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Аннотация. Обучение высококачественных классификаторов в условиях ограниченного количества 

размеченных данных является одной из фундаментальных проблем машинного обучения. Несмотря на 

то, что большие языковые модели (LLM) демонстрируют впечатляющие результаты при решении задач 

классификации явного обучения (zero-shot), их прямое применение на практике затруднено из-за 

высокой вычислительной стоимости, чувствительности к формулировкам запросов (prompt engineering) 

и ограниченной интерпретируемости. В качестве масштабируемой альтернативы выступает обучение 

со слабым контролем, которое основано на объединении множества неточных функций разметки 

(labeling functions, LF). Однако создание и последующая настройка таких функций обычно требует 

существенных затрат ручного труда. В данной работе мы предлагаем подход LLM-Guided Iterative Weak 

Labeling (LGIWL), который сочетает генерацию функций разметки с помощью больших языковых 

моделей и методику обучения со слабым контролем в рамках итеративного цикла обратной связи. 

Вместо прямого использования LLM в качестве классификатора, мы применяем её для автоматического 

создания и постепенного уточнения функций разметки на основе ошибок промежуточного 

классификатора. Полученные функции фильтруются с использованием небольшого размеченного 

набора данных и затем применяются к неразмеченной выборке при помощи генеративной модели 

меток. Это позволяет обучить итоговый дискриминативный классификатор высокого качества при 

минимальных затратах на ручную аннотацию. Эффективность предложенного подхода 

продемонстрирована на реальной задаче классификации диалогов службы поддержки клиентов на 

русском языке. LGIWL существенно превосходит как классические эвристики на основе ключевых слов 

(Snorkel), так и подходы zero-shot на основе GPT-4, а также полностью контролируемый классификатор 

CatBoost, обученный на размеченных данных аналогичного размера. В частности, вариант LGIWL с 

моделью RuModernBERT достигает высокого показателя полноты при значительном улучшении 

точности, демонстрируя итоговый результат по метрике F1 = 0.863. Полученные результаты 

подтверждают как высокую устойчивость метода, так и его практическую применимость в условиях 

ограниченных ресурсов размеченных данных. 
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Abstract. Training high-quality classifiers in domains with limited labeled data remains a fundamental 

challenge in machine learning. While large language models (LLMs) have demonstrated strong zero-shot 

capabilities, their use as direct predictors suffers from high inference cost, prompt sensitivity, and limited 

interpretability. Weak supervision, in contrast, provides a scalable alternative through the aggregation of noisy 

labeling functions (LFs), but authoring and refining these rules traditionally requires significant manual effort. 

We introduce LLM-Guided Iterative Weak Labeling (LGIWL), a novel framework that integrates prompting 

with weak supervision in an iterative feedback loop. Rather than using an LLM for classification, we use it to 

synthesize and refine labeling functions based on downstream classifier errors. The generated rules are filtered 

using a small development set and applied to unlabeled data via a generative label model, enabling high-quality 

training of discriminative classifiers with minimal human annotation. We evaluate LGIWL on a real-world text 

classification task involving Russian-language customer service dialogues. Our method significantly 

outperforms keyword-based Snorkel heuristics, zero-shot prompting with GPT-4, and even a supervised 

CatBoost classifier trained on a full labeled dev set. In particular, LGIWL achieves strong recall while yielding 

a notable improvement in precision, resulting in a final F1 score of 0.863 with a RuModernBERT classifier–

demonstrating both robustness and practical scalability. 
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1. Введение 

Обучение с учителем стало доминирующим подходом к обучению высокоэффективных 

классификаторов в задачах обработки естественного языка. Однако его успешность 

критически зависит от наличия большого объёма качественно размеченных данных – 

условия, которое редко выполняется на практике, особенно в специализированных областях, 

таких как финансы, здравоохранение и клиентская поддержка. Ручная аннотация является 

дорогостоящей, медленной и зачастую требует значительной предметной экспертизы. 

Обучение со слабым контролем предлагает убедительную альтернативу, позволяя 

специалистам программно задавать эвристики разметки – так называемые функции разметки 

(labeling functions, LF), которые могут быть применены к большим неразмеченным корпусам. 

