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1. Introduction

The motivation of our research into modularity computation was the need to
quantitatively assess and compare the quality of various clustering algorithms
applied to mobile call graphs. As soon as no such graphs with ground-truth
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community structure were found, we couldn’t use the most popular quality metric
based on Normalized Mutual Information (NMI).

For evaluating quality of community detection methods on graphs with unknown
reference communities, metrics based on probabilistic models are used. Such
metrics include modularity, surprise, significance [19], ER-modularity [5]. Also,
generative models from model-based community detection methods can be used to
estimate likelihood of clustered graph [15, 11].

Modularity value characterizes the strength of a particular clustering of a graph. It is
high when clusters are dense and sparsely connected to each other, whereas its value
is low when clusters are formed at random. Besides evaluation of community cover,
modularity is also used as optimization function in some community detection
algorithms [16, 18]. In [12] modularity is also used for graph partitioning, but only
for the case of two communities.

Here we consider modularity metric, its existing extensions for directed and
weighted graphs and for the case of overlapping communities. Then we describe our
extensions of modularity for overlapping communities in directed weighted graphs.

2. Notation

In this paper we will use the following notation, most of which are common in
graph theory.

G(V, E) —graph with nodes V' and edges F, nodes i, j,k € V, edgel(i,j) € E ;
A —adjacency matrix of graph G ;

A;j—anelementof 4;

w; j — weight of edge I(i, 5);

k; — degree of node i;

C — set of communities on graph G, ¢ € C' — particular community;

C; — set of communities node ¢ belongs to;

S —average community size ingraph G, S = ﬁ Y occc el

¥ —average square community size in graph G, ¥ = \%‘I Seec el

We will also use V, E,C instead of |V|,|E|,|C| to denote sizes of corresponding
sets.

3. Existing versions of modularity

Modularity was defined by Newman and Girvan [3] to measure a quality of a
partition of a graph into a set of clusters. It is the fraction of edges within the
clusters minus the expected such fraction in a randomly connected graph with the
same nodes and their degrees. Modularity was originally defined for undirected
unweighted graphs and is given by:
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Ein (2EM 4 Eou\?
Q=2 E_(2E>] ®

ceC
where E" — number of edges between nodes within community ¢, £“* — number
of edges from the nodes in community ¢ to the nodes outside c .

Modularity can equivalently be expressed via adjacency matrix A; and nodes

degrees k;:
1 ik,
-5 XY (4s-42) @

ceCi,jec
There are three main directions of extension of the original modularity definition:
for directed graphs, for weighted graphs, and for the case of overlapping
communities.

3.1 Modularity for directed and weighted graphs
Extension of modularity (2) to directed graphs is rather straightforward [7]:

FE Y (a1, o

ceC i,jEC

where k¢ is out-degree of node i and k%™ is in-degree of node j .
Modularity (2) is easily generalized to weighted graphs as well [2]:

Q=53 3 (w5 - 5). @

ceCi,jEc

where w;; — weight of edge (i, j), w; = >_; wij is sum of all weights of edges of
node 7, and m = 3 E w;; is total weight of all edges.

Moreover, modularity formula (2) for both weighted and directed graphs can be
written as [6]:

out
Z > (ww = w’ ) (5)

CEC i,jEC

Finally, modularity based on LinkRank, was suggested for weighted directed graphs

[9]:
Q=Y (Lij—mmnj)
ceCi,jec
: (6)
Lij = WiGij - LlnkRank,
= (m,...,my) — PageRank vector
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LinkRank is an analogy of PageRank [14] for links. PageRank is the probability of a
particular page (node) being visited by a random surfer and can be defined as a
stationary row vector of Google Matrix G : 77 = #7G. In case of directed graphs

Wi

Google Matrix Gi; = aomitr + + (agi + 1 — a), where o is damping parameter for

PageRank (with probability 1 — o random surfer jumps to a random node) and g; is
indicator of dangling node:

1 if node is dangling (w¢“! = 0)
gi = .
0 otherwise

This formula originates from an alternative notion of community as a group of
nodes where a random surfer spends more time in average. More technically, this
definition of modularity is the deviation between the fraction of time a random
walker spends within communities and the expected such time.

