Using Interface Patterns for Compositional
Discovery of Distributed System Models*

R.A. Nesterov <ranesterov@edu.hse.ru>
I.A. Lomazova <ilomazova@hse.ru>
National Research University Higher School of Economics,
20 Myasnitskaya Ulitsa, Moscow, 101000, Russia

Abstract. Process mining offers various tools for studying process-aware information
systems. They mainly involve several participants (or agents) managing and executing
operations on the basis of process models. To reveal the actual behavior of agents, we can use
process discovery. However, for large-scale processes, it does not yield models, which help
understand how agents interact since they are independent and their concurrent
implementation can lead to a very sophisticated behavior. To overcome this problem, we
propose interface patterns, which allow getting models of multi-agent processes with a clearly
identified agent behavior and interaction scheme as well. The correctness of patterns is
provided via morphisms. We also conduct a preliminary experiment, results of which are
highly competitive compared to the process discovery without interface patterns.

Keywords: Petri nets; interface patterns; synchronization; composition; morphisms; process
discovery; multi-agent systems; distributed systems.

DOI: 10.15514/ISPRAS-2017-29(4)-2

For citation: Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional
Discovery of Distributed System Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4,
2017, pp. 21-38. DOI: 10.15514/ISPRAS-2017-29(4)-2

1. Introduction

Process mining is the relatively new direction in studying process-aware
information systems. They include information systems managing and executing
operational processes, which involve people, applications and information resources
through process models [1]. Examples of these systems include workflow
management systems, business process management systems, and enterprise

This work is supported by the Basic Research Program at the National Research University
Higher School of Economics and Russian Foundation for Basic Research, project No.16-01-
00546.

21

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

information systems. The underlying interactions among participants (also called
agents) of process-aware information systems are intrinsically distributed
multiagent systems. An agent acts autonomously, but it can interact with the others
via shared resources, restrictions, and other means. Process mining helps to extract a
model of this system for further study from a record of its implementation called an
event log. However, extracted models are hard for analysis since there might be
complex interactions among process participants the number of those can be
significant.

In this paper, we propose a compositional approach to address this problem. Given
an event log of a distributed system, we can filter it by agents and mine a model of
each agent. Then, agent models can be composed to get a complete model of a
multi-agent distributed system, which might be simulated. Composing agent models
allows us to obtain more structured models compared to models extracted from
complete logs since the behavior of an agent can be clearly identified. We compose
agent models via interface patterns, which describe how they intercommunicate.
This approach was presented at TMPA-2017 [2], the conference proceedings will be
available later. The formal proof of the composition correctness is based on using
net morphisms [3]. Moreover, interface patterns allow us to inherit deadlock-
freeness and proper termination from agents by construction.

We conduct a preliminary experiment on using one interface pattern for mining
multi-agent models. The outcomes are evaluated with the help of conformance
checking quality dimensions [1, 4] and complexity metrics proposed in [5].

This paper is structured as follows. The next section provides an overview of
process discovery and compositional approaches. In Section 3 we introduce basic
terms which are used in the paper. Section 4 shows a general description of the
compositional approach to process discovery. Section 5 briefly introduces how we
compose agent models using interface patterns and net morphisms. In Section 6 we
describe the preliminary experiment and analyze results.

2. Related Work

There exist three types of process mining, namely discovery, conformance, and
enhancement. Process discovery produces a process model out of an event log — a
record of implemented activities. Existing discovery approaches can yield a model
in a variety of notations including Petri nets, heuristic nets, process trees, BPMN,
and EPC. Petri nets are the most widespread process model representations
discovered from event logs. Conformance checking is used to check whether a
discovered model corresponds to an input event log and to identify probable
deviations. The main idea of enhancement is to improve existing processes using
knowledge of actual processes (usually denoted AS-IS) obtained from event logs.
Process discovery offers several methods to be used for constructing models from
event logs. One of the first and the most straightforward discovery approach is a-
algorithm, which identifies ordering relations among activities in logs, but it has
severe usage limitations connected with cycles and the overall quality of obtained
22

