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Abstract. The life of the modern world essentially depends on the work of the large artificial
homogeneous networks, such as wired and wireless communication systems, networks of
roads and pipelines. The support of their effective continuous functioning requires automatic
screening and permanent optimization with processing of the huge amount of data by high-
performance distributed systems. We propose new meta-algorithm of large homogeneous
network analysis, its decomposition into alternative sets of loosely connected subnets, and
parallel optimization of the most independent elements. This algorithm is based on a
network-specific correlation function, Simulated Annealing technique, and is adapted to work
in the computer cluster. On the example of large wireless network, we show that proposed
algorithm essentially increases speed of parallel optimization. The elaborated general
approach can be used for analysis and optimization of the wide range of networks, including
such specific types as artificial neural networks or organized in networks physiological
systems of living organisms.
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1. Introduction

There are many large homogeneous networks consisting of the elements of the same
type, which influence our everyday life, such as wired or wireless networks,
network of switches in datacenter or artificial neural networks. In addition to
mentioned information systems, there are networks transferring physical objects,
such as a road network, different types of pipe networks or even organized in
networks physiological systems of living organisms. The support of the effective
continuous functioning of such networks requires their permanent screening and
optimization. It is important that optimization of artificial networks begins on the
stage of their planning, continues during all time of their usage and includes
balancing of activity of network elements. Thus, whenever we begin an
optimization, the network is already partially optimized and its elements have
relatively similar level of activity.

An optimization of networks can be described as a maximization of objective
function, which simulates activity of network. Objective function takes as input
network parameters and provides estimation of performance and/or quality of
service provided by network. The homogeneous networks have useful properties —
since they consist of uniform elements, the network or its part can be optimized with
the usage of the same objective function. Therefore, network can be decomposed
into the relatively independent subnets, which are optimized in parallel processes.
The quality objective function can be specified, for example, as an average level of
radio signal in the area covered by the wireless network, or as an average speed of
traffic in switches of datacenter or on crossroads of road network. In general, for
homogeneous network decomposed into non-overlapping subnets, the quality
objective function can be represented as an average value of objective functions of

subnets:
°(x)=52.2()

i=1
where Q — quality of service provided by network, - - vector of network

parameters, n — number of non-overlapping subnets, — — vector of parameters of i-
wi

th subnet.

The decomposition of complex systems before their optimization is an old idea
raised with development of large-scale algorithms. Beginning from early works [1,
2] until now [3-5] the main decomposition approach is the detection of the mostly
independent subnets with minimal strength of interactions between their elements.
The network analysis leads to the calculation of strength of these interactions, and
then decomposition is performed according to specific for network criterion.
Typically, decomposition of network falls under the category of NP-hard problems,
which are solved with graph partitioning algorithms. Obtained subnets can be
optimized on multiple-core computer or cluster with such general technique as
Simulated Annealing [4] or network-specific optimization algorithm [5].
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The decomposition allows to do the optimization in parallel as well as to reduce
optimization complexity by discarding of weak interactions [4], and, in such way,
essentially increases speed of optimization. Remarkable, that decomposition of large
network into the weakly interacting parts can reduce the complexity of error surface
relief, and in such way decreases probability of stuck in local optimum [6].
Therefore, decomposition of network reduces optimization complexity as well as
probability of optimization stuck in local optimum.

The quantity of networks, consisting of uniform elements, rapidly grows in modern
industry, especially in the sphere of information technologies. Such growth
stimulates the development of new efficient algorithms of network decomposition,
which can provide maximal decrease of the optimization complexity and efficient
parallelization of optimization process. In this paper, we propose optimization
methods, which combine idea of independent optimization with the alternative
decomposition approach. They are intended to solve problems with following
characteristics: first, optimized network consists of the uniform elements; second,
optimization of network is carried out in multi-core and distributed systems.

While stopping
criterion isn’tmet

) DECOMPOSITION
.
1 1

X,/o

L

UPDATE

1

Agenda Optimizationof
18 - Subnets all parameters
- Optimized unit

Fig. 1. Automatic sector planning for parallel optimization of network.

2. Network Decomposition approaches

With the purpose to find solution of the Maximal Independent Set and related
problems the big variety of decomposition algorithms are elaborated [1-5]. They
break a complex task of network optimization down into subtasks by decomposition
of network into one set of relatively independent subnets. In order to perform
decomposition, network is firstly represented with the weighted complete graph,
where each vertex corresponds to a network element and each edge has weight
equals to the rank of correlation between pair of correspondent elements. Hereby the
rank of correlation is calculated by network-specific correlation function and
represents the strength of elements interactions within network. The weights on
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edges are used in the process of network decomposition into subnets weakly
connected with each other, while data in vertex — for optimization of obtained
subnets.

