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Abstract. Elegant syntax of the Ruby language pays back when it comes to finding bugs in 

large codebases. Static analysis is hindered by specific capabilities of Ruby, such as defining 

methods dynamically and evaluating string expressions. Even in dynamically typed 

languages, type information is very useful as it ensures better type safety and more reliable 

checking whether the called method is defined for the object or whether the arguments of the 

correct types are passed to it. One may annotate the code with YARD (Ruby documentation 

tool) to declare the input and output types of methods or even declare methods that are added 

dynamically. These annotations improve the capabilities of tooling such as code completion. 

This paper reports a new approach to type annotations generation. We trace direct method 

calls while the program is running, evaluate types of input and output variables and use this 

information to derive implicit type contracts. Each method or function is associated with a 

finite-state automaton consisting of all variants of typed signatures for this method. An 

effective compression technique is applied to the automaton to reduce the cost of storage and 

allows to display the collected information in a human-readable form. The exhaustiveness of 

the contract defined by the generated automaton depends on the diversity of the traced 

method usages. Therefore, it is also important to be able to merge all the automatons received 
from users into one, which is further covered in this paper. 
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1. Introduction 

Developers suffer from time-consuming investigations when trying to understand 

why a particular piece of code does not work as expected. The dynamic nature of 

Ruby allows for great possibilities, which has its drawback: the codebase as a whole 

becomes entangled and investigations become more difficult compared to statically 

typed languages like Java or C++ [1]. Another downside of its dynamic features is a 

drastic reduction in static analysis performance due to inability to resolve some 

symbols reliably. Consider the dynamic method creation which is often done with 

define_method call. Names and bodies of dynamically created methods may be 

calculated at runtime [2]. The following code dynamically adds active?, inactive? 

and pending? methods to the User class: 
 class User 
    ACTIVE = 0 
    INACTIVE = 1 
    PENDING = 2 

 

    attr_accessor :status 

 

    def self.states(*args) 
      args.each do |arg| 
        define_method "#{arg}?" do 
          self.status == User.const_get(arg.upcase) 
        end   
      end 
    end 
    states :active, :inactive, :pending 
  end 

One of the possible workarounds to get information about types for such difficult-

to-analyze syntactic constructions is using code documentation tools such as RDoc 

or YARD. @!method annotation defines a method object with a given signature. 

@param and @return annotations may help to define the actual types, but they 

have several drawbacks too: 
 the type system used for documenting attributes, parameters and return 

values is pretty decent, however, it is not clear how to define relations 

between the types. For example, operator []= for array usually returns the 

same type as the second arg taking any type so in YARD this will look like 

@param value [Object], @return [Object] which is not really helpful, 

because all classes in Ruby are inherited from the Object and such 

annotation does not give any additional information about the method. 
 from usability perspective, such documentation in some way contradicts 

the purpose of Ruby to be as short, natural and expressive as possible. 
The proposed approach is inspired by the way people tackle this problem manually: 

one may run or debug the program to inspect the needed info about the code they 

are investigating. This suggests that collecting direct input and output types of all 

method dispatches during the program execution with postprocessing and 
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structuring of this data may be considered as a way to automate manual 

investigations. As a result, it will make up implicit type annotations. As the process 

is automated, one can retrieve a lot of information about the executed code in the 

whole project. 
Since the quality of the result highly depends on the code coverage of the programs 

run during the data collection, it is important to be able to merge the result 

annotations built for the same methods called from different places, projects and 

even users. These annotations also could be stored in a public database to be shared 

and reused by different users in order to maximize the coverage of the analyzed 

code and hence the quality of the generated contracts. 
Two main contract generation stages can be distinguished: 

 During the first stage, the information about called methods and their input 

and output types is collected throughout the script execution. It is very 

important to collect the necessary information as quickly as possible not to 

keep users waiting for script completion much longer compared to regular 

execution. To achieve this, we implement a native extension which 

receives all the necessary information directly from the internal stack of the 

virtual machine instead of using the standard API provided by the 

language. This stage is described in Section 3. 
 During the second stage, the data obtained in the first stage is structured, 

reduced to a finite-state automaton and prepared for further use in code 

insight. This storage scheme provides the ability to quickly obtain a regular 

expression that is easily perceived by a human. This stage is described in 

Section 4. 
The generated implicit annotations can be built into the static analysis tools [3] to 

improve existing and provide additional checks and code completion suggestions. 