3.2 Overlapping modularity

In the case when a node can belong to several communities, the belonging
coefficients ai.c are introduced [8] which indicate how much a node ¢ belongs to
community c¢. This coefficients are non-negative and sum to one:
Vie V,Vee C a;c >0 > ecc @i = 1. This relates to another extension of

community detection problem, called fuzzy community detection [13]. To
generalize different approaches of using belonging coefficients, a belonging
function f(ai.c,,aj.;) can be defined [17] to characterize an extent to what an edge
(4,7) connects communities ¢; and c; respectively.

According to this, several approaches for overlapping modularity from the literature
can be generalized to the following two definitions [17]:

Ein (2B 4 Eo\?
Q=2 E(zE”

ceC

1
E= > Ay

iL,jeEV ()
. 1
Eén = 5 Z Aij . f((li,ca a‘j70)
1,J€C
E" = Z Z Aij - f(aie, a5.0)
i€c jEc'#c

and

1 kik;
0= 3 (4055

ceCi,jec

) f(aie, aj.c) (8)
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where belonging coefficient can be:
r 1
E
Zkec ik
Gie = | Leeo, Lyew Aik ©)
D kee Mtk Aig

M¢,
_ZCGC ZkEC ﬁAik

where M;;, is the number of maximal cliques containing edge (4,7), Mg, is the

number of maximal cliques containing edge (%, ) inside community ¢ . Belonging
function can be:

QT%
f(aa b) = ab (10)

maz(a,b)

3.3 Further extensions of modularity

Besides the node-based extensions, there was suggested edge-based extension [10]
(for directed graphs):

1 Bilii R il ),k
2, ),C 3] ),C
vy <ﬁl@,j>,cAij B )

ceCi,jev

Bii,j),e = f(al e, Gj.c) — edge belonging coefficient,

out . . (11)

l(l Yse Z f(ai,c,ak,c) — expected of that for outcoming link,
kev

l( ) Z f(ak,e,aj,c) — expected of that for incoming link.
kev

Here edge belonging function f(ai.,aj.) can be any of (10), but the authors
suggested this variant (together with empirically found expression for i (z)):

1
f(a'7 b) = (1 + e*h(a))(l + eih(b))’ (12)
h(z) = 2pz — p, p=30.

It is worth to notice that actually in the inner sum iterating of pairs of nodes 7, ; are
done over nodes only from community ¢ (not from the whole V), due to the form of
3 functions.
Authors of [17] suggested density-based version of modularity (1) for overlapping
directed graphs:
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Ein 2EIn + pout \? Eo
Qp = Z f( -d, — <(2.E ‘dc> - Z Q(E, dc,c’

ceC ' #c
2Ez’n
d. = c — internal density
Zi;ﬁjEC f(ai,cv aj,c) (13)
E. .
deer = s — pair-wise density

Ziec,jec’ faic, aj.e)
Ec,c/ - Z Aij : f(ai,cv aj,c’)

i€c,jec’

3.4 Drawbacks and limitations

The first obvious drawback is that there was not found any modularity formula,
comprising all three needed properties: support of directed, weighted graphs with
overlapping communities.

The second limitation is computational complexity. Aforementioned formulas of
overlapping modularity are not acceptable for large graphs (with more than 10*
nodes within community cover) due to their high computational complexity.
Denoting the average number of communities by C', average community size by S
and number of nodes by V', we have for (13) time complexity O(C?x), and for (11)
— O(CV2y)). See subsection 4.1 for more details.

It’s also worth noting that LinkRank authors [9] provide some evidence that the
modularity (5) can’t distinguish the direction of links.

4. Our extensions of modularity

Since we focus on modularity for directed weighted graphs with overlapping
communities, we actually have two possibilities of extension: make overlapping
(directed) modularities support weights, or to extend directed weighted modularities
to the overlapping case.