For example, described in invention [3] method of automatic sector planning of
network for parallel optimization (Fig. 1) decomposes network into a predefined
number of subnets by the rule of minimal sum of the crossing edges weights. After
decomposition the subnets are optimized independently with the same objective
function. Optimization of subnets is performed for all regulated parameters in
distributed-centralized mode.

Main drawback of such approaches is an ignorance of crossing edges, while some of
them appear to be significant. Thus, this ignorance negatively affects accuracy and
time of optimization process.

3. Alternative decomposition with independent optimization

The alternative decomposition (Fig. 2) as well as existing approach (Fig. 1) is based
on the representation of network data and structure with the weighted complete
graph.

DISCARD i/ Reduced

EDGES UNDER network

THRESHOLD o X

DECOMPOSITION
. . - 1 =0V i i i i : <
Ifthreshold Alternative splits ofnetwork into non-overlapping subnets for optimized units: .
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value and T '
continue L
\.% . ] [ BN}
.
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If stop-
plrswop Optimization of ® Splitby
Agenda criterion independent elements split

1 E - Subnets isnotmet UPDATE NETWORK

- Border element
Fig. 2. Alternative decomposition of network with independent optimization.

- Optimized unit

The decomposition consists of two steps:

1. The weak correlations between elements are discarded by removing of
edges with weights under network-specific filtering threshold.

2. Reduced network is decomposed into the set of alternative splits containing
non-overlapping subnets.
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Last step includes two stages (Fig. 3):
a) Selection of subnet for every optimized unit. This subnet consists of the
unit and connected to it elements.
b) Finding (i.e. brute force search) of combinations of non-overlapping
subnets — alternative splits of network. Every split is generated from at
least one untapped subnet and covers as much vertices as possible.

Reduced FIND SUBNET
network FOREVERY
OPTIMIZED UNIT
[ COMBINE NON-OVERLAPPING SUBNETS ]
& & 1%
1 R .
Agenda

1@ - Subnets ; |
- Border element \ | l
- Optimized unit ® ;

Fig. 3. Details of alternative decomposition.

Therefore, in order to reduce complexity of the optimization process the most
irrelevant interactions between elements of network are removed. Based on
remaining connections, the network is further split into relatively independent
subnets. The result of splitting process is a set of alternative splits, where every split
consists of all possible non-overlapping subnets within network. The obtained splits
are optimized one by one in loop (Fig. 2, bottom). Within each iteration, the
following steps are executed:

1. The next alternative split is selected.

2. The non-overlapping subnets are apportioned to the cores available on

computer/cluster.

3. The optimization of subnets is performed in parallel processes by

optimizing procedure.

4. The full network is updated with the values of optimized parameters.
Herewith the optimizing procedure is implementation of Simulated Annealing
probabilistic technique of global optimization, which randomly searches for optimal
solution in the space of all available alternatives [7]. We modified this method by
adding new variable — step regulated by precision parameter (P), which restricts the
area of neighbors search.

procedure optimize(S,, P) {
Snew = SO
step := maxStep * (1 - P)
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Sgen = random neighbor of S, within step
T := temperature(1 — P)
if A(E(So), E(Sgen), T) = random(0, 1) then Spew := Sgen
Output: state Spey
}

where Sy, Sgen and Spe, — current, generated and new states of subnet,
correspondently; maxStep — maximal value of step; temperature — monotonically
increasing function mentioned in Simulated Annealing method; E and A — energy
and acceptance functions of Simulated Annealing method, correspondently.
This optimizing procedure is performed on alternative splits in cycle as long as
better states are founded. After optimizing procedure (Fig. 2, bottom) is finished, we
increase filtering threshold value and repeat the cycle: network decomposition and
further iterative optimizing procedure. Finally, when the filtering threshold reaches
the maximal value, then the optimization process is stopped and optimized
parameters are ready to be used for adjustment of physical network.
The effectiveness of this algorithm (Fig. 2) is provided by the parallel optimization
of the most independent elements only, whereas in original approach (Fig. 1) all
elements of network are optimized at once. The following regulation of
optimization precision gives additional increase of optimization speed and quality.
We use precision parameter P to control the precision of optimization by regulation
of the step of Simulated Annealing algorithm as well as for calculation of threshold
for filtering out weak connections between elements. At the beginning of the
process, value of P is set to its minimum (i.e. zero) and is progressively increased
with predefined constant up to the maximum (i.e. one). Before every decomposition
procedure, the value of P is increased
P = P + const

