Experiments on Parallel Composition of
Timed Finite State Machines'

A.P. Sotnikov <sotnikhtc@gmail.com>
N.V. Shabaldina <nataliamailbox@mail.ru>
M.J1, Gromov <maxim.leo.gromov@gmail.com>
Tomsk State University,

36, Lenin ave., Tomsk, 634050, Russia

Abstract. In this paper, we continue our work that is devoted to the parallel composition of
Timed Finite State Machines (TFSMs). We consider the composition of TFSMs with
timeouts and output delays. We held experiments in order to estimate how often parallel
composition of nondeterministic TFSMs (with and without timeouts) has infinite sets of
output delays. To conduct these experiments we have created two tools: the first one for
converting TFSMs into automata (this tool is integrated into BALM-I1), the second one for
converting the global automaton of the composition into TFSM. As it was suggested in earlier
works, we describe the infinite sets of output delays by linear functions, and it is important to
know how often these sets of linear functions appear to justify the importance of future
investigations of the TFSM parallel compositions (especially for deriving cascade
composition). Results of the experiments show significant amount (around 50 %) of TFSMs
with infinite number of output delays. We also estimate the size of the global automaton and
the composed TFSM. In the experiments, we do not consider global automata with the huge
number of states (more then 10000).

Keywords: Timed finite state machine; parallel composition; BALM-II.
DOI: 10.15514/1ISPRAS-2017-29(3)-13

For citation: Sotnikov A.P., Shabaldina N.V., Gromov M.L. Experiments on Parallel
Composition of Timed Finite State Machines. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue
3, 2017, pp. 233-246. DOI: 10.15514/ISPRAS-2017-29(3)-13

1. Introduction

Different systems, for example web-services, telecommunication protocols digital
networks etc. are targeted on interaction with each other. To analyze and synthesize
such systems one needs an adequate formal model. The Finite State Machine (FSM)
has proven to be a classical model for description of input-output reactive discrete

! This work is supported by the grant for the basic research Ne16-49-03012 of Russian Scientific
Foundation.

233

Sotnikov A.P., Shabaldina N.V., Gromov M.L. Experiments on Parallel Composition of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 3, 2017, pp. 233-246.

event systems [1]. Here, by “input-output reactive” we mean, that every input action
is always followed by output reaction, and by “discrete event” we mean, that
domains for input and output actions are finite (discrete) sets. In this case, when
talking about interacting systems, main concept is a composition of FSMs. If there
are two communicating systems and the behavior of each system is described by an
FSM, then their common work can be described by the composition of those FSMs.
Under appropriate assumptions [2,3] this composition will also be an FSM. In this
work we consider so-called parallel composition [2]. In the parallel composition the
interacting systems work asynchronously in the assumption of a slow environment
and this is enough to guarantee the composition to be an FSM again. To build an
FSM composition BALM-II (Berkeley Automata and Language Manipulation) can
be used [3].

For more precise description of a system one should consider time aspects of its
behavior as well. For that reason we need some model which would be appropriate
for description of an input-output reactive timed discrete event system. Probably the
most general way to describe timed discrete event system (not necessarily input-
output reactive) is a timed automaton [6]. In works [4, 5] authors describe web-
services, using language BPEL. In [4] authors tell how they translate web services
into timed automata in order to verify them. In [5] the authors use more complicated
model — so-called Timed Extended Finite State Machine. Then they convert a
TEFSM into timed automaton. For further analysis, both, [4] and [5], use
UPPAAL [16] as an instrument.

Although timed automata are more than enough to describe any input-output
reactive timed discrete event system, they are not convenient for us. The reason is
that we would like to keep some room for analysis of the composition. Namely, we
would like to use the composition as a specification for a test generation. For the
best of our knowledge, methods of a test generation with guaranteed fault coverage
for (timed) automata are not well developed (frankly speaking we know only one
paper [7], which describes such a method). In contrary, test generation methods for
FSMs are well-developed and are still developing [8,9]. And since parallel
composition of FSMs guarantees, that the result is FSM again, we would like to
consider some kind of Timed Finite State Machine as a model, which would
presume this property of the parallel composition. One possible timed augmentation
of the FSM was mentioned in [5]. But this model is quite complex and it is not
clear, how to build parallel composition for it. Another option to introduce timed
FSM is Timed FSM with time guards [10]. The theory of this model is highly
developed [11], but it lacks an efficient method to build parallel composition as well
as the precious model.