The first approach suggests naive substitution of adjacency matrix of a graph to
matrix of weights and number of edges to the sum of their weights. Doing so with
density formula (13) leads to unnormalization: values of modularity start to exceed
the available range (—%; 1]. But we will still use it in experiments with unweighted

graphs. On the other hand, edge-based formula seems to allow such generalization,
becoming:

1 l()(’l'Lt) w;}ut ZEL ) w;,_n
i,),C +J),c
Qe = m Z Z Bl(i,j),cwij - m (14)

ceCi,jev

But this is still computationally expensive.
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The second approach consists in introducing belonging coefficients (9) and
belonging functions (10) to simple version (5):

Qs = %Z Z (wij - wlmwj> f(@ic aje), (15)

ceCi,j€Ec

and to LinkRank-based version of modularity (6):

QLr = Z Z (Lij — mim5) f(@i,e, aj.c). (16)

ceCi,jcc
Since PageRank (and hence LinkRank) has fast implementations ([1, 4]), these two
formulas have much lower computational complexities.

Also, we suggested to use in formulas a normalization coefficient instead of
belonging function:

1

— 7|Ci A G| @17

f(ai,(:v aj,c)
The intuition is the following. If both nodes ¢, j belong to n communities, the term
Zi,jec (---) will encounter n times in modularity formula, once for each community,
so we weigh it by the factor of % = |Cr11707\ It’s easy to see that otherwise

modularity can become unlimited: suppose that each community is actually two
equal different communities, then modularity value doubles.

4.1 Computational complexity

Here we calculate computational complexities of modularity extensions Qp, Qg,
Qs and Q. r. All complexities are present in table 1.

Firstly, denote by O(F') computational complexity of f(ai.c,a;.c) — we consider it
later.

In the expression for Qp (13), the term E°% is computed in O(CXF), so as d.;
E°“ in O(CXF); E; and d. . in O(S*F) time. Counting that average square

community size ¥ is not less than square of average size S2%, each term of
summation has complexity O(CXF') , giving overall complexity O(C?XF).

In the expression for Qg (14), the hardest term is 5 and 5°* , which take O(V F')
steps, thus resulting in O(C'V2 F2) overall complexity.
Qs (15) and Q1R (16) have complexity O(CXF), ignoring PageRank calculation

time as insignificant. Understanding the big-O complexity of PageRank calculation
requires analyzing the code of pagerank scipy method from NetworkX?. However,
Aric Hagberg (NetworkX Lead Programmer) wrote that their implementation has

2 http://networkx.github.io/
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“linear complexity in the number of edges”. In practice, PageRank computation
time is negligible.

Now consider f(ai.,a;.c). Uniform belonging coefficient a;. = Ci may be
computed by one operation if communities for each node are explicitly known, e.g.
each node has a set of labels. But usually community detection algorithms return list
of communities represented by sets of nodes. This means we need O(C'logS)
operations to find all communities a given node i belongs to. The same concerns
fraction belonging coefficient, for which we have O(S + C'log S), supposing that
average node membership is not very high, i.e. C; = O(1). Therefore, intersection

belonging function together with the others are O(1).

Table 1: Computational complexities for modularity formulas, belonging functions and
belonging coefficients.

formula complexity
@b o(C*x)
Qr o(Ccv)
Qs o)
QrLr oiey)
belonging function
sum 0(1)
product 0(1)
intersection O(1)
edge-based 0(1)
belonging coefficient
uniform O(C'log S)
fraction O(S+ ClogS)
4.2. Effects

In order to demonstrate adequacy of the estimate based on computed modularity
with regard to intuitive community structure, we computed modularities of several
alternative community covers of the example graph (see Fig. 1). We generated a
large set of random community covers, and sort them according to the modularity
value computed with formula (15). Fig. 1 demonstrates 3 covers with highest
modularity and 3 covers with lowest modularity. We can see that the most intuitive
cover corresponds to the highest modularity value. The same holds for formula (16).
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(b) Q = 0.2436 (c) @ = 0.2070

(d) Q = —0.1762 (e) @ = —0.1763 (f) Q = —0.1867

Fig. 1. Modularity (15) of different community covers for example directed weighted graph.
All edges have weight 10 except (1-6) and (3-7) which have weight 0.1. Top row:
covers with maximal modularity; bottom row: covers with minimal modularity.