Hecrepos P.A., Jloma3osa .A. ABTOMaTH3MPOBaHHbIH KOMIIO3UIIMOHAIBHBII CHHTE3 MOZIENICH pacTpeieIeHHbIX
CHCTEM C IOMOIIBIO TaTTepHOB uHTepdeiicos. Tpyou UCIT PAH, 2017, Tom 29, Bbim. 4, ctp. 21-38.

models [1]. It has several refined versions and improvements, for example [6], but
there are other more sophisticated and efficient discovery algorithms. S. Leemans et
al. [7] has proposed inductive miner allowing to extract process models from logs
containing infrequent or incomplete behavior as well as dealing with activity
lifecycle when there are separate actions of start and finish for each activity. Apart
from that, inductive miner always produces well-structured models in the form of
Petri nets. HeuristicsMiner is another process discovery algorithm proposed by A.
Weijters et al. [8]. It can process event logs with a lot of noise (excessive activities)
and also deals with infrequent process behavior. HeuristicsMiner uses intermediate
casual matrices and produces heuristics net, which can easily be converted into Petri
nets and applied for other notations including EPC, BPMN, and UML. S. van Zelst
et al. [9] proposed the approach to process discovery based on integer linear
programming and theory of regions. Their algorithm can produce Petri nets with
complex control flow patterns, and its recent improvements guarantee the structural
correctness of discovered models. C. Gunther and W. van der Aalst have proposed
adaptive fuzzy mining approach [10] to deal with unstructured processes extracted
from event logs since they can produce different abstractions of processes
distinguishing “important” behavior.

Since state-of-the-art process discovery algorithms can deal with complex process
behavior, the other problem is to obtain models that are appropriate concerning their
structure. A good process model is readable and well-structured, i.e. there is no
redundant elements or unnecessary structural complications. There is a so-called
continuum of processes ranging from highly structured processes (Lasagna models)
to unstructured processes (Spaghetti models) [1]. The problem of obtaining well-
structured models is extensively studied in the literature. Researchers offer different
techniques to improve model structure [11], and to produce already well-structured
process models [12, 13, 14]. In the case of multi-agent and distributed systems using
well-structured models should also allow us to identify agent behavior clearly for
the model understandability improvement.

We suggest discovering models of agents independently and then composing them
together to produce a structured multiagent system model with the clearly visible
behavior of each agent. Several compositional approaches for process discovery
have been proposed. In [15] A. Kalenkova et al. have shown how to obtain a more
readable model from an event log by decomposing extracted transition systems. A
special technique to deal with cancellations in process implementation and to
produce clear and structured process models which can contain cancellations have
been studied in [16]. Also, in [17] authors have proposed a technique for
compositional process discovery based on localizing events using region theory to
improve overall quality of discovered models.

Correct coordination of system components is an error-prone task. Their interaction
can generate complex behavior. The majority of process discovery tools produce
Petri nets, and a large amount of literature has investigated the problem of
composing Petri nets. They can be composed via straightforward merging of places

23

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

and transitions [18], but the composition result will not preserve component
properties. One of the possible ways to achieve inheritance of component behavioral
properties is to use morphisms [19]. Special constructs for composing Petri net
based on morphisms were studied in [3, 20, 21]. The key idea of this approach is
that distributed system components refine an abstract interface describing the
interactions between them. In [22] I. Lomazova has proposed a compositional
approach for a flexible re-engineering of business process by using a system of
interacting workflow nets. There also exists a several techniques for compositional
synthesis of web services [23].

However, in [24] R. Hamadi and B. Benatallah have proposed an algebraic
approach to the regular composition of services. These compositional approaches do
not let specify the explicit order of inner behavior of two interacting components.
This situation is schematically represented in Fig. 1. Having two discovered
component models with always executable actions A and B, we want to require that
they interact in a way that A is implemented before B. This way of
intercommunication is also shown in the form of Petri net.

A

Sinves
Ty T

Modeling components Interaction scheme

Fig.1. Defining relations on inner actions of components

In [2] we have proposed a solution to this problem and two other patterns for
composing two interacting components. The obtained composition inherits
properties, such as deadlock-freeness and proper termination, from components.

