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1. Introduction 

The motivation of our research into modularity computation was the need to 

quantitatively assess and compare the quality of various clustering algorithms 

applied to mobile call graphs. As soon as no such graphs with ground-truth 
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community structure were found, we couldn’t use the most popular quality metric 

based on Normalized Mutual Information (NMI). 

For evaluating quality of community detection methods on graphs with unknown 

reference communities, metrics based on probabilistic models are used. Such 

metrics include modularity, surprise, significance [19], ER-modularity [5]. Also, 

generative models from model-based community detection methods can be used to 

estimate likelihood of clustered graph [15, 11]. 

Modularity value characterizes the strength of a particular clustering of a graph. It is 

high when clusters are dense and sparsely connected to each other, whereas its value 

is low when clusters are formed at random. Besides evaluation of community cover, 

modularity is also used as optimization function in some community detection 

algorithms [16, 18]. In [12] modularity is also used for graph partitioning, but only 

for the case of two communities. 

Here we consider modularity metric, its existing extensions for directed and 

weighted graphs and for the case of overlapping communities. Then we describe our 

extensions of modularity for overlapping communities in directed weighted graphs. 

2. Notation 

In this paper we will use the following notation, most of which are common in 

graph theory. 

 – graph with nodes  and edges , nodes , edge ; 

 – adjacency matrix of graph ; 

 – an element of ; 

 – weight of edge ; 

 – degree of node ; 

 – set of communities on graph ,  – particular community; 

 – set of communities node  belongs to; 

 – average community size in graph , ; 

 – average square community size in graph , ; 

We will also use  instead of  to denote sizes of corresponding 

sets. 

3. Existing versions of modularity 

Modularity was defined by Newman and Girvan [3] to measure a quality of a 

partition of a graph into a set of clusters. It is the fraction of edges within the 

clusters minus the expected such fraction in a randomly connected graph with the 

same nodes and their degrees. Modularity was originally defined for undirected 

unweighted graphs and is given by: 
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  (1) 

where  – number of edges between nodes within community  – number 

of edges from the nodes in community  to the nodes outside . 

Modularity can equivalently be expressed via adjacency matrix Aij and nodes 

degrees ki: 

  (2) 

There are three main directions of extension of the original modularity definition: 

for directed graphs, for weighted graphs, and for the case of overlapping 

communities. 

3.1 Modularity for directed and weighted graphs 

Extension of modularity (2) to directed graphs is rather straightforward [7]: 

  (3) 

where  is out-degree of node  and 
 
is in-degree of node . 

Modularity (2) is easily generalized to weighted graphs as well [2]: 

   (4) 

where  – weight of edge ,  is sum of all weights of edges of 

node , and  is total weight of all edges. 

Moreover, modularity formula (2) for both weighted and directed graphs can be 

written as [6]: 

   (5) 

Finally, modularity based on LinkRank, was suggested for weighted directed graphs 

[9]: 

  (6) 
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LinkRank is an analogy of PageRank [14] for links. PageRank is the probability of a 

particular page (node) being visited by a random surfer and can be defined as a 

stationary row vector of Google Matrix : . In case of directed graphs 

Google Matrix , where  is damping parameter for 

PageRank (with probability  random surfer jumps to a random node) and  is 

indicator of dangling node: 

 

This formula originates from an alternative notion of community as a group of 

nodes where a random surfer spends more time in average. More technically, this 

definition of modularity is the deviation between the fraction of time a random 

walker spends within communities and the expected such time. 

3.2 Overlapping modularity 

In the case when a node can belong to several communities, the belonging 

coefficients  are introduced [8] which indicate how much a node  belongs to 

community . This coefficients are non-negative and sum to one: 

  . This relates to another extension of 

community detection problem, called fuzzy community detection [13]. To 

generalize different approaches of using belonging coefficients, a belonging 

function  can be defined [17] to characterize an extent to what an edge 

 connects communities  and  respectively. 

According to this, several approaches for overlapping modularity from the literature 

can be generalized to the following two definitions [17]: 

  (7) 

and 

  (8) 
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where belonging coefficient can be: 

  (9) 

where  is the number of maximal cliques containing edge ,  is the 

number of maximal cliques containing edge  inside community . Belonging 

function can be: 

  (10) 

3.3 Further extensions of modularity 

Besides the node-based extensions, there was suggested edge-based extension [10] 

(for directed graphs): 

  (11) 

Here edge belonging function  can be any of (10), but the authors 

suggested this variant (together with empirically found expression for ): 

  (12) 

It is worth to notice that actually in the inner sum iterating of pairs of nodes  are 

done over nodes only from community  (not from the whole ), due to the form of 

 functions. 

Authors of [17] suggested density-based version of modularity (1) for overlapping 

directed graphs: 
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  (13) 

3.4 Drawbacks and limitations 

The first obvious drawback is that there was not found any modularity formula, 

comprising all three needed properties: support of directed, weighted graphs with 

overlapping communities. 

The second limitation is computational complexity. Aforementioned formulas of 

overlapping modularity are not acceptable for large graphs (with more than 
 

nodes within community cover) due to their high computational complexity. 