Эти слабые сигналы затем агрегируются с помощью вероятностных моделей для получения 

шумных, но масштабируемых обучающих меток. Фреймворки, такие как Snorkel, 

показывают, что при аккуратном проектировании функций разметки модели, обученные на 

слабо размеченных данных, могут приближаться по качеству к моделям, обученным на 

полностью ручной разметке. Однако разработка функций разметки остаётся нетривиальной 

задачей: она требует времени, экспертизы и итеративной доработки, что ограничивает 

доступность и масштабируемость обучения со слабым контролем на практике. 

Тем временем, большие языковые модели (LLM), такие как GPT-4, продемонстрировали 

выдающиеся способности, позволяя решать новые задачи при минимальном (few-shot) или 
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полном отсутствии (zero-shot) размеченных данных. Однако использование LLM напрямую 

в качестве классификаторов порождает новые сложности: вывод (inference) требует 

значительных вычислительных ресурсов, предсказания чувствительны к формулировке 

подсказок, а отсутствие интерпретируемости мешает их интеграции в регламентированные 

или критически важные для производства системы. 

В данной работе мы предлагаем новый подход, объединяющий семантическую гибкость 

больших языковых моделей LLM и надёжность с интерпретируемостью обучения со слабым 

контролем. Мы представляем метод LLM-Guided Iterative Weak Labeling (LGIWL) – 

фреймворк, в котором модели LLM рассматриваются не как чёрные ящики, а как генераторы 

функций разметки. LGIWL работает в итеративном цикле: ошибки классификатора 

используются для формирования подсказок LLM с целью генерации новых или уточнённых 

функций разметки; полученные функции фильтруются на небольшом валидационном 

наборе, и их выходы агрегируются для повторного обучения классификатора. Этот процесс, 

основанный на обратной связи, позволяет автоматически расширять и улучшать множество 

функций разметки, снижая необходимость в ручной настройке подсказок и разработке 

правил. 

Мы применяем метод LGIWL к реальной задаче классификации обращений в службу 

поддержки в финансовой жносфере и демонстрируем, что он значительно превосходит метод 

запросов без явного обучения (zero-shot prompting), статическое обучение со слабым 

контролем и даже полностью супервизированные модели, обученные на таком же объёме 

размеченных данных. В частности, LGIWL достигает высокой полноты при существенном 

росте точности, демонстрируя свою эффективность как масштабируемого и 

интерпретируемого подхода к обучению в условиях ограниченных ресурсов. 

2. Обзор релевантных работ 

Программируемое обучение со слабым контролем. Обучение со слабым контролем 

позволяет создавать размеченные наборы данных, заменяя ручную аннотацию эвристиками 

или правилами, известными как функции разметки LF. Фреймворк Snorkel ввёл 

формализованный подход к этому процессу, моделируя точность и корреляцию между 

функциями разметки с помощью генеративной модели меток [1]. Это позволило агрегировать 

шумные и потенциально конфликтующие слабые метки. Последующие работы расширили 

Snorkel для применения в крупномасштабных задачах [2] и разработали методы для 

выявления структуры между функциями разметки [3]. Позже набор WRENCH 

стандартизировал протоколы оценки для слабого обучения [4]. 

Однако, несмотря на существенную автоматизацию моделирования меток, написание 

функций разметки остаётся ручной и трудоёмкой задачей, часто требующей предметной 

экспертизы и итеративной доработки. Системы, такие как Snuba [5] и WITAN [6], стремились 

уменьшить нагрузку на разработку LF путём генерации правил из начальных примеров или 

обратной связи пользователя. Тем не менее, многие из этих систем по-прежнему требуют 

участия человека в цикле или зависят от жёстко заданной логики правил. 

Разметка на основе подсказок с использованием LLM. Большие языковые модели (LLM) 

предлагают новый путь для генерации правил путём интерпретации подсказок на 

естественном языке. В работе [7] было предложено использовать LLM для создания слабых 

меток путём постановки структурированных вопросов, рассматривая выходные данные LLM 

как источник шумной супервизии. Система Alfred [8] развила эту идею, применяя подсказки 

на естественном языке в качестве интерфейса для генерации и управления функциями 

разметки. Другие системы, такие как ScriptoriumWS [9], ещё больше автоматизируют 

процесс, преобразуя подсказки в исполняемые функции разметки на языке Python. 