In this paper, we show how these patterns can be used for discovering a multi-agent
system model from an event log in a compositional way. Applying compositional
patterns allows us to obtain a more readable model improving time complexity due
to the parallelization of process discovery.

We can assess process models obtained from event logs against four standard
quality dimensions — fitness, precision, generalization, and simplicity [4]. Fitness
identifies how accurately an extracted model can replay a source event log.
Precision indicates a fraction of a behavior allowed by the model but not seen in the
event log. Generalization tries to measure the extent to which the model will be able
to implement the behavior of the process unseen so far in the log. Simplicity focuses
on assessing structural complexity alongside with other graph characteristics — a
number of elements and a structuredness measure [5].

24

Hecrepos P.A., Jloma3osa .A. ABTOMaTH3MPOBaHHbIH KOMIIO3UIIMOHAIBHBII CHHTE3 MOZIENICH pacTpeieIeHHbIX
CHCTEM C IOMOIIBIO TaTTepHOB uHTepdeiicos. Tpyou UCIT PAH, 2017, Tom 29, Bbim. 4, ctp. 21-38.

3. Preliminary Definitions

3.1. Petri Nets
We use Petri nets [18] to represent agent models and an interaction scheme called
interface.
Definition 1: A multiset m over a set S is a function m: S — NuU{0}. Let m and m,
be two multisets, mySm iff VSES: my(s)<m(s). Also, VSES: (m+mg)(s)=m(s)+mo(s)
and (m—mg)(s)=max(0, m(s), my(s)).
Then, an ordinary set is a multiset in which distinct elements occur only once.
Definition 2: A Petri net is a bipartite graph N=(P, T, F, mo, L), where:

1. P={py py ..., pn} — a finite non-empty set of places.

2. T={t, t5 ..., tn} — afinite non-empty set of transitions, PNT=0@.
3. F S(PxT)U(T xP) — a flow relation.

4. mq: P — NU{0} — a multiset over P, initial marking.

5

L: T — AuU{r} —a labeling for transitions, where t is a name for silent
transitions.

Pictorially, places are shown as circles, and transitions are shown as boxes (silent
transitions are depicted by black boxes). A flow relation is depicted by directed arcs
(see Fig. 2).

Let X=PUT. We call a set x={yeX | (y,x)€F} a preset of x and a set x'={yeX |
(x,y)EF} —a postset of x. Also X’="xU X" is a neighborhood of x.

The behavior of Petri nets is defined by the firing rule, which specifies when an
action can occur, and how it modifies the overall state of the system.

A marking m: P — NU{0} enables a transition t, denoted m[t), if ‘t<m. The t firing
at m leads to m’', denoted m[t)m’, where m'=m-"t+t. When Vt€T and VweT*,
m[tw)m'=m[t)m"[w)m, w is then called a firing sequence. We denote a set of all
firing sequences of a net N as FS(N).

O

Fig.2. A Petri net with silent transitions

e

We call a marking m reachable from mg if IweFS(N): mo[tym. A set of all markings
reachable from mq is denoted by [mg). So, [m) is a set of all markings reachable from
m. A net N is safe if VpeP, Ymge[m): m(p)<1.

25

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

A marking my is called final if vpem; : p'=@. A net N is deadlock-free if VteT
aAme[mg): mft) and m#m;. A net N terminates properly if a final marking is
reachable from all reachable states Yme[mp): m¢ €[m).

3.1. Event Logs

Process discovery techniques allow generating process models from event logs
containing information on executed actions. In a simple case, event logs may
contain actions names and a corresponding implementation order. We can augment
this record with a timestamp (when an action occurs) and executor (what agent
implements it).

Definition 3: Let IV be a set of action names and € be a set of agent names. An
activity is a triple (n, e, t), where neV, e€&, and t corresponds to a timestamp. The
set of all activities is denoted by Act. A trace cEAct” is a sequence of activities. An
event log L is a multiset over Act®, Lem(Act™).

Different traces can be combined to form a case corresponding to a process
implementation scenario. XES is a standard representation format adopted by IEEE
[25] for logging events and processing them via process mining tools.

