Ark VM requires a file with bytecode for execution, and
optionally AoT compiled files — *.an with machine code. Ark VM upon start loads the AoT
compiled files, and registers the machine code internally: for each AoT compiled function, the VM
changes its entry point so that instead of interpretation, the AoT compiled machine code is executed.
If there is no registered machine code for a function, then VM starts with interpretation of the
function. If the function is executed often enough, JiT compiler produces native code dynamically.

Bytecode inputto | ark_aot produces Machine
s Application LLVM IR Coe ey
inputto\ Ark VM lqeeemee-=== 7 input to

(optional)

Fig. 3. Inputs into Ark VM: bytecode file (mandatory), AoT-file (optional).

In Ark VM there are two kinds of AoT compilers: stock, and LLVM-based. Stock compiler is written
from scratch for the VM, and LLVM-based compiler transforms bytecode into LLVM IR, then
LLVM produces native code for that LLVM IR. In this paper we focus only on LLVVM-based AoT
compiler.
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2.3 Intrinsics in Ark VM
In Ark VM there are two kinds of intrinsics:

1. Regular intrinsics which are encoded using various strategies. E.g., to get a length of a
String compiler uses special Intermediate Representation (IR — form of code between the
source language and machine code). Also, there are intrinsics which are replaced by calls
to the standard library function calls like sin.

2. FastPaths — precompiled intrinsics or VM routines.

2.4 FastPaths in Ark VM

To call a FastPath compiler produces a fast-call in Ark VM.

At the low-level, to call a function the compiler must obey a set of rules which define how to pass
arguments to a function, how to return a value from a function, which registers must be preserved
across calls (callee-saved registers), and are not guaranteed to be preserved (caller-saved registers
or call-clobbered registers). This set of rules is calling convention in compiler terminology.
Fast-call means using a special calling convention which preserves almost all registers across calls.
It uses ArkFast calling convention in our patched LLVM 15 version.

The purpose of the calling convention is to make the code for caller as cheap as possible, so the
caller does not need to preserve registers before making a call. The ArkFast calling convention is
supported for aarch64 and x86_64. The calling convention has also caller saved registers: 4 for
aarch64, and 6 for x86_64. Parameters, and return value registers are caller or callee-saved
depending on their presence. For comparison, the default calling convention for arm64 — aapcs64
defines more than 20 of the registers as call-clobbered [8].

2.5 Intrinsic FastPaths example: StringEquals

Consider the following code in ETS language in Listing 1.

function bar(a: string, b: string): boolean {
return a === b;

Listing 1. String comparison in ETS language.

The code in the Listing 1 uses the *===" operator to check if two strings are equal. Two strings are
equal if their lengths are equal and characters composing these strings are equal. In Ark VM the
performance of such a comparison is so critical that string comparison is an intrinsic function —
StringEquals.

StringEquals intrinsic in AoT code is encoded as a fast-call to precompiled machine code.

2.6 Categories of FastPaths

Ark VM has 90 FastPaths. There are FastPaths for high-level operations like comparing Strings
which directly map onto standard library methods. Also, there are low-level FastPaths, e.g.,
allocation routines. We categorize all FastPaths in Table 1.

As we can see, most of the FastPaths are related to strings in Ark VM.

2.7 Summary

1. VM emulates artificial CPU to make programs for the VM cross-platform. Instructions for
such cpu are bytecode instructions. Ark VM is one of such machines.
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2.

When executing the bytecode Ark VM starts with interpretation, then JiT compiler can
produce machine code if the function is frequently executed, AoT compiler can produce
machine code before execution.

There are two kinds of intrinsics in Ark VM: regular and FastPath. Regular intrinsics are
encoded using various strategies. FastPath is precompiled machine code for VM routines
or intrinsics. Most of the FastPaths are string related in Ark VM.

Table 1. Categories of FastPaths in Ark VM.

Category Count Comment

Allocation 5 |Allocation routines for objects and arrays

Garbage Collection (GC) 9 |GC pre-, post-write barriers

String 61 |String routines: creating a substring, appending to string, etc.
Array copy 11 |Various routines to support ArrayCopy operation in ETS
Misc 4 |Interface lookup cache, monitor lock and unlock, check cast

3. Industry approaches to intrinsics

In this section we survey approaches to intrinsics encoding. We do it for HotSpot JVM (openjdk
version "21.0.1" 2023-10-17), Android RunTime (specifically dex2oat aml_art 351110180, Nov
2024), and Ark VM.

We observe the following strategies of intrinsics encoding in production VMs:

1.

Call replacement. VM compiler replaces a call to intrinsic function with a call to another
equivalent function but more performant. Android RunTime, Ark, HotSpot JVM perform
call replacement for sin function: Android RunTime [9] and Ark replace it with a call to the
std: : sin function, HotSpot JVM replaces it with a call to the runtime generated dsin
function [10].