Недавно появились полностью итеративные фреймворки. Например, DataSculpt [10] 

использует LLM для предложения новых функций разметки на основе few-shot подсказок и 
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уточняет набор правил в ходе нескольких раундов обучения и оценки. PRBoost [11] 

предложил цикл в стиле бустинга, где сгенерированные правила оцениваются и постепенно 

добавляются для повышения точности классификации. 

Вклад данной работы. Наш метод LGIWL опирается на эти разработки, но вводит ключевое 

новшество: итеративное уточнение функций разметки, сгенерированных LLM, на основе 

сигналов об ошибках классификатора, встроенное в структурированную архитектуру 

обучения со слабым контролем. В отличие от предыдущих методов, которые рассматривают 

генерацию подсказок или правил как одноразовые шаги, LGIWL замыкает цикл между 

подсказками LLM, агрегацией меток и обучением дискриминативной модели. Это 

обеспечивает масштабируемую и адаптивную слабую разметку в реалистичных условиях с 

ограниченными ресурсами и минимальным участием человека. 

3. Постановка задачи 

Рассмотрим стандартную задачу бинарной классификации, в которой требуется построить 

функцию fθ : X → {0,1}, предсказывающую принадлежность текстового объекта x ∈ X к 

заданной семантической категории (например, обращению, связанному с тарифом). При 

типичном подходе с учителем для обучения модели необходим полностью размеченный 

набор данных Dsup = {(xi, yi)}N
i=1. Однако на практике получение такого набора часто 

затруднено из-за высокой стоимости ручной аннотации, нехватки квалифицированных 

специалистов или малого количества примеров целевого класса. 

Вместо этого будем предполагать, что нам доступен большой неразмеченный корпус текстов 

DU = {(xi)}N
i=1 и небольшой размеченный валидационный набор Ddev = {(xj, yj)}M

j=1, причём 

M ≪ N. Валидационный набор используется исключительно для отбора и фильтрации 

шумных эвристик и не применяется напрямую для обучения итогового классификатора. 

Для создания слабых (неточных) меток на корпусе DU введём набор функций разметки 

 = {λk}K
i=1, где каждая функция λk : X  {0,1,∅}, либо сопоставляет входному объекту 

неточную метку класса, либо воздерживается от разметки. Такие функции могут 

представлять собой простые правила на основе ключевых слов, регулярные выражения или 

более сложные семантические конструкции. В рассматриваемой постановке функции 

разметки LF генерируются путём запроса к большой языковой модели с использованием 

инструкций и примеров на естественном языке. 

Каждый элемент выборки xi ∈ DU может быть размечен несколькими функциями разметки 

одновременно, в результате чего формируется матрица меток L ∈ {0, 1, ∅}N×K. Вероятностная 

модель меток p(yi | Li,:) агрегирует полученные шумные разметки в виде мягких 

(вероятностных) меток yˆi ∈ [0, 1], на которых затем обучается классификатор fθ. 

Центральная задача состоит в том, чтобы, используя обратную связь от модели fθ, итеративно 

улучшать набор функций разметки Λ таким образом, чтобы каждое новое поколение 

функций LF точнее отражало семантику задачи, обеспечивало большее покрытие выборки и 

уменьшало уровень шума. Данный подход лежит в основе предлагаемого нами фреймворка 

LGIWL, который превращает процесс проектирования функций разметки в адаптивный цикл 

обратной связи, управляемый ошибками обучаемой модели. 

4. Методология: итеративное обучение со слабым контролем на 
основе LLM 

Фреймворк LGIWL основан на идее использования больших языковых моделей не в роли 

непосредственного классификатора, а в качестве генератора семантических правил, 

встроенного в итеративный процесс обучения со слабым контролем. Целью такого подхода 

является создание тщательно подобранного набора функций разметки, позволяющих 
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формировать информативные вероятностные метки для больших неразмеченных наборов 

данных при минимальном участии человека. 

Пусть имеется неразмеченный корпус текстов и небольшой размеченный валидационный 

набор, где M ≪ N. 