Denoting the average number of communities by , average community size by  

and number of nodes by , we have for (13) time complexity , and for (11) 

— . See subsection 4.1 for more details. 

It’s also worth noting that LinkRank authors [9] provide some evidence that the 

modularity (5) can’t distinguish the direction of links. 

4. Our extensions of modularity 

Since we focus on modularity for directed weighted graphs with overlapping 

communities, we actually have two possibilities of extension: make overlapping 

(directed) modularities support weights, or to extend directed weighted modularities 

to the overlapping case. 

The first approach suggests naive substitution of adjacency matrix of a graph to 

matrix of weights and number of edges to the sum of their weights. Doing so with 

density formula (13) leads to unnormalization: values of modularity start to exceed 

the available range . But we will still use it in experiments with unweighted 

graphs. On the other hand, edge-based formula seems to allow such generalization, 

becoming: 

  (14) 

But this is still computationally expensive. 



М. Дробышевский, А. Коршунов, Д. Турдаков. Параллельное вычисление модулярности для направленных 

взвешенных графов с пересекающимися сообществами. Труды ИСП РАН, том 28, вып. 6, 2016 г., стр. 153-170. 

159 

The second approach consists in introducing belonging coefficients (9) and 

belonging functions (10) to simple version (5): 

  (15) 

and to LinkRank-based version of modularity (6): 

  (16) 

Since PageRank (and hence LinkRank) has fast implementations ([1, 4]), these two 

formulas have much lower computational complexities. 

Also, we suggested to use in formulas a normalization coefficient instead of 

belonging function: 

  (17) 

The intuition is the following. If both nodes  belong to  communities, the term 

 will encounter  times in modularity formula, once for each community, 

so we weigh it by the factor of  . It’s easy to see that otherwise 

modularity can become unlimited: suppose that each community is actually two 

equal different communities, then modularity value doubles. 

4.1 Computational complexity 

Here we calculate computational complexities of modularity extensions , , 

 and . All complexities are present in table 1. 

Firstly, denote by  computational complexity of  – we consider it 

later. 

In the expression for  (13), the term  is computed in , so as ; 

 in ;  and  in  time. Counting that average square 

community size  is not less than square of average size , each term of 

summation has complexity , giving overall complexity . 

In the expression for   (14), the hardest term is 
 
and , which take  

steps, thus resulting in  overall complexity. 

 (15) and  (16) have complexity , ignoring PageRank calculation 

time as insignificant. Understanding the big-O complexity of PageRank calculation 

requires analyzing the code of pagerank scipy method from NetworkX
2
. However, 

Aric Hagberg (NetworkX Lead Programmer) wrote that their implementation has 

                                                           
2 http://networkx.github.io/ 
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”linear complexity in the number of edges”. In practice, PageRank computation 

time is negligible. 

Now consider . Uniform belonging coefficient  may be 

computed by one operation if communities for each node are explicitly known, e.g. 

each node has a set of labels. But usually community detection algorithms return list 

of communities represented by sets of nodes. This means we need  

operations to find all communities a given node  belongs to. The same concerns 

fraction belonging coefficient, for which we have , supposing that 

average node membership is not very high, i.e. . Therefore, intersection 

belonging function together with the others are . 

Table 1: Computational complexities for modularity formulas, belonging functions and 

belonging coefficients. 

 

4.2. Effects 

In order to demonstrate adequacy of the estimate based on computed modularity 

with regard to intuitive community structure, we computed modularities of several 

alternative community covers of the example graph (see Fig. 1). We generated a 

large set of random community covers, and sort them according to the modularity 

value computed with formula (15). Fig. 1 demonstrates 3 covers with highest 

modularity and 3 covers with lowest modularity. We can see that the most intuitive 

cover corresponds to the highest modularity value. The same holds for formula (16). 
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Fig. 1. Modularity (15) of different community covers for example directed weighted graph. 

All edges have weight 10 except (1-6) and (3-7) which have weight 0.1. Top row: 
covers with maximal modularity; bottom row: covers with minimal modularity. 

5. Experiments 

We implemented in Python four versions of modularity , ,  and  

together with 4 belonging functions (see (10) and (12)): 

1. sum , 

2. product , 

3. intersection , 

4. edge-based , 

and two belonging coefficients: 
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1. uniform , 

2. fraction . 

Also we conducted a set of experiments: on computation time, different belonging 

functions and belonging coefficients, and parallelizing. 

5.1 Computation time 

We compared modularity value and computation time of four appropriate formulas 

( , , , ) on two graphs of different size. Since  doesn’t support 

weights and fraction belonging coefficient is undefined for directed graphs (due to 

possible zero in denominator), graphs were chosen undirected unweighted. 

Experiments with directed weighted graphs are to be conducted later. We took 

default belonging functions (suggested in original papers) and uniform belonging 

coefficient for simplicity. 

The small graph was generated by CDR-GEN generator
3 

and clustered by SLPA 

algorithm
4 

with threshold . Parameters of the smaller graph are: number of 

nodes , number of edges , number of communities , 

average size of community  with 100% of nodes involved in communities, 

average membership . 