This stage is described in Section 5. 

2. Related works 

In Static Analysis of Dynamic Languages [7], static analysis techniques for 

dynamically and statically typed languages are compared. The author notes that the 

attributes of dynamically typed languages such as flexibility and expressiveness 

limit the availability of tool-support for those languages. The paper addresses the 

main problems of analyzing code written in a language with dynamic typing: 

particularly, the construction of developer tools is difficult due to the lack of static 

type systems, therefore, many bugs are not discovered until run-time. The use of 

static analysis, and in particular whole program dataflow analysis, allow static 

reasoning about programs written in these languages without changing their nature 

or imposing unrealistic restrictions on the programmers. 
In addition, the article mentions the technique called Use Analysis. “Use Analysis: 

A heuristic for recovering missing dataflow facts, due to missing library code, by 
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observing how applications objects are used in the application code.” An example of 

such a heuristic is the approach to be described in this article. 
For Ruby, as for most dynamically typed languages, there are tools for source code 

analysis, but they are not capable of statically identifying all errors associated with 

type mismatch. Here are some of them: 
 Rubocop [4] — A Ruby static code analyzer, based on the community-

driven Ruby style guide, but it does not allow actual error detection. 
 Ruby-lint — A tool for detecting syntax errors, such as undeclared 

variables, an invalid argument set for calling a method, or unreachable 

sections of code. 
 Diamondback Ruby [5] — an extension to Ruby that aims to bring the 

benefits of static typing to Ruby. However, at the moment, it is impossible 

to analyze even the standard Ruby library. 

3. Collecting information about method calls 

3.1 Calls structure 

Method parameters in Ruby have the following structure: 
def m(a1, a2, ..., aM,                  # mandatory(req) 
      b1=(...), ..., bN=(...),       # optional(opt) 
      *c,                           # rest 
      d1, d2, ..., dL,             # post 
      e1:(...), ..., eK:(...),    # keyword 
      **f,                       # keyword_rest 
      &g)                       # block 

 

An example of calling this method: 
m(11, 12, 21, 22, 1, 2, 3, '1', '2', e1: 1, e2: 2, e3: 3) {...} 
# a1   a2   b1   b2   ---c----    d1    d2   e1       e2       f        g 

TracePoint is an API allowing to hook several Ruby VM events like method calls 

and returns and get any data through Binding, an object which encapsulates the 

execution context (variables, methods) and retains this context for the future use. 
Consider a simple Ruby method declaration and handlers set for :call and :return 

events. 
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def foo(a, b = 1) 
  b = '1' 
end 

 

TracePoint.trace(:call, :return) do |tp| 
  binding = tp.binding 
  method = tp.defined_class.method(tp.method_id) 
  p method.parameters 
  puts tp.event, (binding.local_variables.map do |v| 
    "#{v}->#{binding.local_variable_get(v).inspect}" 
  end.join ', ') 
end 

 

foo(2) 

 

The execution output will be: 

 

[[:req, :a], [:opt, :b]] 
call 
a->2, b->1 
[[:req, :a], [:opt, :b]] 
return 
a->2, b->"1" 

On each method call, the following information is to be obtained: 
 method name 
 method receiver class 
 arity (names and types of parameters) 
 types of arguments and return type, hereinafter “raw type tuple” 
 name and version of gem (ruby library) in which the method was declared 
 location of method declaration 

3.2 Unspecified arguments  

Code analysis often handles direct method calls, so in order to calculate the return 

type it is important to distinguish which arguments were directly passed to the 

method by the user, and which were assigned the default values. 
Let the following expression occur during the code analysis: a, b, c = foo, 

foo(‘1’), foo(1), and the following two contracts be generated: Int → Int, 

String → String. If the method cannot be statically analyzed, then we cannot select 

a contract to apply to the method call without arguments. 
Note that default values are assigned to unspecified optional arguments before the 

:call event is triggered. Therefore, with the standard API, it is impossible to 

calculate which arguments were passed to the method, and which were not. This 

poses a problem because it renders detection of the default value types impossible 

and, therefore, disables the calculation of the expected return type of calls with any 
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optional parameters unspecified. However, one can build a native extension for the 