Валидационный набор разделяется на две части: Ddev
prompt, используемую для выявления 

ошибок текущего классификатора, и Ddev
filter, предназначенную для количественной оценки 

и фильтрации кандидатных функций разметки. 

Каждая итерация t ∈ {1,...,T} цикла LGIWL включает следующие шаги: 

i. Формирование подсказок (Prompt Construction). Используя примеры из набора 

Ddev
prompt, на которых текущий классификатор ошибается или демонстрирует 

неопределённость, формируется текстовая подсказка π(t). Примеры группируются по 

пакетам и передаются в большую языковую модель (например, модель класса GPT), 

которая генерирует набор кандидатных функций разметки в виде семантических 

правил, шаблонов или групп ключевых слов. Обозначим полученный набор 

как  Λcand
(t). 

ii. Нормализация и дедупликация (Normalization and Deduplication). Далее, вновь 

обращаясь к языковой модели с набором Λcand
(t), происходит слияние семантически 

эквивалентных правил и удаление зашумлённых или избыточных формулировок, в 

результате чего получается очищенный набор кандидатных функций. 

iii. Фильтрация на валидационных данных (Filtering on Development Data). Каждая 

кандидатная функция разметки λk ∈ Λcand
(t)

 оценивается на наборе Ddev
filter. Функции, 

для которых показатели оценки точности (precision) и покрытия (coverage) 

превышают заданные пороги δp и δc соответственно, включаются в общий 

накопленный набор функций разметки Λ(t). 

iv. Разметка и агрегация (Labeling and Aggregation). Все накопленные функции 

разметки из множества Λ(t) применяются к неразмеченному корпусу DU при помощи 

лёгкого движка правил (например, t-lite-it-1.0), что приводит к формированию 

матрицы меток: 

L ∈ {0,1,∅}N×|Λ(t)|. 

Затем генеративная модель меток ϕ (например, Snorkel) агрегирует полученные 

сигналы в вероятностные метки: 

yˆi = ϕ(Li,:). 

v. Цикл обратной связи (Feedback Loop). На полученных метках {(xi,yˆi)} обучается 

временный рабочий классификатор. Ошибки классификации на наборе Ddev
prompt 

фиксируются и используются для формирования подсказки следующей 

итерации  π(t+1). 

Итерации продолжаются до тех пор, пока качество слабых меток на наборе Ddev
filter не 

стабилизируется. После достижения стабилизации производится обучение финальной 

прогнозной модели на полученных слабых метках {(xi, yˆi)}. Таким образом, 

высокопроизводительный классификатор оказывается полностью отделён от цикла 

проектирования функций разметки. 

Разделяя стадии генерации правил, их применения и финального обучения, метод LGIWL 

сочетает семантическую гибкость языковых моделей с эффективностью и 

интерпретируемостью систем, основанных на правилах. 
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5. Экспериментальная часть 

5.1 Задача и набор данных 

Мы оцениваем предложенный подход на задаче бинарной текстовой классификации 

обращений клиентов в службу поддержки на русском языке. Цель задачи – определить, 

относится ли многоходовой диалог к вопросам, связанным с тарифами. Полный набор 

данных содержит 10,000 неразмеченных диалогов, собранных с платформы цифрового 

банкинга. Целевой класс представлен достаточно редко и составляет примерно 8.2% 

Для разработки и оценки метода мы дополнительно разметили два подмножества данных. 

Валидационный набор из 1,000 размеченных диалогов используется в процессе обучения 

исключительно для генерации и фильтрации функций разметки, но не применяется 

напрямую для обучения итоговой модели. В рамках предлагаемого фреймворка LGIWL этот 

набор делится на две равные части: первая используется для формирования подсказок 

языковой модели на основе ошибок текущего классификатора, а вторая – для оценки качества 

кандидатных функций разметки перед их включением в общий набор LF. 

Отдельный тестовый набор из тысячи диалогов с ручной разметкой оставлен для финальной 

оценки. Метки из тестового набора не используются при обучении или подборе моделей ни 

в одном из рассматриваемых подходов со слабым контролем. 