And at last, the model we use in this paper, is the Timed Finite State Machine with
output delays and timeouts (TFSM) [12-15]. This model allows building parallel
composition in the same manner as it is done for common FSM. Given two TFSMs
we need to compose. First, the corresponding automata should be built [7], then we
compose those automata, obtaining so called the global automaton of the

234

CotnukoB AL, [lla6anauua H.B., I'pomoB MJL. DKCIIEpHUMEHTHI 110 IOCTPOCHHIO NAPAIUICIbHON KOMITO3HIIUH
BPEMEHHBIX aBTOMaTOB. Tpyovt UCII PAH, 2017 r., Tom 29, BbIm. 3, cTp. 233-246.

composition. And then we need to transform the global automaton into TFSM.
In [12] very interesting effect of the parallel composition is shown. It turned out that
composition of two TFSMs (with constant delays) can have infinite number of
output delays for a some transitions and those delays can be described by a finite set
of linear functions {b + k¢ | b, k € {0} U N}. The main objective of this paper is to
investigate how often this effect occurs. This would justify further development of
the theory of TFSM with infinite (countable) number of delays.

In some works [4, 5] authors use UPPAAL [16] as an instrument for manipulation
with models. Although UPPAAL is very powerful tool of timed systems analysis it
does not suit us, because it does not allow to build the composition explicitly.
In[14] we compare some tools that can be used for deriving the parallel
composition of TFSMs, and explain why we have chosen BALM-II.

BALM-II was designed to build parallel composition of two FSMs. To be able to
use this tool for TFSMs we use well-known transformation of TFSM into FSM, and
in this work we create a tool for converting TFSM into automaton and integrate it
into BALM-I1I. After deriving two automata for the given two TFSMs we construct
a global automaton (using BALM-II). In work [14] we suggest two approaches for
getting output delays from the composition of corresponding automata: first deals
with BALM-II once again, and the second is based on analyzing of time loops in the
automaton. In this work we create tool for converting global automaton into TFSM
based on the second approach.

Moreover, in works [14, 15] we consider TFSMs with output delays (without
timeouts). In this work we consider TFSMs with output delays and timeouts.

We use implemented tools to hold experiments. Since we describe the infinite sets
of output delays by linear functions, it is important to know how often these sets of
linear functions appear. The experimental results show significant amount (around
50 %) of TFSMs with infinite number of output delays. We also estimate the size of
the global automaton and the composed TFSM. Unfortunately the upper bound of
the number of states in the global automaton is exponential due to fact that the
automaton determinization is needed for composition. In order to get the results of
the experiments in reasonable time, we throw away all examples for which the
number of states in the global automaton is too huge (more than 10000 states).

We see the contribution of the paper as three points. First, the algorithm for deriving
TFSM from the given global automaton (for the case, when TFSMs have both
output delays and timeouts). Second, new tools that allow to derive the binary
parallel composition of TFSMs automatically (taking in the mind that composition
of two automata can be derived using BALM-I11). And probably the main point, the
experiments have shown, that the theory of TFSMs with linearly-countable output
delays is worth to be developed.

The outline of the paper is as follows. In Section I some preliminaries are given. In
Section 11l we describe the structure of the composition that we consider in our
work, and how the components communicate with each other. Section 1V is devoted
to one of the implemented tools which allow to derive TFSM based on the global

235

Sotnikov A.P., Shabaldina N.V., Gromov M.L. Experiments on Parallel Composition of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 3, 2017, pp. 233-246.

automaton; we discuss extraction of output delay functions from the global
automaton using an example, and propose an algorithm that is lied in the basis of
the tool. Section V describes the experiments and experimental results. Section VI
concludes the paper.

2. Preliminaries

A finite automaton S is a 5-tuple (S, X, so, F, 4s), where S is a finite nonempty set of
states with sy as the initial state and F < S as a set of final (accepting) states; X is an
alphabet of actions; and 15 — SxXxS is a transition relation. In this work we consider
only finite automata, so we will write simply “automaton” (meaning finite
automaton). The transition relation defines all possible transitions of the automaton.
The language Ls of automaton S is the set of all sequences « in alphabet X, such that
in automaton S there is a sequence of transitions (marked by «) from the initial state
to some final state. An FSM S is a 5-tuple (S, I, O, o, As), where S is a finite
nonempty set of states with s, as the initial state; 1 and O are input and output
alphabets; and 15 < SxIxOxS is a transition relation. In FSM all states are final.

Let N be the set of natural numbers. Let F ={ b + k¢ | b, k € {0} U N } — the set of
all possible linear functions. TFSM [12] is an FSM with timeouts and output delays
S=(S 1,0, sy 4s, As, 05), where 5-tuple (S, 1,0, s, 4s) is underlying FSM,
As: S — S x (N U{0}) is a timeout function that determine maximal time of waiting
for input symbol, os: As — (2 ¥ \J) is an output delay function that determine for
each transition time delay for producing output symbol (output timeout).