5. Experiments
We implemented in Python four versions of modularity Qp, Qg, Qs and Qrr
together with 4 belonging functions (see (10) and (12)):

1. sum f(a,b) = i(a+1),

>

product f(a,b) = ab,

. . 1
3. intersection f(a,b) = [ASTeAR
i o U

4. edge-based f(a,b) = (1 4 e~60a+30)=1(] 4 ¢—606+30)~1

and two belonging coefficients:
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1. uniforma; . = IR

ZkEC Aik
Zc/eCi Zked AZk

Also we conducted a set of experiments: on computation time, different belonging
functions and belonging coefficients, and parallelizing.

2. fractiona;. =

5.1 Computation time
We compared modularity value and computation time of four appropriate formulas
@p, Qr, Qs, Qrr) on two graphs of different size. Since Qp doesn’t support

weights and fraction belonging coefficient is undefined for directed graphs (due to
possible zero in denominator), graphs were chosen undirected unweighted.
Experiments with directed weighted graphs are to be conducted later. We took
default belonging functions (suggested in original papers) and uniform belonging
coefficient for simplicity.

The small graph was generated by CDR-GEN generator® and clustered by SLPA
algorithm® with threshold p = 0.10. Parameters of the smaller graph are: number of
nodes |V | = 3124, number of edges | E| = 3913, number of communities |C| = 333,

average size of community S = 10.1 with 100% of nodes involved in communities,
average membership 1.14.

The big graph was Wu et al dataset® clustered by MOSES algorithm® with 7% of
nodes involved in communities (V| = 72111, |E| = 79003, |C| =899, S = 5.2).

Results are in table 2.

Table 2 shows that as size of graph and size and number of communities grow, Qp
and Qg become too computationally expensive, so there are only two scalable
candidates, Qs and Qr.r.

Table 2: Modularity value and computation time for Qs, Q.r, Qp and Qg on 2 undirected
unweighted graphs.

formula | bel.func. | bel.coef. complexity Time small | Time big
Qb product uniform O(C3x1og S) 3mb7s 3h12m
Qr edge-based | uniform | O(C?V?2XlogS) Tml17s 53h53m
Qs intersection | uniform O(C?Ylog S) 0.6s 18s
QLR intersection | uniform O(C?*%log S) 0.7s 18s

® https://github.com/mayconbordin/cdr-gen

4 https://sites.google.com/site/communitydetectionslpa/
5 http://www.pnas.org/content/107/44/18803?tab=ds

6 https://sites.google.com/site/aaronmcdaid/moses
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Table 3: Comparison of different belonging functions and belonging coefficients for Qp, Qg,
Qs and Qg on undirected unweighted graph with |V | = 72146, |E| = 79003, |C| = 1894, S =
5.30 (clustered by Clique Percolation).

formula | bel.coef. sum product intersection | edge-based
Qp uniform | 0.292 (2481 s) | 0.291 (2425 s) undefined 0.291 (2266 s)
Qp fraction | 0.292 (2355 s) | 0.292 (2187 s) undefined 0.293 (2752 s)
o uniform | 0.737 (4688 5) | 0.714 (3201 5) | 0.763 (1488 5) | 0.713 (3349 5
Qr fraction | 0.740 (4130 5) | 0.718 (4795 5) | 0.763 (1476 5) | 0.710 (3683 5
Qs uniform 0.737 (4 s) 0.714 (3 s) 0.760 (1 s) 0.713 (2 s)
Qs fraction 0.738 (3 s) 0.715 (3 s) 0.760 (1 s) 0.717 (3 s)
QLR uniform 0.647 (4 s) 0.628 (4 s) 0.665 (2 's) 0.628 (4 s)
QLr fraction 0.647 (5 s) 0.630 (5 s) 0.665 (2 s) 0.631 (8 s)

Table 4: Comparison of different belonging functions for Qs and Q,r on a directed weighted
graph with overlapping communities (|V | = 72146, |E| = 79003, |C| = 1894, S = 5.30,
clustered by Clique Percolation).