Special IR. In this case, compilers replace a call with a special sequence of IR instructions.
Example of such strategy is encoding of java.lang.String: :length in Android
RunTime [11]. Ark also replaces calls to get string length with several compiler IR
instructions, these instructions become a part of the function's body, and are optimized
together.

In-place expansion. In this case, compiler replaces a call to an intrinsic function with a
sequence of machine instructions at the call site. We observed that behavior in HotSpot
JVM for java.lang.Arrays::equals (byte[], byte[]) method [12].
Android RunTime also employs in-place expansion for
java.lang.String: :equals method [13].

Fast-call. A special case for call replacement. Ark VM employs this approach for FastPath
intrinsics. As we described in the 2.4 section, in this case a call to an intrinsic is encoded as
a call with calling convention that preserves almost all registers.

Calling other intrinsics. OpenJDK 21 employs this approach to improve the performance
of String: :equals method: in OpenJDK 21, the method is not intrinsic itself, but it
callsStringLatinl: :equals intrinsic. Jinior Loffet al. [14] propose leveraging that
method, and suggest replacing several intrinsics written in assembly with implementation
in Java using Java Vector API.

Each of the approaches has its advantages and disadvantages. Call replacement, in-place expansion,
and fast calls are used to implement complex high-level operations, like comparing strings. Special
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IR is usually used for simple operations like getting a string length. Fast-call is similar to call
replacement since those approaches are basically calls.

We are interested in the in-place expansion and call approaches because using solely either of
approaches has its own advantages and disadvantages. We list them in Table 2.

We see that HotSpot JVM, Android RunTime, and Ark VM lack flexibility in encoding intrinsics:
for some of the intrinsics their approach is black-or-white, with no option to adapt or vary the
encoding method.

We propose an approach that allows the encoding strategy to change based on potential benefits.
Our hybrid approach aims to be the approach taking the best of the in-place and the call approaches:
reasonable code size, improved performance, and manageable compile time.

Table 2. In-place and call approaches compared.

Criteria In-place Call

Code size Usually grows indefinitely No code size growth

Performance |Can produce more performant code due to (1) absence of|Can lose at performance
a call instruction, (2) possible optimizations after inlining

Compile time | Takes more time to compile Less time to compile

4. Hybrid approach to intrinsics encoding in Ark VM

4.1 VM before introducing hybrid approach

As of current state, Ark VM produces precompiled machine code for FastPaths — VM routines and
high-level operations like comparing strings. We illustrate it in Fig. 4: FastPath compiler produces
a fastpath. o file with machine code from the source code, then the fastpath. o file becomes
part of the runtime library.

In Fig. 5 we show how AoT compiler transforms bytecode file into a file with machine code. When
compiling calls to FastPaths, compiler produces calls to functions from the dynamic library
(libarkruntime.so)—apart of VM runtime. AoT compiler has no definitions of the FastPath
functions, and thus cannot inline the FastPath into the application code.

FastPaths source code
(StringEquals, etc.)

}

FastPath compiler . Machine code Runtime library
(LLVM-based) (fastpath.o) (Libarkruntime.so)

Fig. 4. FastPath compilation before hybrid approach.

ark_aot
Application -~ T Machine
(*.abc) Application LLVM IR code (*.an)

Fig. 5. AoT compilation before hybrid approach.

127



Zavedeev D.V., Zhuykov R.A., Skvortsov L.V., Pantilimonov M.V. Fast Calls and In-Place Expansion: A Hybrid Strategy for VM Intrinsics.
Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 6, part 1, 2025. pp. 121-134.

4.2 VM with hybrid intrinsics encoding

We involve joint work of two compilation phases. First, during VM build, LLVM compiles
FastPaths and dumps LLVM bitcode. We show the difference in Fig. 6: now we produce not only a
binary file with machine code (. o) but also a bitcode file with definitions of the FastPaths (marked
blue in the diagram).

Second, during AoT compilation we supply the dumped bitcode file for joint optimizations purposes.
Fig.7 now shows that AoT compiler has LLVM IR from bytecode, and for FastPath.

Now, LLVM AoT compiler has the definitions of the FastPath functions, not only their declarations,
and can inline the FastPath functions into AoT-code.

FastPaths source code
(StringEquals, etc.)

.

FastPath compiler Machine code Runtime library
(LLVM-based) (fastpath.o) (Libarkruntime.so)

FastPaths bitcode (*.bc)

Fig. 6. FastPath compilation with hybrid approach.

ark_aot

Application LLVM IR

Application st Machine
*.ab de (*.
(*.abc) (inlining) code (*.an)

FastPaths LLVM IR

FastPaths
(*.bc)

Fig. 7. AoT compilation with hybrid approach.