The semantics of Timed FSM is as follows. We describe the behavior of a system
that has time aspects: timeouts and output delays. Timeouts describe the situation
when the system comes from one state to another not under the input symbol, but in
the case when no inputs are applied during some period of time. In practice it’s the
case of waiting for the password in internet-banking, etc. As for output delays, the
meaning of them is that the output symbol is produced for the given input symbol
not immediately but after some period of time. For example, a light can change not
immediately after a button is pushed but after some time.

We suppose that there is a global clock (timed variable) and this clock is reset to
zero when an input symbol (action) is applied, when an output symbol is produced
and when the state of the system is changed (for example, in the case of transition
under timeout).

3. Composition of Timed Finite State Machines

Parallel composition describes a dialog between two components. The structure of
the composition is presented in Fig. 1.

236

CotnukoB AL, [lla6anauua H.B., I'pomoB MJL. DKCIIEpHUMEHTHI 110 IOCTPOCHHIO NAPAIUICIbHON KOMITO3HIIUH
BPEMEHHBIX aBTOMaTOB. Tpyovt UCII PAH, 2017 r., Tom 29, BbIm. 3, cTp. 233-246.

|
U
pua [e R
left right
vl v :
|

[N R R |

Puc. 1. Cmpyxmypa 6unapnou napaaieabHol KoMno3uyuu
Fig. 1. Structure of binary parallel composition

We suppose that the system works in “slow environment” (it means that the next
input can be applied to the composition only after it produces external output to the
previous input), the alphabets of different channels don’t intersect and there are no
infinite dialogs under internal inputs (it means no livelocks). We also suppose that
each component and the whole composition have timed variables. The values of
these variables are increasing synchronously, and they reset when the system gets an
input or when the state is changed.

In order to compose two TFSMs using BALM-II, we need, first of all, to derive the
corresponding automaton for each TFSM [12, 13]. In this work we implement a tool
for this step and integrate it into BALM-II as a new command TFSM2AutV1. This
implementation requires, that MV description of TFSM (BALM-II format) contains
special variable called Time. Domain of the variable Time contains only non-
negative integers which are used to describe timeouts and delays. For example, if a
table of transitions has head as follows

.table I Time O CS -> NS

and we would like to represent timeout transition s; 5 s,, then it will appear as

~t N sy s,

where | — is the variable for input action, O — is the variable for output action, CS —
is the variable for the current state, NS — is the variable for the next state, t — is some
non-negative integer from the domain of the variable Time and the symbol
represents the fact, that there is no action in corresponding channel. The ordinary

transition with delay, like s; Msz is described as

ido s; s,

where i — is from the domain of I, o — is from the domain of O, and d — is from the
domain of Time.

Then we derive parallel composition of two automatons using BALM-II (we
describe how to do this in works [14, 15]). The resulting automaton is so-called
global automaton and it describes the common behavior of two automata that are
working together in a dialogue mode.

237

Sotnikov A.P., Shabaldina N.V., Gromov M.L. Experiments on Parallel Composition of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 3, 2017, pp. 233-246.

After deriving a global automaton that describes the common behavior of two given

TFSMs we need to construct the corresponding TFSM. We also develop a tool for
this step and describe the corresponding algorithm in the next section.

4. Deriving TFSM Based on the Global Automaton. Extracting
Output Delays Functions

Let’s consider an example of a global automaton (Fig. 2) and describe how to derive
the corresponding TFSM (Fig. 3). One can see that after Request there can be output
Deliver after 3 + 5t or 4 + 5t tick counts, where t is arbitrary non-negative integer
number.

1 1
1

,/”\\/—/\/\\‘K\/r\“—\ S

/’w\) Deliver %/ N U)

' - Request @ ,j1 4 o=~)
1 1 Deliver

Puc. 2. IIpumep 2nobanvrozo nonyagmomama

Fig. 2. An example of global automaton

Puc. 3. Coomsemcmeyrowuii 8pemeHHoU agmomanm
Fig. 3. Corresponding TFSM

Request / Deliver ({3+5t, 4+5t})

In work [14] we propose a procedure for deriving TFSM based on the global
automaton for the case when the given TFSMs have only output delays (no
timeouts). In this work we propose more common algorithm that works also for the
case when the given TFSMs have both output delays and timeouts. The idea of this
algorithm is very simple. According to the theory the final states of the global
automaton correspond to the states of TFSM. Every sequence, which starts and
finishes at some final states of the automaton and goes through non-final states,
corresponds to the transition of the TFSM. The sequence can start only with input
action or with special action 1. If this sequence starts with special action 1, then
every action of the sequence is 1 and corresponding transition is timeout transition
(timeout is the number of 1° needed to reach final state). If the first action of the
sequence is input action, then the last action is output action and the intermediate
actions are 1°. In this case the corresponding TFSM transition is ordinary input-
output transition with delay. The delay — is the number of 1° in-between the input
and the output actions of the sequence. We just need to keep in mind, that sequence
of 1° may form a loop. So we do some precautions to detect loops when traversing
the automaton transitions. The number of 1° before the loop gives us b for linear
function and the length of the loop gives k for the function.