5.2 Обзор сравниваемых методов 

В экспериментальном сравнении мы используем следующие методы, отражающие 

различные сценарии обучения (см. табл. 1): 

• Zero-Shot Prompting (LLM). Базовый zero-shot подход, в котором модель GPT-4 

напрямую классифицирует диалоги на тестовом наборе, получая описание задачи и 

несколько примеров (zero-shot). Данный подход представляет собой классификацию 

без явного обучения на размеченных данных. 

• Snorkel (Keywords). Классический подход обучения со слабым контролем, при 

котором функции разметки создаются вручную или автоматически на основе TF–IDF 

ассоциаций с целевым классом. Полученные функции агрегируются с помощью 

Snorkel для генерации вероятностных меток. 

• CatBoost + Snorkel (Keywords). Дискриминативный классификатор, обученный на 

слабых метках, полученных с помощью описанного выше подхода Snorkel 

(Keywords). Этот метод демонстрирует прирост качества от применения 

дискриминативной модели поверх статических слабых меток. 

• CatBoost (Supervised, Small Data). Классификатор на основе градиентного бустинга 

CatBoost, обученный напрямую на 1,000 размеченных примерах из валидационного 

набора. Этот подход отражает реалистичную ситуацию, когда небольшая ручная 

разметка данных доступна, и позволяет оценить достаточность простой супервизии 

в условиях ограниченных данных. 

• Snorkel (Default LLM). Функции разметки генерируются с помощью общей 

языковой модели по определению целевого класса и инструкциям, затем 

агрегируются через Snorkel. Данный подход не использует итеративную обратную 

связь и представляет собой одношаговый вариант разметки с помощью LLM с 

базовым заданным вручную описанием целевого класса. 

• LGIWL (CatBoost и RuModernBERT). Предлагаемый нами метод, 

комбинирующий ключевые слова, функции разметки на основе LLM и итеративную 

доработку, основанную на обратной связи от классификатора. Новые LF итеративно 
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генерируются, оцениваются по точности и покрытию на валидационном наборе и 

добавляются в агрегируемый набор функций. Итоговые слабые метки используются 

для обучения классификатора CatBoost или тонко настроенного трансформера 

RuModernBERT. Этот метод отражает полный подход к адаптивной, 

масштабируемой разметке. 

Табл. 1. Сводка сравниваемых методов и источников разметки. 

Table 1. Summary of Compared Methods and Annotation Sources. 

Метод Описание Источник разметки 

Zero-Shot Prompting 

(LLM) 

Прямая Zero-shot классификация с 

помощью LLM 
Только промпты 

Snorkel (Keywords) 

Статические функции разметки на 

основе ключевых слов, агрегированные 

через Snorkel 

Эвристика (TF–IDF) 

CatBoost + Snorkel 

(Keywords) 
CatBoost, обученный на слабых метках 

от Snorkel (Keywords) 

Слабый контроль 

(статический) 

CatBoost (Supervised, 

Small Data) 

CatBoost, обученный на 1000 

размеченных примерах 

Ручная разметка 

(ограниченная) 

Snorkel (Default LLM) 
LFs, сгенерированные из LLM и 

агрегированные через Snorkel 

Слабый контроль 

(LLM) 

LGIWL (CatBoost / 

RuModernBERT) 
Итеративная генерация LF через LLM, 

фильтрация и обучение 

Слабый контроль 

(адаптивный) 

5.3 Детали реализации 

Все сравниваемые методы реализованы с использованием единой инфраструктуры и единых 

процедур обучения. В качестве дискриминативных моделей используются CatBoost 

(градиентный бустинг, эффективный на небольших структурированных данных) и 

RuModernBERT-base (предобученная трансформерная модель для русского языка). Слабые 

метки генерируются через Snorkel и используются как мягкие целевые метки для обучения 

моделей. При этом размеченные вручную метки во время обучения дискриминативных 

моделей не используются. 

Функции разметки создаются как комбинация ключевых слов, семантических шаблонов и 

условий, сгенерированных с помощью LLM. В методе LGIWL новые LF итеративно 

предлагаются языковой моделью по ошибочным примерам и принимаются в общий набор 

только в случае превышения порогов покрытия и точности, оцениваемых на выделенной 

части валидационного набора. 

5.4 Протокол оценки 

Результаты классификации на тестовом наборе оцениваются по пяти метрикам: площадь под 

ROC-кривой (AUC), средняя точность (AP), точность (precision), полнота (recall) и F1-мера. 