|C| = 1894, S = 5.30 (Clique Percolation) |C|=6731, S =9.05 (SLPA)
formula | sequential parallel 1 parallel 2 sequential parallel 1 parallel 2
Qs 104s 37s 38s 106m 36m 32m
Qrr 105s 39s 40s 103m 37m 32m

Table 5: Comparison of times of sequential and parallel versions (N = 6 processes) of Qsand
Qir On a directed unweighted graph with |V | = 72146, |E| = 79003 clustered by Clique
Percolation (covers 13% of nodes) and SLPA (covers 78% of nodes) algorithms.

|C| = 1894, S = 5.30 (Clique Percolation) |C] =6731, S =9.05 (SLPA)
formula | sequential parallel 1 parallel 2 sequential parallel 1 parallel 2
Qs 104s 37s 38s 106m 36m 32m
Qrr 105s 39s 40s 103m 37m 32m

5.2 Belonging functions and belonging coefficients

Then we investigated influence of different belonging functions and belonging
coefficients on values of Q¢ and Q1. r. We used the same Wu et al dataset clustered
by Clique Percolation algorithm’ with 13% of nodes involved in communities
(V| = 72146, |E| = 79003, |C| = 1894, S = 5.30).

Table 3 shows that the choice of belonging function or belonging coefficient doesn’t
make much difference to result modularity. Meanwhile, intersection belonging
function takes the lowest time. Values of Q5 are in good consistency with those of

Qg, which is widely used in papers. Qrr values tend to be less than Qs and Qg.
Q@ p values differ a lot, possibly due to dissimilar formula structure, but as far as we
know this formula was not compared to other ones in literature.

7 http://www.cfinder.org/
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Table 4 extends the comparison of different belonging functions for Qs and Qr,z on

a directed weighted graph with overlapping communities. Belonging coefficient is
uniform. We see that the behavior is consistent with that of undirected unweighted
case.

5.3 Parallel modularity
Computation process of Qs and Qrr naturally allows parallelization. Since each

community and each node pair contributes independently to the modularity value,
iterating over node pairs may be distributed between processors.

We implemented two parallel versions. The first one is rather straightforward.
Iteration over communities is left sequential. Each time when community of size
more than ¢y = 100 is encountered, N = 6 parallel processes are initialized. The
set of all nodes pairs within the community is split into NV equal chunks and are
assigned to these processes (see algorithm 1).

for ce C do
if |c| > ¢o then
{c1,...,cn} < split ¢ into N equal
chunks
do in parallel i € 1, N:
computeModularity(c;)
end

end

Algorithm 1: Parallel modularity version 1.

The second parallel version is a little more complicated. The idea is to split the set
of communities C' into subsets between processors. But in order to balance the load,
these chunks should have approximately equal sum of squares of community size
since community of size s has s? ordered node pairs (counting self-loops). To
achieve this we used a greedy algorithm, which iterates over communities in
descending order and assigns each of them to a subset that has the smallest sum of
size squares. The only problem here is that the biggest community may have size
square much more than sum of size squares of the rest ones, i.e. the chunk which
gets this community will be overloaded. To overcome this challenge we sort
communities by their sizes in descending order and apply the first parallel approach
to first (biggest) several communities, until we encounter community with small
enough size to allow balancing of the rest ones or reach lower community size
bound cg. The rest ones are split into subsets according to the mentioned greedy
algorithm. To determine whether to start balancing we use a simple condition:
square of size of current biggest community should be at most % of total sum of

squares of sizes of communities left at the moment. Formally, having sorted sizes of
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communities s1 > sy > ... > s¢, the condition of stopping at community % is
53 < % (st + ... + s&). See algorithm 2.

sortBySizeInDescendingOrder(C')

for ¢; € C' do
if |ex| < o or
lewl? < & (Jeg]? + ... + |C\C\|2) then
| brea
end

C+ C\A{ck}
{c1,...,en} + split ¢ into N equal chunks

do in parallel i € 1, N:
computeModularity(c;)

end
{C1, ...,Cn} < balanceSumOfSquares(C)

do in parallel i € 1, N: for ¢;; € C; do
| computeModularity(c;x)
end

Algorithm 2: Parallel modularity version 2.