238

CotnukoB AL, [lla6anauua H.B., I'pomoB MJL. DKCIIEpHUMEHTHI 110 IOCTPOCHHIO NAPAIUICIbHON KOMITO3HIIUH
BPEMEHHBIX aBTOMaTOB. Tpyovt UCII PAH, 2017 r., Tom 29, BbIm. 3, cTp. 233-246.

Algorithm 1. Deriving TFSM based on the global automaton.
Input. Global automaton A = (A, 1 U O U {1}, ag, F, 1a)
Output. TFSM T = (T, |, O, to, A1, A1, o7y with the same behavior.
to=ag, T:={to};
FOREACH non-visited state t from T DO
IF3<, 1,t') e Aa THEN DO

ADDVYt inT;

IFt==t THEN ADD (1, o, t') in At;

ELSE ADD (t, 1, t') in Ar;

DONE
FOREACH input action i such, that 3 (t, i, t') € A
DO
b:=0;V:=0,
WHILE t' 'I= NULL AND t" is NOT visited
DO
t'b:=b;
FOREACH output action o such, that 3 {t', 0, t"") € Aa
DO
IFt" e F THEN DO
ADDt"inT;
ADD (', 0,t")inV;
DONE
DONE
mark t’ as visited,;
b++;

IF3{t, 1,1y e A THEN Y =1t
ELSE t' := NULL,;
DONE
IF t' == NULL THEN K := 0, Njggp := 0;
ELSE k:=b—t".b, Njgp := t'.b;
FOREACH (t, 0, t") in V DO
ADD {t,i,0,t")in Ay,
IF t'.b < njpep THEN
ADD (t, i, 0, t'"), t'".by in oF;
ELSE
ADD ({t, i, 0, t"), t'.b + k*x) in oF;
DONE

239

Sotnikov A.P., Shabaldina N.V., Gromov M.L. Experiments on Parallel Composition of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 3, 2017, pp. 233-246.

DONE
mark t as visited:;
DONE

5. Experimental Results

We conduct the experiments according to the following steps:

Step 1. Generate two complete nondeterministic observable timed FSMs:
left.fsm and right. fsm. At this step we use FSM generator from the tool
[17].

Step 2. Convert generated TFSMs into AUT-format (BALM-II format). After this
step we have two files in AUT-format: 1eft.aut and right.aut.

The number of all states in the automaton is S + S*I*D + S*T, where S — is the
number of states in original TFSM, | — number of input symbols, D — maximal
delay, T — maximal finite timeout. The number of stable states is S*T.

If we have no timeouts then T = 0 and the number of states of the automaton is
S + S*I*D.

Step 3. Convert files left.aut and right.aut with TFSMs into files
left aut.aut and right aut.aut with corresponding automata. In order to
do this, we created the tool and integrated it into BALM-Il. We described the
algorithm for this transformation in the work [14]. In this work we only add in that
algorithm the transformation for timeout transitions.

Step 4. Derive the global automaton. We derive the global automaton using the
same sequence of BALM-II commands as we described in work [14].

The number of final states in the product automaton is S1*T1*S2*T2, where S1 is
the number of final states in the left component, S2 is the number of final states in
the right component, T1 is the maximal finite timeout in the left component, T2 is
the maximal finite timeout in the right component.

After the restriction we will have the global automaton with at most 257572 _ 1
states (since the restriction command includes determinization of the
automaton).

If we have no timeouts then the number of final states in the product automaton is at
most S1*S2 and after restriction we have at most 2% — 1.

Step 5. Derive TFSM based on the global automaton. For this step we created the
tool based on the algorithm that was proposed in the previous section.

We generated one hundred pairs of TFSMs for each set of parameters values
(number of states, maximal time delays and timeouts). In order to get results of the
experiments in reasonable time we fixed the number of inputs and outputs for each
channel to 2. We also need to mention that in experiments we did not consider
global automata with the huge number of states (more than 10000). It means that we
have thrown away such examples. The reason is that the upper bound of the number

240

CotnukoB AL, [lla6anauua H.B., I'pomoB MJL. DKCIIEpHUMEHTHI 110 IOCTPOCHHIO NAPAIUICIbHON KOMITO3HIIUH
BPEMEHHBIX aBTOMaTOB. Tpyovt UCII PAH, 2017 r., Tom 29, BbIm. 3, cTp. 233-246.

of states in the global automaton is exponential because of determinization used
during composition.