Ruby VM[2] and get this information from an internal stack. 
Consider a simple Ruby method with an optional parameter and on appropriate 

bytecode. 
def foo(a, b=42, kw1: 1, kw2:, kw3: 3) 
    #... 
end 

  

foo(1, kw1: '1', kw2: '2') 
== disasm: #<ISeq:<compiled>@<compiled>>============ 
0000 trace            1 
0002 putspecialobject 1 
0004 putobject        :foo 
0006 putiseq          foo 
0008 opt_send_without_block <callinfo!mid:core#define_method, argc:2, 
ARGS_SIMPLE> 
0011 pop 
0012 trace            1                                                
0014 putself           
0015 putobject_OP_INT2FIX_O_1_C_ 
0016 putstring        "1" 
0018 putstring        "2" 
0020 opt_send_without_block <callinfo!mid:foo, argc:3, kw:[kw1,kw2], 
FCALL|KWARG> 
0023 leave 
== disasm: #<ISeq:foo@<compiled>>=================== 
... 

The instruction number 0020, which calls the method foo, has information 

characterizing the number of passed arguments and the list of passed named 

arguments. Now we need to find a bytecode instruction for the current method 

dispatch. It is necessary to find the caller control frame and the last executed 

instruction in this frame. This instruction will correspond to the call of the method 

that we are interested in. 
The big disadvantage of this approach is that the calculation of the full execution 

context is a time-consuming operation. But later we will only need information 

about a small part of it. Namely: types of arguments, types and names of method 

parameters. Creating a native extension for the Ruby VM, which will receive 

information about the method name directly from YARV instruction list (Fig. 1), 

will help us to receive information about argument types directly from the internal 

stack. 
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Fig. 1. YARV’s internal registers. 

4. Tranforming raw call data into contracts 

A huge amount of raw data received from the Ruby process must be processed and 

structured so that it can be easily used and perceived. In our approach, each traced 

method is associated with a finite-state automaton. This storage structure allows to 

quickly add raw type tuple obtained from the Ruby process. It can be also easily 

reduced to a human-readable regular expression. 

 

Fig. 2. Example of generating a non-minimized automaton. 
In each automaton, there are a single starting vertex, from which the signature 

begins to be read and a single terminal vertex, in which all edges corresponding to 

the return types enters. Words obtained by concatenating tuples and corresponding 

output types are consistently added to the automaton. 
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Algorithm 1. Adding a tuple to the automaton 

Then, the minimization algorithm [7] is applied to the automaton, but it is slightly 

modified for the automaton of this type (Alg. 2). Note that all the tuples added to the 

automaton have the same length, so the resulting automaton has a layered structure 

based on the distance from the starting vertex. And all the edges emerging from the 

vertices of the i-th layer go to the vertices of i+1-st layer. Note that, after adding a 

signature to a minimized automaton, each added vertex can be combined only with 

the vertex of its level (Fig. 3). 
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Algorithm 2. Automaton minimisation 

 

Fig. 3. Joining vertices 
Quite often there are situations where types of two or more arguments of the method 

always coincide or the type of the result coincides with the type of one of the 

arguments. Consider method equals as an example.  

 
While adding the next transition from the vertex to the automaton, let’s compare the 

symbol of the transition we want to add with all the previous symbols of the current 

tuple. In case there is at least one match, instead of a regular edge with a type 

symbol, edge with a bit mask is added. The length of this mask equals to the ordinal 

number of the current type within the tuple decreased by 1. i-th bit is 1 iff the i-th 

type in the tuple equals to the type to be added (Fig. 4). 
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Fig. 4. Automaton with counted bit masks 
When reading the signature, each following type is compared to the previous 

signature types and if a nonzero mask is obtained, one goes through the transition 

with the mask received. 

 

Algorithm 1'. Adding a tuple to the automaton with masks 
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Automata received from different users need to be merged. The following algorithm 

is used for this: 

 

Algorithm 3. Automatons merge 

In Ruby, Duck Typing [8] is quite heavily used. As a consequence, variables of 

various types that implement a set of methods can be passed as arguments to a 

method. Hence, many multiple edges corresponding to these classes appear in the 

automaton. These multiple edges can be replaced by one edge containing 

information about the interface that all these classes satisfy. Then, to jump on this 

edge, the next type from the signature must implement this interface. In case this 

common interface is empty on the edge, it is enough to write the type Object, since 

it is the parent class for all objects. 