New parts are blue in these diagrams. All grey components in the diagrams are already implemented.
VM uses the produced . an file as usual when started: it loads the . an file upon start, registers
compiled machine code, and executes more optimal compiled code.

4.3 Controlling inlining

To allow fine-tuning of inlining we introduce an LLVM pass which forces or forbids inlining of

FastPaths. fastpath-max-always-inlines option controls the number of forcefully inlined
FastPaths into AoT compiled function:

e N> 0 - forces inlining of the first N FastPaths met in the function, forbids inlining of other
FastPaths in function

e 0 - forbids inlining of all FastPaths in a function — equivalent of default mode
e -1-—neither force, nor forbid inlining of FastPaths. In this case, the decision is up to LLVM.
A FastPath can call another FastPath in Ark VM, in this case, we inline the FastPath unconditionally.
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5. Evaluation
In this section we evaluate configurations of FastPath inlining listed in Table 3.

We introduce the "heuristic" scenario in our measurements because we know that LLVM is too
aggressive at inlining in advance, as it will be evidenced in the 5.4 section.

Table 3. Inlining configurations.

fastpath-max-

Approach Description always-inlines
No inlining  |Inlining of all FastPaths into AoT code is forbidden 0
Always inline |Inlining of all FastPaths into AoT code is enforced 2 000 000 000
Only the first occurrence of FastPath in the function is

Heuristic inlined forcefully, inlining is forbidden for other FastPaths 1
in the function

Untouched Leave the decision up to LLVM -1

We are interested in three metrics:
1. Execution time — how long it takes to perform an operation.
2. Code size — the size of a produced binary AoT file. In Ark these are files with .an
extension.
3. Compilation time — how long it takes to compile a file.
To measure code size, and compilation time we compile the standard library file of ETS language.
To measure performance, we run a large set of benchmarks. We also gather compile time and code
size for benchmark files.
But first, we describe which FastPaths we inline and do not, and describe our setup.
In our evaluations we do not inline:
1. GC-related FastPaths because they are called by a pointer, thus it is impossible to know
which FastPath is called.
2. "Interposer” FastPaths. They simply wrap a single function call, and never called by AoT
code. There are 2 interposer FastPaths.
That is, we inline 78 FastPaths out of 90.
Another important note: to provide a fair comparison between approaches, we disabled safepoints
in our experimental code. Safepoints function like scheduled checkpoints where running code briefly
pauses to allow the virtual machine to perform maintenance tasks such as garbage collection. When
FastPath code is compiled on its own, the compiler does not insert safepoints because they are not
needed in this specialized code. However, when we inline this FastPath code into the main program,
the compiler automatically inserts safepoint instructions into loops, treating it like regular code.
This automatic insertion creates an inconsistency: the same FastPath code performs differently when
inlined versus when kept separate, not because of our hybrid approach but because of how the
compiler handles it. By disabling safepoints throughout all code paths, we establish a consistent
environment that allows us to measure the true performance differences between our approaches
without this compiler introduced variable affecting our results.
While safepoints are important in production environments, disabling them for our comparative
analysis ensures our research findings reflect the actual differences between implementation
approaches rather than artifacts of the compilation process.

5.1 Setup
We run all measurements:

e Onaarch64 Linux.
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e Using Release built version of Ark VM and Release LLVM.
e Using vm-benchmarks framework [15].

5.2 Standard library: code size, and compile time

We compile etsstdlib —the bytecode of ETS standard library, resulting file with machine code
isetsstdlib.an. The file has 10764 calls to FastPaths. Table 4 summarizes our measurements.
In parentheses, we show score against the "No-inlining baseline".

Table 4. Different inlining strategies for standard library.

Approach Size, bytes Compile time, s
Always inline 7 489 992 (x1.39) 303 (x1.62)
No inlining 5384 648 (x1) 187 (x1)
Heuristic 5 642 696 (x1.05) 200 (x1.07)
Untouched 6 101 448 (x1.13) 220 (x1.18)

As we could expect, the "Always inline" approach grows the size of binary file the most (x1.39 of
original), compile time is also at the maximum. The "Untouched" approach grows the code size by
x1.13 of the original, compile time is also lower than in "Always inline". Our heuristic approach
provides minimal code size growth of the binary file, and minimal compile time growth.

5.3 Benchmarks: performance, compile time, and code size

We run a large set of benchmarks. As we described in the section 2.6, most of the FastPaths are
string related, so we should keep an eye on benchmarks related to strings. We evaluate our approach
on 2305 benchmarks. Those include 276 String benchmarks.

We show relative value which should be read as "x times of no inline baseline™.

The relative values are geometric mean ratios across metrics: execution time, .an-file size, and
compile time. For all cases "lower is better".

In our measurements, the VM uses AoT-compiled standard library. That is, if a benchmark calls a
function from the standard library, then the called function is also AoT-compiled with fastpath-
max-always—-inlines set to match the approach under measurement.