The experimental results are represented in Table 1. In the 3™ and 4" columns there
are percentages of TFSMs with infinite number of output delays (we need to use
linear functions for describing output delays). The difference is that for the 3"
column we calculated percentage of such TFSMs for the case when the components
are TFSMs with timeouts and output delays, and for the 4™ column — only output
delays (no timeouts). First of all, we would like to comment on dashes (‘-’) in the 3™
and 4" columns. In those cases we could not conduct the experiments for the given
parameters in the reasonable time and the reason is the exponential upper bound of
the state’s number in the global automaton. For example, let’s consider the last row
in the Table 1: we have 4 states in the left TFSM and 4 states in the right TFSM, the
maximal finite timeout for the both is the same and it is equal to 7. According to our
experiments’ procedure, we first derive the corresponding automata for the given
TFSMs. The number of final states in the automata is S*T, where S is the number of
states in original TFSM, T — maximal finite timeout. So for our case the number of
states in the automaton for the left component (let’s denote it as S1) will be equal to
the number of states in the automaton for the right component (let’s denote it as S2)
and S1 = S2 = =4*7 = 28. So, each automaton will have 28 stable states. Then, we
estimate the number of states in the product automaton as S1*T1*S2*T2, where T1
is the maximal finite timeout in the left component, T2 is the maximal finite timeout
in the right component, so, for our case the number of states in the product
automaton will be 28*7*28*7 = 38416. After the restriction we will have the
global automaton with at most 25 ™*5%72 _ 1 states since the command restriction
does determinization of the automaton, and for the last row in our table in the worst
case it can be 2342 _ | states and of cause it’s too huge automaton to deal with.

Tabn. 1. Dxcnepumenmanvhvle pe3yibmanol
Table 1. Experimental results

Maximal Percent of TFSMs with | Percent of TFSMs
Number dela / infinite number of | with infinite number
of states elay output delays (with | of output delays
timeout . . '
timeouts) (without timeouts)
2 2 38 23
3 2 39 37
4 2 43 28
5 2 34 -
2 3 47 38
3 3 56 42
4 3 66 55

241

Sotnikov A.P., Shabaldina N.V., Gromov M.L. Experiments on Parallel Composition of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 3, 2017, pp. 233-246.

Maximal Percgnt of TFSMs with P(_ercerjt _ (_)f TFSMs
Number delay / infinite number _of with infinite number
of states timeout output delays (with of_ output delays
timeouts) (without timeouts)
2 4 46 42
3 4 61 47
4 4 63 53
2 5 67 36
3 5 - 51
4 5 34 69
2 6 - 52
3 6 - 54
4 6 - 68
2 7 - 51
3 7 - 50
4 7 - 75

According to our experimental results, around 50 % of TFSMs, that describe the
behavior of the composition, has the infinite number of output delays, so, further
investigations of such compositions are needed. It is an actual task especially for the
case of cascade composition [15], when each component is a TFSM with timeouts
and final sets of output delays, and we first compose two internal components and
then we need to compose the resulting TFSM with the remaining part of the system.
However, according to our experimental results, this resulting TFSM has infinite
number of output delays with high probability. So, more investigations of such
compositions are needed.

6. Conclusions

This paper is devoted to parallel composition of Timed Finite State Machines
(TFSMs). We consider the composition of TFSMs with transitions under timeouts
and output delays. It is known that even for the case when output delays are the
finite sets of nonnegative integers, the result of such composition can be a TFSM
with infinite set of output delays, and we describe such infinite sets by linear
functions. It is important to know how often these sets of linear functions appear in
order to estimate the importance of future investigations such compositions
(especially for deriving cascade compaosition). In order to conduct the experiments
we created two tools: the first one for converting TFSM into automaton (we
integrated it into BALM-II), the second one for converting the global automaton
into TFSM. The experimental results show significant amount (around 50 %) of

242

CotnukoB AL, [lla6anauua H.B., I'pomoB MJL. DKCIIEpHUMEHTHI 110 IOCTPOCHHIO NAPAIUICIbHON KOMITO3HIIUH
BPEMEHHBIX aBTOMaTOB. Tpyovt UCII PAH, 2017 r., Tom 29, BbIm. 3, cTp. 233-246.

TFSMs with infinite number of output delays, so, further investigations of such
compositions are needed. We also estimate the size of global automaton and the
composed TFSM. In experiments we do not consider global automata with the huge
number of states (more then 10000). The reason is that the upper bound of the
number of states in the global automaton is exponential because of determinization
used during composition. We plan to propose another approach for deriving the
composition of Timed Finite State Machines. It will be the part of our future work.