Пороги классификации выбираются по максимуму F1-меры на валидационном наборе. 

Помимо точности классификации, мы анализируем покрытие и разнообразие правил, 

калибровку моделей и эффективность использования LLM. 
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6. Результаты и анализ 

В данном разделе представлены результаты сравнительного анализа предложенного 

фреймворка LGIWL и базовых методов, описанных в разделе 5. Оценка проводилась на 

тестовом наборе из тысячи вручную размеченных диалогов с использованием стандартных 

метрик качества классификации: площади под ROC-кривой (AUC), средней точности (AP), 

точности (precision), полноты (recall) и F1-меры. Пороги для классификации подбирались по 

максимуму F1-меры на валидационном наборе и опущены в описании для удобства чтения. 

6.1 Основные результаты 

В табл. 2 представлены результаты оценки всех рассматриваемых методов. LGIWL, особенно 

в реализации на основе RuModernBERT, демонстрирует наилучшие результаты по всем 

метрикам, превосходя как традиционные подходы со слабым контролем, так и zero-shot 

классификацию с помощью LLM. Также LGIWL превосходит супервизированную модель 

CatBoost, обученную на тысяче размеченных примерах. 

6.2 Сравнение супервизированного обучения и адаптивного слабого 
контроля 

Хотя супервизированная модель CatBoost, обученная на 1,000 вручную размеченных 

примерах, показывает стабильные результаты (F1-мера: 0.816), она не превосходит метод 

LGIWL. Важно подчеркнуть, что LGIWL достигает более высоких результатов, не используя 

напрямую вручную размеченные данные при обучении, а расходуя аналогичный объём 

ручной разметки лишь на фильтрацию правил и уточнение подсказок. Это демонстрирует 

преимущество адаптивного обучения со слабым контролем по сравнению с прямым 

супервизированным обучением при ограниченном бюджете разметки. 

Табл. 2. Сравнение качества моделей на тестовом наборе. 

Table 2: Comparison of Model Performance on the Test Set. 

Метод AUC AP Точность Полнота F1-мера 

Zero-Shot Prompting (LLM) 0,926 0,612 0,677 0,890 0,769 

Snorkel (Keywords) 0,975 0,821 0,765 0,712 0,738 

CatBoost + Snorkel 

(Keywords) 
0,979 0,828 0,836 0,699 0,761 

Snorkel (Default LLM) 0,732 0,323 0,800 0,219 0,344 

CatBoost (ручная разметка, 

1000 примеров) 
0,977 0,877 0,800 0,833 0,816 

LGIWL + CatBoost 0,982 0,905 0,851 0,792 0,820 

LGIWL + RuModernBERT 0,987 0,913 0,908 0,822 0,863 

6.3 Повышение точности как основной фактор роста F1-меры 

Ключевым фактором более высокой F1-меры при использовании метода LGIWL является 

существенное улучшение точности по сравнению с другими подходами. Например, при 

запуске модели LGIWL на нейронной сети RuModernBERT достигается точность 0.908 при 

сохранении полноты 0.822. Для сравнения, метод запросов без явного обучения обеспечивает 

высокую полноту (0.890), но значительно проигрывает в точности (0.677), ограничивая тем 

самым итоговую F1-меру на уровне 0.769. Это указывает на то, что метод LGIWL не только 
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эффективно выявляет истинные положительные примеры, но и успешно избегает 

переизбыточной разметки, благодаря более точным и семантически осмысленным правилам. 

6.4 Запросы без явного обучения: высокая полнота, низкая 
эффективность 

Метод запросов без явного обучения (zero-shot prompting) на основе нейронной сети GPT-4 

показывает относительно высокую полноту, однако требует значительных трудозатрат на 

ручную настройку. Разработка качественных подсказок потребовала множества итераций с 

участием человека, а также специфической настройки под задачу. Несмотря на отсутствие 

явного обучения, данный подход требует значительных ресурсов человека и вычислительных 

затрат, при этом обеспечивая лишь среднее итоговое качество. Его низкая точность и 

ограниченная адаптивность значительно проигрывают автоматизированному, основанному 

на обратной связи процессу LGIWL. 