5.3.1 String benchmarks

For string benchmarks the results are in Table 5. As we can see, the always inline approach has the
best execution time: 0.925 of the no-inlining baseline, the worst compile time, and code size —2.381,
1.313 of the original respectively.

The untouched approach is 0.957 of the original at execution time. Code size is almost the same as
the original — 1.015. Compile time is less than for "always inline" approach.

The heuristic approach is closer in performance to the always inline approach, and does not increase
compile and code size dramatically.

Table 5. String benchmarks results

Characteristic\Approach |  Always inline Heuristic Untouched
Execution time 0.925 0.932 0.957
Code size 1.313 1.059 1.015
Compile time 2.381 1.302 1.250
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5.3.2 All benchmarks

For the whole set of benchmarks, the results are in Table 6. In the whole set of benchmarks overall
performance gains drop compared to the string benchmarks.

This happens because of the nature of FastPath we are inlining: most of them are String related.

Table 6. All benchmarks results.

Characteristic\Approach|  Always inline Heuristic Untouched
Execution time 0.980 0.999 0.998
Code size 1.220 1.044 1.037
Compile time 1.879 1.159 1.192

5.4 StringEquals benchmark

In this section we take benchmarks to extreme: usually a benchmark has a reasonable number of
intrinsic calls, we are going to vary a number of calls from 50 to 300 and see results.

Mostly, this section motivates using the heuristic approach, because we see the evidence that leaving
inlining decision entirely up to LLVM can increase code size significantly, and degrade
performance. The heuristic approach solves this problem: it forces inlining of the first FastPath call
met in a function, and disables inlining of all other FastPaths in the function. We have not tried
sophisticated heuristics since in our opinion this research must be done against the production ready
implementation of FastPath inlining, and as of now safepoint support is missing. Despite that our
guess to inline the first FastPath call is quite good in all terms, which we are interested in.

We run benchmark, where we call String: :equals ranging number of times between 50 and
300 for 4 and 1024 length strings. Strings have equal lengths, and differ only in the last character.
Fig. 8 visualizes the results for 4 length strings. For 1024 string length graph with performance is in
Fig. 9.
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Fig. 8. Performance for 4 characters string.
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Fig. 9. Performance for 1024 characters string.

There are interesting points to note:
e Untouched and always inline approaches show similar performance
e Untouched and always inline approaches have lower performance for 300 number of calls
compared to the heuristic and to the no-inlining approaches
e For 1024 length strings there is no significant difference between approaches since the
strings are long, comparing 1024 characters outweighs eliminated call overhead.
The reason why untouched approach shows performance close to always inline is that when calls
are left untouched, LLVVM inlines almost all the StringEquals calls.
For 300 number of StringEquals calls the no-inlining and heuristic cases are more performant,
independently of the string length. The reason we think of is that the machine code in always inline
and untouched cases does not fit the instruction cache. A CPU we use has 64KiB of instruction cache
per core, code size is 106.71KiB in always inline case, which is larger than the CPU cache.
As we see, leaving the decision about inlining up to LLVM can degrade performance and increase
code size.
Because of increased code size, and possible performance degradation we have introduced the
hybrid approach in favor of the untouched approach.

6. Future work
We see our future work as follows:

1. Safepoint support. We had to disable safepoint placement to make comparison fair but to
make the hybrid approach ready for production, we should allow safepoint placement
without sacrificing the performance of FastPaths.
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2. More intrinsics. We based our work only on a part of intrinsics that are FastPaths. Other
intrinsics can be migrated to FastPath so that we could inline them too.

3. x86_64 support. For now, hybrid approach supports only aarch64 architecture, though
LLVM AoT compiler supports x86_64 and aarch64.

4. Heuristic improvement. Our heuristic to always inline the first FastPath met in the function
already shows decent performance, compile time, and code size but still there can be more
effective heuristics.

7. Conclusion

We proposed a hybrid approach to intrinsics encoding for VMs' compilers. We implemented the
approach in LLVM-based static compiler for Ark VM. Our approach combines two approaches:
fast-calls and in-place expansion.

We compared the hybrid approach to pure fast-calls and in-place expansion. We present a hybrid
approach in two flavors: untouched where LLVM makes an inlining decision based on its own
metrics, and heuristic which forces inlining of the first intrinsic met in a function and forbids inlining
of other intrinsics.

The heuristic flavor shows better performance, code size management, and compile time compared
to the untouched version. For string-related benchmarks, the hybrid heuristic approach is 6.8% faster
compared to the no-inlining baseline while the pure in-place expansion achieves only 0.7%
execution time improvement of the hybrid heuristic implementation.

Intermediate language for intrinsics like LLVM IR gives more control over intrinsics encoding: we
can inline them, leave them as calls, or leave the decision up to compiler.
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