References

[1].
[2].

3.

[4].

(5]

[6].
[71.
[8].

(9]

[10].

[11].

[12].

Gill A. Introduction to the theory of finite state machines, New-York, McGraw-Hill,
1962.

N. Yevtushenko, T. Villa, R. Brayton, A. Petrenko, and A. Sangiovanni-Vincentelli.
Solution of parallel language equations for logic synthesis. In The Proceedings of the
International Conference on Computer-Aided Design. 2001. pp. 103-110.

G. Castagnetti, M. Piccolo, T. Villa, N. Yevtushenko, A. Mishchenko, Robert K.
Brayton. Solving Parallel Equations with BALM-II. Technical Report No. UCB/EECS-
2012-181, Electrical Engineering and Computer Sciences University of California at
Berkeley. 2012. [Electronic resource]
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-181.pdf (date of access:
21.04.2016).

Gregorio Diaz, Juan-Jos e Pardo, Mar a-Emilia Cambronero, Valent n Valero,
and Fernando Cuartero. Automatic Translation of WS-CDL Choreographies to Timed
Automata, volume 3670 of Lecture Notes in Computer Science, book section 17, pages
230{242. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-28701-8. doi:
10.1007/11549970 17

M. Lallali, F. Zaidi, and A. Cavalli. Timed modeling of web services composition for
automatic testing. In Signal-lmage. Technologies and Internet-Based System, 2007.
Bibliography 102 SITIS '07. Third International IEEE Conference on, pages 417- 426,
Dec 2007. DOI: 10.1109/SITIS.2007.110.

R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer science. 1994.
Vol.126, Iss. 2. pp. 183-235.

Springintveld J., Vaandrager F. and D’Argenio P. Testing timed automata. Theoretical
Computer Science, 254 (1-2). pp. 225-257, 2001.

Kushik N., Lopez J., Cavalli A., Yevtushenko N. Improving Protocol Passive Testing
through 'Gedanken' Experiments with Finite State Machines. Proceedings 2016 IEEE
International Conference on Software Quality, Reliability and Security, pp. 315-322.
Hierons R., Turker U. Parallel Algorithms for Testing Finite State Machines: Generating
UIO Sequences. IEEE Transactions on Software Engineering, 42(11),7429774.
pp. 1077-1091, 2016.

K. El-Fakih, M. Gromov, N. Shabaldina, N. Yevtushenko. Distinguishing Experiments
for Timed Non-Deterministic Finite State Machines. Acta Cybernetica. 2013. Vol. 21,
Ne 2. pp. 205-222.

Tvardovskii A., Yevtushenko N. Minimizing timed Finite State Machines. Vestnik TGU
[The Bulletin of TSU], 2014. Vol. 4 (29). pp. 77-82 (in Russian).

O. Kondratyeva, N. Yevtushenko, and A. Cavalli. Parallel composition of
nondeterministic finite state machines with timeouts. Journal of Control and Computer
Science. Tomsk State University, Russia. 2014. VVol. 2(27). pp. 73-81 (in Russian).

243

Sotnikov A.P., Shabaldina N.V., Gromov M.L. Experiments on Parallel Composition of Timed Finite State Machines.

Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 3, 2017, pp. 233-246.

[13]. O. Kondratyeva, N. Yevtushenko, A. Cavalli. Solving parallel equations for Finite State
Machines with Timeouts. Trudy ISP RAN / Proc. ISP RAS, vol. 26, issue 6, pp. 85-98
(in Russian). DOI: 10.15514/ISPRAS-2014-26(6)-8.

[14]. Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed
finite state machines with outputs delays and timeouts: work-in-progress. System
Informatics [Sistemnaya informatika], Ne 8, 2016, pp. 33-42.

[15]. Gromov M..L, Shabaldina N.V. Using balm-ii for deriving cascade parallel composition
of timed finite state machines. Modeling and Analysis of Information Systems
[Modelirovanie i analis inforamzionnych system], 23:3 (2016). pp. 699-712 (in
Russian).

[16]. http://www.uppaal.com/ (date of access: 21.04.2016)

[17]. N. Shabaldina , M. Gromov. FSMTest-1.0: a manual for researches. Proceedings of
IEEE East-West Design & Test Symposium (EWDTS’2015). Ukraine, Kharkov:
SCITEPRESS, 2015. pp. 216-219.