and filtering threshold is calculated

Th =Thyin + (Thyge — Thpin) X P,
where Th — filtering threshold parameter of decomposition process, Thyi, —
network-specific minimal value of Th, Thy. — network-specific maximal value of
Th, P — precision parameter of optimization process.
Fig. 2 and 3 represent an example of simple network decomposition into set of
alternative splits, where optimized unit consists of one element. In the case of large
networks, decomposition could be based on the complex optimized units — group of
strongly correlated elements, which are optimized together within subnet. The size
of optimized unit is determined by the size of network and number of cores
available on computer or cluster.
The peculiarities of optimization of alternative splits in distributed system are
described bellow (Fig. 4). At the beginning of optimization process the copies of
network-specific optimizing procedure are distributed on all nodes. Then the
network is decomposed into alternative splits of subnets. Herewith for every split
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while the number of subnets is lower than the total quantity of cores in computer
cluster, subnets are randomly duplicated. When the number of subnets becomes
equal to the quantity of cores in cluster, then optimization begins and subnets are
sent to every node proportionally to quantity of cores on it. Optimization is carried
out independently on every node without data shift. After optimization is finished
every node sends back only optimized (i.e. changed) parameters of subnets, and if
the alternative solutions exist for some subnet — the best of them is selected. Then
network is updated with optimized parameters and the next split is processed.

Computer cluster: k cores per node

Optimizing s Optimizing s Optimizing N
rocedure ||° rocedure || rocedure ||
P & P & P &

ksubnets ksubnets k subnets
Optimized Optimized Optimized
parameters parameters parameters

[ Alternative decomposition ]
—ri1

Updateof
network

Fig. 4. Optimization of alternatives on computer cluster.

Optimization continues as long as objective function produces better result. If
optimization of predefined number of splits does not give improvement, the
optimization loop is finished, filtering threshold is increased and optimization
continues on the next level of splitting. It is important, that in every split the
optimized parameters are selected in such way, that they influence activity of full
network. Thus, if optimization of predefined number of splits cannot improve
network, the probability that the next split will give significant improvement is quite
small. The adjustment of physical network is provided continuously — at the end of
every optimization loop — or once, when the P value reaches its maximum.

4. Evaluation

For demonstration of the efficiency of proposed approach, the optimization of
wireless network is implemented with visualization of quality of radio signal (Fig.
5). The quality is estimated with Signal to Interference plus Noise Ratio (SINR) [8].
An optimizing procedure is represented by modified Simulated Annealing
algorithm. Objective function calculates the average value of SINR in covered by
network area on the basis of Okumura-Hata, COST-231 and Stanford University
Interim radio propagation models [9], which take into account the type of area and
radio-frequency diapason. The result of radio propagation model is adjusted
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according to tilt and azimuth propagation functions [10]. The experimental model of
network consists of 100 sites with 3 sector antennas in each of them (total 300
antennas). Every antenna has 4 regulated parameters: power, height, tilt and azimuth
(total 1200 regulated parameters). The rank of correlation between pair of antennas
is calculated as 1 / (distance between antennas).

Low SINR in problem areas High SINR in antenna lobes

Fig. 5. Visual representation of Signal to Interference plus Noise Ratio (SINR) in initial
(a) and optimized (b) subnet. Crimson and red territories — problem areas with low level of
SINR, orange and yellow — sufficient level of SINR, and green — high level of SINR.

The SINR is automatically registered during optimization and its average values for
30 experiments are represented in logarithmic scale (Fig. 6). We can see, that after
3600 s the values (+ 95 % conf. interval) of SINR reaches for sector planning 35.0 +
1.7 dB and for independent optimization of alternatives 40.1 + 1.9 dB, and don’t
change within experimental error after this time. Difference between represented
values are significant (p < 0.01) and for independent optimization of alternatives 15
% higher, than in case of sector planning. According to approximation curve, the
independent optimization of alternatives reaches the value 35.0 dB at ~ 400 s of
experiment (Fig. 6, dashed line), so it is ~ 9 times faster, than sector planning
algorithm with full optimization. Thus, by the example of large wireless network
optimization we show that compare to recently published technique [3] the proposed
algorithm (Fig. 2) gives 9 times speed-up or after long time optimization —
demonstrates better accuracy.