We compared the speedup due to both versions of parallellization versus sequential
computing of modularity for Qs and Qrr. See table 5. When number of
communities is small (C| = 1894) the first method is slightly faster due to its
simplicity (results were averaged over 5 runs). In case of many communities the
second version shows its benefit.

We also investigated process scalability of both parallel implementations. The
results are represented in Fig. 1.

6. Conclusion

We investigated existing approaches to computing modularity measure and
developed Qs and @),z — modularity extensions for large directed weighted graphs

with overlapping communities. These extensions have low computational
complexity which makes them applicable to graphs with more than 10 nodes and
they also can be computed in parallel way.

These two formulae are based on different notions of community: as group of nodes
with more dense links (Qs) or a group of nodes where a random surfer tends to
spend more time (Q.gr). Since a surfer walks along link direction, the second
formula is more sensible to direction of links in a graph.

As a future direction may be considered a possibility to use new version of
modularity for overlapping community detection in directed weighted graphs.
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Scalability of parallel modularity version 1
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Fig. 2. Speedup of both parallel modularity versions on a directed unweighted graph with |V |
= 72146, |E| = 79003, |C| = 1894, S =5.30

References

[1]. Lawrence Page et al. “The PageRank citation ranking: bringing order to the web.”
Technical Report. Stanford InfoLab. (1999).

[2]. Mark EJ Newman. “Analysis of weighted networks”. Physical Review E 70.5 (2004), p.
056131.

166



M. Hpo6simesckuii, A. Koprynos, JI. Typnakos. [lapasensHoe BRIUMCICHHE MOAYJIIPHOCTH JUISl HANIPABICHHBIX
B3BEILICHHBIX IpadoB ¢ mepecekaromumucs coobuectsamu. Ipyost UCII PAH, Tom 28, Beim. 6, 2016 1., cTp. 153-170.

[3].
[4].
5.
[6].
7.
[8].
[9].

[10].

[11].

[12].

[13].
[14].

[15].

[16].

[17].

[18].

[19].

Mark EJ Newman, Michelle Girvan. “Finding and evaluating community structure in
networks”. Physical review E 69.2 (2004), p. 026113.

Amy N Langville, Carl D Meyer. “A survey of eigenvector methods for web information
retrieval”. SIAM review 47.1 (2005), pp. 135-161.

Jorg Reichardt, Stefan Bornholdt. “Statistical mechanics of community detection”.
Physical Review E 74.1 (2006), p. 016110.

Alex Arenas et al. “Size reduction of complex networks preserving modularity”. New
Journal of Physics 9.6 (2007), p. 176.

Elizabeth A Leicht, Mark EJ Newman. “Community structure in directed networks”.
Physical review letters 100.11 (2008), p. 118703.

Tam’as Nepusz et al. “Fuzzy communities and the concept of bridgeness in complex
networks”. Physical Review E 77.1 (2008), p. 016107.

Youngdo Kim, Seung-Woo Son, Hawoong Jeong. “Finding communities in directed
networks”. Physical Review E 81.1 (2009), p. 016103.

Vincenzo Nicosia et al. “Extending the definition of modularity to directed graphs with
overlapping communities”. Journal of Statistical Mechanics: Theory and Experiment
2009.03 (2009), p. 03024.

Aaron McDaid, Neil Hurley. “Detecting highly overlapping communities with model-
based overlapping seed expansion”. Advances in Social Networks Analysis and Mining
(ASONAM), 2010 International Conference on. IEEE. 2010, pp. 112-119.

Yu-Teng Chang, Dimitrios Pantazis, Richard M Leahy. “Partitioning directed graphs
based on modularity and information flow”. Biomedical Imaging: From Nano to Macro,
2011 IEEE International Symposium on. IEEE. 2011, pp. 1105-1108.

Steve Gregory. “Fuzzy overlapping communities in networks”. Journal of Statistical
Mechanics: Theory and Experiment 2011.02 (2011), p. 02017.

Amy N Langville, Carl D Meyer. Google’s PageRank and beyond: The science of
search engine rankings. Princeton University Press, 2011.