AKcnepuMeHTbl N0 NOCTPOEHUI0 NapannenbHOn
KOMMNO3ULIMN BPEMEHHbIX aBTOMaToB

A.II. Comnuxog <sotnikhtc@gmail.com>
H.B. Ilabanrouna <nataliamailbox@mail.ru>
MJI. I'pomos <maxim.leo.gromov@gmail.com>
Tomckuil 2ocyoapcmeeHHblil YHugepcumen,
634050, Poccus, e. Tomck, np. Jlenuna, 0. 36

AnHoTammsi. B naHHOI pabGoTe MBI NpOJOKaeM HAIKM HCCIEIOBAHUS IapajuleIbHON
KOMITO3WIIMM BPEMEHHBIX KOHEYHBIX aBTOMATOB. MBI paccMaTpuBaeM KOMITO3HIHIO
BPEMEHHBIX aBTOMATOB C TalMayTaMH U 33€PKKAMH BBIXOIHBIX CUMBOJIOB. ISt TOTO YTOOBI
OLICHUTh, HACKOJIBKO YacTO B MApalIeTbHOH KOMIIO3WIMH HEJETePMUHHPOBAHHBIX
BPEMEHHBIX aBTOMAaTOB (C TaiiMayraMu M 0e3 TallMayTOB) BO3HHMKAIOT OECKOHEYHBIE
MHOJKECTBA 3aJIePKEK BBIXOJHBIX CHMBOJIOB, MBI IIPOBENN KOMIBIOTEPHbBIE YKCIIEPUMEHTHI.
Jng npoBeneHust TakUX SKCIEPUMEHTOB Mbl PEATU30BAIM [1BA HMHCTPYMEHTA: IEPBBIN
II03BOJIICT MpeoOpa3oBaTh BPEMEHHOH KOHEYHBIH aBTOMAT B MOJyaBTOMAT (JaHHBIN
HHCTpYMeHT BcTpoeH B BALM-II), Bropoii mo3Bonser mnpeoOpa3oBaTh TIIOOANBHBIN
MOTyaBTOMAT KOMIO3UINK BO BPEMEHHOH aBTOMar. OpHUEHTHPYSCh Ha M3BECTHBIC PAaOOTHI
10 JAQHHOW TEeMaTHWKe, MBI ONUCHIBaeM OECKOHEUHBIE MHOXKECTBA 3aJ[CP)KEK BBIXOIHBIX
CHMBOJIOB KOHEYHBIM 00pa3oM, a MMEHHO, NpH MOMOINY JIMHEHHBIX (QYHKIUH, W HYXHO
3HaTh, KaK 4YacTO TaKOe MHOXKECTBO JIMHEWHBIX (YHKLHH BO3HUKAET, YTOOBI OLCHUTH
BAXXHOCTh llaJ'IbHeI‘/JILUI/IX HCCHG}IOB&HI/II‘/’I napannenbl-[oﬁ KOMITIO3ULIMK BPEMCHHBLIX aBTOMAaTOB
(ocobeHHO ciyyas KacKaJHON KOMIO3ULMH). Pe3ynbTaTsl SKCIEPUMEHTOB MOKa3alld, YTO B
3HAYUTENILHOM KoJiMuecTBe ciiyyaeB (okono 50 %) BpeMeHHOH aBTOMAaT KOMIIO3ULIUU
COIEPXKHUT OECKOHEYHOE MHOMKECTBO 3aIepXeK BBIXOAHBIX CHMBOJOB. Kpome TOro, MBI
OLICHWIN pa3Mep III00aIBHOrO IOyaBTOMara M aBToMaTa Kommosunud. [Ipm mpoBexeHnn
SKCIIEpUMEHTOB MBI HE PACCMAaTPHBAIHN TJI00AJbHBIE IMOTyaBTOMATHl C OONBIINM YHCIOM
cocrostuuii (6osiee 10000).

244

CotnukoB AL, [lla6anauua H.B., I'pomoB MJL. DKCIIEpHUMEHTHI 110 IOCTPOCHHIO NAPAIUICIbHON KOMITO3HIIUH
BPEMEHHBIX aBTOMaTOB. Tpyovt UCII PAH, 2017 r., Tom 29, BbIm. 3, cTp. 233-246.

Knwuesrbie cioBa: BPCMCHHBIC KOHCYHBIC aBTOMAThI; HNapaJUIC/IbHAS KOMIIO3ULUS, BALM-

DOI: 10.15514/ISPRAS-2017-29(3)-13

Jas uutupoBanusi: CotuxoB A.IlL., Hla6anguna H.B.,, 'pomoB M.JI. DkcriepuMeHTHI IO
MOCTPOCHHUIO MapajlIeNbHOW KOMIO3UIMH BpeMeHHBIX aBTomaTtoB. Tpynel MICII PAH, tom
29, Bem. 3, 2017 r., ctp. 233-246. DOI: 10.15514/ISPRAS-2017-29(3)-13

Cnucok nutepaTtypbl

[1].
[2].

[3].

[4].

[5].

[6].
[71.
[8l.