The big graph was Wu et al dataset
5 

clustered by MOSES algorithm
6 

with 7% of 

nodes involved in communities ( , , , ). 

Results are in table 2. 

Table 2 shows that as size of graph and size and number of communities grow,  

and  become too computationally expensive, so there are only two scalable 

candidates,  and . 

Table 2: Modularity value and computation time for QS, QLR, QD and QE on 2 undirected 

unweighted graphs. 

 

                                                           
3 https://github.com/mayconbordin/cdr-gen 
4 https://sites.google.com/site/communitydetectionslpa/ 
5 http://www.pnas.org/content/107/44/18803?tab=ds 
6 https://sites.google.com/site/aaronmcdaid/moses 
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Table 3: Comparison of different belonging functions and belonging coefficients for QD, QE, 

QS and QLR on undirected unweighted graph with |V | = 72146, |E| = 79003, |C| = 1894, S = 

5.30 (clustered by Clique Percolation). 

 

Table 4: Comparison of different belonging functions for QS and QLR on a directed weighted 

graph with overlapping communities (|V | = 72146, |E| = 79003, |C| = 1894, S = 5.30, 

clustered by Clique Percolation). 

 

Table 5: Comparison of times of sequential and parallel versions (N = 6 processes) of QS and 

QLR on a directed unweighted graph with |V | = 72146, |E| = 79003 clustered by Clique 

Percolation (covers 13% of nodes) and SLPA (covers 78% of nodes) algorithms. 

 

5.2 Belonging functions and belonging coefficients 

Then we investigated influence of different belonging functions and belonging 

coefficients on values of  and . We used the same Wu et al dataset clustered 

by Clique Percolation algorithm
7 

with 13% of nodes involved in communities 

( , , , ). 

Table 3 shows that the choice of belonging function or belonging coefficient doesn’t 

make much difference to result modularity. Meanwhile, intersection belonging 

function takes the lowest time. Values of  are in good consistency with those of 

, which is widely used in papers.  values tend to be less than  and . 

 values differ a lot, possibly due to dissimilar formula structure, but as far as we 

know this formula was not compared to other ones in literature. 

                                                           
7 http://www.cfinder.org/ 
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Table 4 extends the comparison of different belonging functions for  and  on 

a directed weighted graph with overlapping communities. Belonging coefficient is 

uniform. We see that the behavior is consistent with that of undirected unweighted 

case. 

5.3 Parallel modularity 

Computation process of  and  naturally allows parallelization. Since each 

community and each node pair contributes independently to the modularity value, 

iterating over node pairs may be distributed between processors. 

We implemented two parallel versions. The first one is rather straightforward. 

Iteration over communities is left sequential. Each time when community of size 

more than  is encountered,  parallel processes are initialized. The 

set of all nodes pairs within the community is split into  equal chunks and are 

assigned to these processes (see algorithm 1). 

 

Algorithm 1: Parallel modularity version 1.  

The second parallel version is a little more complicated. The idea is to split the set 

of communities  into subsets between processors. But in order to balance the load, 

these chunks should have approximately equal sum of squares of community size 

since community of size  has 
 
ordered node pairs (counting self-loops). To 

achieve this we used a greedy algorithm, which iterates over communities in 

descending order and assigns each of them to a subset that has the smallest sum of 

size squares. The only problem here is that the biggest community may have size 

square much more than sum of size squares of the rest ones, i.e. the chunk which 

gets this community will be overloaded. To overcome this challenge we sort 

communities by their sizes in descending order and apply the first parallel approach 

to first (biggest) several communities, until we encounter community with small 

enough size to allow balancing of the rest ones or reach lower community size 

bound . The rest ones are split into subsets according to the mentioned greedy 

algorithm. To determine whether to start balancing we use a simple condition: 

square of size of current biggest community should be at most  of total sum of 

squares of sizes of communities left at the moment. Formally, having sorted sizes of 
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communities , the condition of stopping at community  is 

. See algorithm 2. 

 

Algorithm 2: Parallel modularity version 2. 

We compared the speedup due to both versions of parallellization versus sequential 

computing of modularity for  and . See table 5. When number of 

communities is small ( ) the first method is slightly faster due to its 

simplicity (results were averaged over 5 runs). In case of many communities the 

second version shows its benefit. 

We also investigated process scalability of both parallel implementations. The 

results are represented in Fig. 1. 

6. Conclusion 

We investigated existing approaches to computing modularity measure and 

developed  and  – modularity extensions for large directed weighted graphs 

with overlapping communities. These extensions have low computational 

complexity which makes them applicable to graphs with more than 10
4 

nodes and 

they also can be computed in parallel way. 

These two formulae are based on different notions of community: as group of nodes 

with more dense links (QS) or a group of nodes where a random surfer tends to 

spend more time (QLR). Since a surfer walks along link direction, the second 

formula is more sensible to direction of links in a graph. 

As a future direction may be considered a possibility to use new version of 

modularity for overlapping community detection in directed weighted graphs. 
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Fig. 2. Speedup of both parallel modularity versions on a directed unweighted graph with |V | 

= 72146, |E| = 79003, |C| = 1894, S = 5.30 
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