Jaewon Yang, Jure Leskovec. “Community-affiliation graph model for overlapping
network community detection”. Data Mining (ICDM), 2012 IEEE 12th International
Conference on. IEEE. 2012, pp. 1170-1175.

Mingming Chen, Konstantin Kuzmin, Boleslaw K Szymanski. “Community detection
via maximization of modularity and its variants”. Computational Social Systems, IEEE
Transactions on 1.1 (2014), pp. 46— 65.

Mingming Chen, Konstantin Kuzmin, Boleslaw K Szymanski. “Extension of modularity
density for overlapping community structure”. Advances in Social Networks Analysis
and Mining (ASONAM), 2014 IEEE/ACM International Conference on. IEEE. 2014, pp.
856-863.

Nicolas Dugué, Anthony Perez. “Directed Louvain: maximizing modularity in directed
networks”. PhD thesis. Universit'e d’Orléans, 2015.

Vincent A Traag, Rodrigo Aldecoa, J-C Delvenne. “Detecting communities using
asymptotical surprise”. Physical Review E 92.2. APS, 2015, p. 022816.

167



M. Drobyshevskiy, A. Korshunov, D. Turdakov. Parallel modularity computation for directed weighted graphs with
overlapping communities. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 6, 2016, pp. 153-170.

MapannenbHoe BblYUCNeHUe
MOAYNAPHOCTU AN HanpaBneHHbIX
B3BeLUEHHbIX rpadoB ¢ nepeceKaroLMMUCA

cooblwecTBamMm

Ylpo6euuescuii Muxaun <drobyshevsky@ispras.ru>
'Kopuiynos Anmon <korshunov@ispras.ru>
L2371y noakos Jenuc <turdakov@ispras.ru>

1PI}Ltcmumym cucmemnozo npoepammupoganus PAH,

109004, Poccus, . Mocksa, ya. A. Coaxcenuysina, 0. 25
’Mockosckuii eocyoapcmeennwlil ynusepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue 2opwi, 0. 1
$Hayuonanvuwiii uccnedosamenscexuil yuusepcumen «Boicuias wkona s5KoOHOMUKIY
101000, Poccus, Mocksa, yn. Macnuykas, 0. 20

AHHOTauMsi. B craThe NpeICTAaBICHBI HOBBIE AITOPUTMBI pacyeTa MOIYJSIPHOCTH IS
HallpaBJICHHBIX ~ B3BEIICHHBIX  IpadoB €  TIEPECEKAIOIIMMUCS  COOONIECTBAMH.
PaccmarpuBaroTCs HECKOIBKO ITOIXOIOB JUIS BHIYMCICHHS MOAYISIPHOCTH U MX PACIIUPCHHSI.
VY4uTeIBas BEIYHMCIUTENBHYIO CIOKHOCTh H3BECTHBIX IIOJXOOB, IpeIyIaraiorcs mIBa
TapayIIebHEIX PACIIHPEHHS, MACIITabUpyeMbIX Ha rpadbl ¢ Gonee 10 Bepmmh.

Ki1toueBble €J10Ba: MOAYJISPHOCTD; MOMCK COOOIIECTB; MAIPK-PaHK; JIMHK-PAHK; (QyHKIUS
MPUHAUICKHOCTH; KOO (UIINECHT NPHHATICKHOCTH.

DOI: 10.15514/ISPRAS-2016-28(6)-11

Jnsa uutupoBanus: JpoOemmesckuit M., KopmynoB A., Typmaxos JI. IlapammemsHoe
BBIYHCIICHUE MOJYJIIPHOCTH JUIS HAlpPaBJIEHHBIX B3BEIICHHBIX IpadoB ¢ MepeceKaronnMHuCs
coobmecrBamu. Tpynst UCIT PAH, Tom 28, BeIm. 6, 2016 1., ctp. 153-170 (Ha aHrmiickom).
DOI: 10.15514/ISPRAS-2016-28(6)-11

Cnucok nutepartypbl

[1]. Lawrence Page u mp. “The PageRank citation ranking: bringing order to the web”.
Technical Report. Stanford InfoLab. (1999).