6.5 Эффект от итеративного уточнения функций разметки 

Сравнение одношагового подхода Snorkel (Default LLM) с методом LGIWL иллюстрирует 

преимущество генерации подсказок по ошибкам классификатора. Функции разметки, 

сгенерированные за один шаг моделью LLM, показывают значение F1-меры, равное 0.344, 

тогда как итеративное уточнение правил в LGIWL повышает этот показатель до 0.820 (на 

модели CatBoost) и 0.863 (на сети RuModernBERT). Улучшение обусловлено не просто 

количеством правил, а их целенаправленной настройкой под ошибки классификации. 

6.6 Ограничения статической разметки по ключевым словам 

Статические методы на основе ключевых слов, включая Snorkel (Keywords) и CatBoost на 

Snorkel (Keywords), уступают методу LGIWL. Даже с использованием дискриминативного 

классификатора поверх слабых меток, лучшая достигнутая F1-мера не превышает 0.761. 

Подобные эвристики плохо справляются с перефразированием, многоходовыми контекстами 

и отрицаниями – ситуациями, которые LGIWL успешно обрабатывает за счёт семантической 

генерации правил через LLM. 

6.7 Выводы 

Метод LGIWL представляет собой надёжный и экономичный подход к обучению со слабым 

контролем. Он превосходит традиционные эвристики и методы запросов без явного обучения 

LLM по точности, полноте и F1-мере. Итеративная структура с обратной связью позволяет 

целенаправленно синтезировать и отбирать правила, улучшая обобщающую способность при 

сниженных затратах. Благодаря высокой точности и полноте, LGIWL обладает значимыми 

преимуществами для задач реальной классификации, где важны как корректность, так и 

полнота разметки. 

7. Заключение 

В данной работе мы представили LGIWL – итеративный подход к обучению со слабым 

контролем, основанный на генерации, уточнении и фильтрации функций разметки с 

помощью больших языковых моделей (LLM). Предложенный метод позволяет добиться 

высокого качества классификации в условиях ограниченного объёма размеченных данных, 

не прибегая к масштабной ручной аннотации. В отличие от подходов без явного обучения, 

требующих экспертной настройки инструкций и при этом страдающих от недостаточной 

точности, метод LGIWL использует большие языковые модели не напрямую как 

классификаторы, а как генераторы семантических правил, интегрированных в итеративный 

цикл с обратной связью по результатам работы классификатора. 
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Эксперименты на реальной задаче классификации банковских диалогов показали, что 

LGIWL существенно превосходит статические подходы обучения со слабым контролем и 

методы без явного обучения, достигая F1-меры 0,863 в реализации на основе сети 

RuModernBERT при высокой полноте и заметном росте точности. Полученные результаты 

сопоставимы с полностью супервизированными моделями, обученными на таком же 

количестве размеченных данных, и в некоторых случаях превосходят их. Это подтверждает, 

что стратегическое использование ограниченного набора размеченных данных для 

уточнения правил может быть эффективнее прямого обучения модели. 

В отличие от полностью ручных подходов, таких как подбор ключевых слов или разработка 

подсказок для языковых моделей, LGIWL требует минимальной аннотации, направленной 

исключительно на фильтрацию функций разметки по ошибкам классификатора. Метод 

автоматизирует выявление выразительных и высокопокрывающих правил, многие из 

которых отражают нетривиальные семантические закономерности, трудные для ручного 

кодирования. 

В будущем планируется расширение LGIWL на многоклассовые задачи и сценарии 

междоменного переноса знаний, а также интеграция более продвинутых стратегий генерации 

подсказок (например, цепочек рассуждений и саморефлексии) в цикл создания функций 

разметки. Также планируется формализация критериев сходимости при итеративном слабом 

контроле с использованием LLM и изучение возможностей интеграции сигналов активного 

обучения в контур обратной связи. 

Таким образом, LGIWL представляет собой масштабируемую, интерпретируемую и 

экономичную альтернативу как ручной разметке данных, так и непрозрачным zero-shot 

подходам, двигаясь в направлении автоматизированного, но управляемого человеком 

применения языковых моделей в реальных задачах машинного обучения. 
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