(9.

[10].

[11].

[12].

Gill A. Introduction to the theory of finite state machines, New-York, McGraw-Hill,
1962.

N. Yevtushenko, T. Villa, R. Brayton, A. Petrenko, and A. Sangiovanni-Vincentelli.
Solution of parallel language equations for logic synthesis. In The Proceedings of the
International Conference on Computer-Aided Design. 2001. pp. 103-110.

G. Castagnetti, M. Piccolo, T. Villa, N. Yevtushenko, A. Mishchenko, Robert K.
Brayton. Solving Parallel Equations with BALM-II. Technical Report No. UCB/EECS-
2012-181, Electrical Engineering and Computer Sciences University of California at
Berkeley. 2012. http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-181.pdf
(mara mocrymna 21.04.2016).

Gregorio Diaz, Juan-Jos e Pardo, Mar a-Emilia Cambronero, Valent n Valero,
and Fernando Cuartero. Automatic Translation of WS-CDL Choreographies to Timed
Automata, volume 3670 of Lecture Notes in Computer Science, book section 17, pages
230{242. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-28701-8. doi:
10.1007/11549970 17

M. Lallali, F. Zaidi, and A. Cavalli. Timed modeling of web services composition for
automatic testing. In Signal-lmage. Technologies and Internet-Based System, 2007.
Bibliography 102 SITIS '07. Third International IEEE Conference on, pages 417- 426,
Dec 2007. DOI: 10.1109/SITI1S.2007.110.

R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer science. 1994,
Vol.126, Iss. 2. pp. 183-235.

Springintveld J., Vaandrager F. and D’Argenio P. Testing timed automata. Theoretical
Computer Science, 254 (1-2). pp. 225-257, 2001.

Kushik N., Lopez J., Cavalli A., Yevtushenko N. Improving Protocol Passive Testing
through 'Gedanken' Experiments with Finite State Machines. Proceedings 2016 IEEE
International Conference on Software Quality, Reliability and Security, pp. 315-322.
Hierons R., Turker U. Parallel Algorithms for Testing Finite State Machines: Generating
UIO Sequences. IEEE Transactions on Software Engineering, 42(11),7429774.
pp. 1077-1091, 2016.

K. El-Fakih, M. Gromov, N. Shabaldina, N. Yevtushenko. Distinguishing Experiments
for Timed Non-Deterministic Finite State Machines. Acta Cybernetica. 2013. Vol. 21, Ne
2. pp. 205-222.

A.C. Tsapnosckuii, H.B. Eprymenko. K MuHMMu3anuu aBTOMAaToB C BPEMEHHBIMU
OIrpaHUYCHUSAMU. BectH. Tom. roc. YH-Ta. anaBneHHe, BBIYHUCIIMTCIIbHAA TCXHHKA U
urpopmaruka, 2014. Ne 4 (29), cp. 77-82

O.B. KongparseBa, H.B. Ertymenxo, A.P. Kapammu. I[lapannenpHas KOMIIO3HLUS
KOHEUHBIX AaBTOMAaToB ¢ TaiMayramu. BectH. Tom. roc. yH-Ta. VYmnpasieHue,
BBIYHCIIUTEIIbHAS TEXHUKA U HHpopMmatHka, 2014. Ne 2 (27), ctp. 73-81

245

Sotnikov A.P., Shabaldina N.V., Gromov M.L. Experiments on Parallel Composition of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 3, 2017, pp. 233-246.

[13].

[14].

[15].

[16].
[17].

246

O.B. KongparseBa, H.B. Esrymenko, A.P. Kapajuu. Penienue aBToMaTHBIX ypaBHEHUI
JUISL BPEMEHHBIX aBTOMAaTOB OTHOCUTENBHO MNapamiesnbHoi kommnosunuu. Tpynsr UCII
PAH, tom 26, BeIm. 6, cTp. 85-98

Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed
finite state machines with outputs delays and timeouts: work-in-progress. Cucremuas
unpopmatrka, Ne 8, 2016, pp. 33-42.

I'pomos M. JI., lllabanguna H. B. [MocTtpoenne kackagHO# mapauienbHONH KOMIIO3UIIUN
BPEMEHHBIX aBTOMaTOB B balm-ii. MogenupoBanne u aHanu3 WHPOPMAIIHOHHBIX
cuctem, T. 23, No 6 (2016), ctp. 699-712.

http://www.uppaal.com/ (gata nocrymna 21.04.2016)

N. Shabaldina, M. Gromov. FSMTest-1.0: a manual for researches. Proceedings of IEEE
East-West Design & Test Symposium (EWDTS’2015). Ukraine, Kharkov:
SCITEPRESS, 2015, pp. 216-219.