The main principles, which according to our opinion underlay the speed-up of
optimization, are represented on diagram (Fig. 7). According to these principles,
optimization process begins with rough search of global optimum in small number
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of complex subnets with the aim to avoid stuck in local optimum. During
optimization the complexity of subnets is progressively decreased without loosing
of optimization precision. Such decrease is reasonable, because during optimization
process, the amplitude of oscillation of regulated parameters is decreased, and as a
result, the strength of close interaction of element within network can essentially
prevalent over the strength of distant interactions. According to our experiments
(Fig. 6), this strategy gives accurate result of the optimization process.

SINR, dB
42 -
O © O O

38 -
34 <
30 -
26 -

~%-Sector planning with full
2 optimization

-&-Independent optimization of
18 alternatives
14

0 600 1200 1800 2400 3000 3600

Time, s

Fig. 6. Dependence of average value of Signal to Interference plus Noise Ratio (SINR) on
time of optimization of wireless network.

From other side, automatic regulation of quantity of alternative calculations allows
us to use all available computational resources for optimization. It is important that
at the beginning of optimization process the rough search of global optimum
produces essential oscillation of optimized parameter. Therefore, in this situation
the alternative calculations are reasonable for selection of the best solution.
Oppositely, at the end of the process, the optimization in small subnets produces
almost the same results and the quantity of alternative calculations, which are not
justifiable any more, are decreased (Fig. 7) to minimum. Thus, proposed algorithm
accelerates the optimization process through regulation of precision parameter
together with rational usage of all available calculation resources at different time of
optimization process.
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5. Conclusion

This paper presents a new meta-algorithm of network alternative decomposition into
the sets of non-overlapping subnets and parallel optimization of the most
independent parameters of network on computer or cluster. The optimization is
carried out with progressive decreasing of subnet complexity and increasing of
optimization precision. Usage of proposed algorithm leads to the following benefits:

o the faster optimization due to reduction of optimization problem complexity and
efficient usage of all calculation resources;

o the better precision of optimization due to progressive change of optimization
strategy from rough search of optimum at the beginning of optimization process
to precise search of optimum at the end of optimization process.

We believe that proposed approaches of independent alternative optimization and

dynamic regulation of precision are providing solid basis for the implementation of

highly scalable distributed solution for the wide variety of large homogeneous
networks.

Rough search of global optimum in Precise search of optimum in
small number of complex subnets big number of simple subnets

Parameters of process
Subnets _— Quantity of
= Quantity of alternative alternative
Quantity calculations and available <1 calculations
cores are equal L /-/'/
Strengthof ~
p(lj;xni]t; distant 2.
_ interactions | -  Precisionof |
: 7 ] Precision of \: o
" | optimization °P 2
/ procedure

Fig. 7. Directions of progressive change of parameters of decomposition and optimization
with the time. Vertical arrows: up and down — increase and decrease of parameter value,
correspondently; horizontal arrows — influence of parameters on integral indices.
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AHHoTanus. JXKW3HB COBPEMEHHOTO MHpa BO MHOTOM 3aBHCHT OT (DYHKIMOHHPOBAHHS
GOJIBIIIMX OHOPOJAHBIX CETEH, TAKUX KaK MPOBOJAHBIC M OE3MPOBOAHBIE KOMMYHUKAMOHHBIE
CHCTEMBI, CETH opor u TpybompoBonoB. [lognepxanue ux 3¢dextrBHON paboThl TpeOyeT
ABTOMAaTHYECKOTO KOHTPOJIA, TIOCTOSTHHON ONTHUMHU3ANNH, BKIIIOYAromel 00paboTKy GOoIbIIIx
00BEMOB JAaHHBIX C HCIOIBb30BAHHEM BHEICOKOIPOM3BOAUTENHHBIX PACHpPEIECHHBIX CUCTEM.
IIpennoskeH HOBBIH MeTa-alTOPUTM [UIS aHaNMM3a OONBIIMX OIHOPOAHBIX CETeH, WX
AIbTEpPHATUBHOTO pa30MeHus Ha cnaboCBs3aHHBIE MOJCETH U MapajUiebHON ONTHMHU3ALUH
HanOoJIee He3aBUCHMBIX JIEMEHTOB mojiceTei. JIaHHBIN MOAX01 OCHOBAH Ha Crienu(pUUECKOM
JUISL CeTH KOPPEISIIMOHHOW (YHKIMH, aNrOpUTME MUMHUTAIMU OTXKHIAa W aJanTHPOBaH IS
paboThI B BEIYKCIUTENBFHOM Ki1acTepe. Ha npumMepe 6e3mpoBoIHO KOMMYHUKAIIMOHHON CETH
MOKa3aHO, YTO MPEUIOKECHHBIH aNrOPUTM  CYIIECTBEHHO YBEIMYHBAET CKOPOCTH
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