[2]. Mark EJ Newman. “Analysis of weighted networks”. Physical Review E 70.5 (2004),
ctp. 056131.

[3]. Mark EJ Newman, Michelle Girvan. “Finding and evaluating community structure in
networks”. Physical review E 69.2 (2004), ctp. 026113.

[4]. Amy N Langville, Carl D Meyer. “A survey of eigenvector methods for web information
retrieval”. SIAM review 47.1 (2005), ctp. 135-161.

[5]. Jorg Reichardt, Stefan Bornholdt. “Statistical mechanics of community detection”.
Physical Review E 74.1 (2006), ctp. 016110.

168



M. Hpo6simesckuii, A. Koprynos, JI. Typnakos. [lapasensHoe BRIUMCICHHE MOAYJIIPHOCTH JUISl HANIPABICHHBIX
B3BEILICHHBIX IpadoB ¢ mepecekaromumucs coobuectsamu. Ipyost UCII PAH, Tom 28, Beim. 6, 2016 1., cTp. 153-170.

[6]. Alex Arenas et al. “Size reduction of complex networks preserving modularity”. New
Journal of Physics 9.6 (2007), ctp. 176.

[7]. Elizabeth A Leicht, Mark EJ Newman. “Community structure in directed networks”.
Physical review letters 100.11 (2008), ctp. 118703.

[8]. Tamas Nepusz et al. “Fuzzy communities and the concept of bridgeness in complex
networks”. Physical Review E 77.1 (2008), ctp. 016107.

[9]. Youngdo Kim, Seung-Woo Son, Hawoong Jeong. “Finding communities in directed
networks”. Physical Review E 81.1 (2009), ctp. 016103.

[10]. Vincenzo Nicosia et al. “Extending the definition of modularity to directed graphs with
overlapping communities”. Journal of Statistical Mechanics: Theory and Experiment
2009.03 (2009), ctp. 03024.

[11]. Aaron McDaid, Neil Hurley. “Detecting highly overlapping communities with model-
based overlapping seed expansion”. Advances in Social Networks Analysis and Mining
(ASONAM), 2010 International Conference on. IEEE. 2010, ctp. 112-119.

[12]. Yu-Teng Chang, Dimitrios Pantazis, Richard M Leahy. “Partitioning directed graphs
based on modularity and information flow”. Biomedical Imaging: From Nano to Macro,
2011 IEEE International Symposium on. IEEE. 2011, ctp. 1105-1108.

[13]. Steve Gregory. “Fuzzy overlapping communities in networks”. Journal of Statistical
Mechanics: Theory and Experiment 2011.02 (2011), ctp. 02017.

[14]. Amy N Langville, Carl D Meyer. “Google’s PageRank and beyond: The science of
search engine rankings”. Princeton University Press, 2011.

[15]. Jaewon Yang, Jure Leskovec. “Community-affiliation graph model for overlapping
network community detection”. Data Mining (ICDM), 2012 IEEE 12th International
Conference on. IEEE. 2012, ctp. 1170-1175.

[16]. Mingming Chen, Konstantin Kuzmin, Boleslaw K Szymanski. “Community detection
via maximization of modularity and its variants”. Computational Social Systems, IEEE
Transactions on 1.1 (2014), crp. 46— 65.

[17]. Mingming Chen, Konstantin Kuzmin, Boleslaw K Szymanski. “Extension of modularity
density for overlapping community structure”. Advances in Social Networks Analysis
and Mining (ASONAM), 2014 IEEE/ACM International Conference on. IEEE. 2014,
crp. 856-863.

[18]. Nicolas Dugué, Anthony Perez. “Directed Louvain: maximizing modularity in directed
networks”. PhD thesis. Universit'e d’Orléans, 2015.

[19]. Vincent A Traag, Rodrigo Aldecoa, J-C Delvenne. “Detecting communities using
asymptotical surprise”. Physical Review E 92.2. APS, 2015, crp. 022816.

169



M. Drobyshevskiy, A. Korshunov, D. Turdakov. Parallel modularity computation for directed weighted graphs with
overlapping communities. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 6, 2016, pp. 153-170.

170