5. Using of contracts in static analysis algorithms 

The contract is used to calculate the type returned when the method is called with a 

certain set of arguments. It is worth noting that the types of arguments are not 

always uniquely defined. Sometimes there is a set of types to which the variable 

may belong. To calculate the type returned by the method, it is necessary to go 

successively along the edges of the automaton calculating a set of vertices reachable 

by reading some sequence of types. The unspecified optional arguments types are 

imitated with a special non-alphabetic character so that the length of a tuple is lower 

than the automaton height by 1. 



N.Y. Viuginov, V.S. Fondaratov. Automated Type Contracts Generation in Ruby. Trudy ISP RAN/Proc. ISP RAS, vol. 

29, issue 4, 2017, pp. 7-20. 

18 

 

Algorithm 4. Output type calculation 

The generated contracts complement the type selection system because they allow 

to calculate the types returned from methods which were not successfully analyzed 

using standard tools. This expands the class of variables for which it is possible to 

statically compute a type. 
The collected information for the methods makes it possible to significantly 

accelerate the existing control flow analysis because the methods for which a 

sufficiently representative contract is generated do not require additional analysis. 

Contracts allow to extend the applicability of some of the features that are supported 

in most modern IDEs. The functions considered are applicable to method calls for 

which it was possible to select the class of the object to which they were applied and 

for this class there is a contract corresponding to the method with that name and 

configuration of parameters. Functions in which contracts are applied: 
 Go To Declaration/Find Usages. At the execution time information about 

method declaration was collected. This information can be used for 

navigation from method call to declaration and vice versa. 
 Autocompletion. A list of methods implemented for an object can be 

supplemented with methods for which the contract was found. 

 ’Incorrect method arguments’ Inspection. Information about the method 

parameters can be used to detect incorrect calls. 

6. Conclusion 

The paper describes the approach to the generation of implicit type contracts. This 

approach provides information containing type signatures of methods that cannot be 

obtained by static analysis using the source code given it is possible to understand in 

which library the method was declared and to resolve the method receiver. This 

approach is useful for analyzing programs which heavily utilize dynamic features 

like dynamic methods creation or when there are complex syntactic constructions in 
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methods implementations. In addition, this approach can be applied to other 

languages with dynamic typing, such as Python or JavaScript. 
Several problems remain unsolved, such as Duck Typing and handling an 

ambiguous resolve of the argument type in a static analysis. 
The problem with duck typing is that, during the execution of the program, it is 

impossible to save all the methods implemented for the object. Therefore, it is 

difficult to find the largest common interface for a group of classes. 
The problem with arguments with types ambiguous according to the static analysis 

is that they cannot be read in the automaton. 
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Аннотация. Элегантный синтаксис языка Ruby заметно усложняет поиск ошибок в 

больших кодовых базах. Статический анализ усложняется специфическими 

возможностями языка, такими как динамическое создание методов и исполнение 

строковых выражений. Даже в языках с динамической типизацией информация о типах 

важна, так как она позволяет улучшить типобезопасность и производить более 

надёжные статические проверки того, определён ли метод для объекта и передан ли 

метода корректный набор аргументов. Одним из путей решения проблемы является 

использование YARD нотаций. Они позволяют задокументировать входные и 

выходный типы методов или даже декларировать методы, добавляемые динамически. 
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Такие аннотации позволяют улучшить анализ кода и автодополнение. В статье 

описывается новый подход к генерации типовых аннотаций. Мы отслеживаем 

непосредственные вызовы метода во время исполнения программы и сохраняем типы 

аргументов и выходной тип. На основе собранной информации для каждого метода 

строится неявная типовая аннотация. Каждому автомату сопоставляется конечный 

автомат, составленный из различных типовых сигнатур метода. К автомату 

применяется эффективный алгоритм минимизации с целью снизить затраты на 

хранение и позволяет привести автомат к виду, который может быть легко представлен 

в виде регулярного выражения. В сгенерированном автомате учитывается только та 

функциональность метода, которая была покрыта программой, которую исполнил 

пользователь. Поэтому в подходе предусмотрено объединение автоматов, полученных 

у разных пользователей с целью увеличения репрезентативности и покрытия 
функциональности метода. 
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