Table 1. A fragment of an event log

Trace ID Action ID Timestamp Executor
Trace 1
ty 2017-03-01T17:23:40 Agent 1
e, 2017-03-01T19:12:05 Agent 2
Trace 2
e, 2017-03-02T21:13:47 Agent 2
ty 2017-03-04T21:14:40 Agent 1

4. Compositional Process Discovery

4.1. General Outline

To support the compositional discovery of models from event logs generated by
multi-agent systems, we assume a record of each action has a corresponding label of
an agent implementing it. The procedure of the compositional synthesis includes
several steps to be implemented:

1. Capturing a complete event log L from multi-agent system operation.

2. Filtering the event log L by agent labels and producing a set of event logs
L. (|Le|=|&]), each trace consists of actions implemented by e only.

26

Hecrepos P.A., Jloma3osa .A. ABTOMaTH3MPOBaHHbIH KOMIIO3UIIMOHAIBHBII CHHTE3 MOZIENICH pacTpeieIeHHbIX
CHCTEM C IOMOIIBIO TaTTepHOB uHTepdeiicos. Tpyou UCIT PAH, 2017, Tom 29, Bbim. 4, ctp. 21-38.

3. Discovering a model for each agent separately from the set of event logs
Le;

4. Defining interface pattern which describes how agents intercommunicate;
5. Composing agent models and producing a multi-agent system model.

The step of defining interface pattern for agent interaction is implemented manually
so far. We rely on an expert view on how agents should intercommunicate.

4.2. Software Overview

A wide range of process discovery tools is implemented within the context of the
open-source project ProM [26] continuously improving nowadays. However, there
also exist many commercial tools using process mining approach to analyze and
improve business process. They include Disco [27], QPR ProcessAnalyzer [28],
mylInvenio [29] to name but a few. Contrary to ProM, they provide more business-
related solutions for process performance analysis and further improvement.

To process event logs we use the advanced ProM plugin GENA [30] which allows
to generate event logs with timestamps and originator labels as well as to augment
logs with artificial events representing noise.

5. Composing Petri Nets via Interface Patterns

This section provides a brief introduction to our approach to Petri net composition
using interfaces and net morphisms.

5.1. Composing Petri Nets via morphisms
The notion of w-morphism on Petri nets was first introduced in [3] for elementary
net systems and can be applied for safe nets.
Definition 4: Let N; = (P;, Ti, F;, m¢', L;) be two safe Petri nets for i=1,2. The -
morphism is a total surjective map ¢: Ny — N, such that:

1. (P(Pl):PZ-

2. VHETL @(t)ET, = o(t) ="o(t) A o(ty) =o(ty) "
3. VHLET: ¢(t)€P, = o(ty) = {o(t)}-
4. Vp;€P1: mo'(py) > 0 = mo*(p(ps)) = Mo'(pa)-

Figure 3 helps to explain requirements 2 and 3 of the definition. i.e. how transitions
of N; can be mapped onto places and transitions of N,.

To use morphisms for Petri net composition, we need to define morphisms from
agent nets towards an interface net, which describes how they intercommunicate.
Then we merge transitions having common labels and images. Figure 4 shows how
two Petri nets are composed via o-morphisms represented as dotted arrows.

27

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

Mapping transition A onto transition A’ Mapping transition A onto place
Fig.3. Transition map options for w-morphism

Interface

: 4
S

Composition

Fig.4. Composing two Petri nets via w-morphism

As it was proved in [19], the use of morphisms allows us to preserve properties of
interacting components in a composed process net. A composition obtained via ®-

28

Hecrepos P.A., Jloma3osa .A. ABTOMaTH3MPOBaHHbIH KOMIIO3UIIMOHAIBHBII CHHTE3 MOZIENICH pacTpeieIeHHbIX
CHCTEM C IOMOIIBIO TaTTepHOB uHTepdeiicos. Tpyou UCIT PAH, 2017, Tom 29, Bbim. 4, ctp. 21-38.

morphisms is deadlock-free and properly terminates iff source component nets and
interface net are deadlock-free and terminate properly as well.

5.2. Compositional Interface Patterns

To facilitate Petri net composition, we use compositional patterns for typical
interface we have proposed in [2]. One of such patterns called the simple causality
is schematically shown in Fig. 1, and Fig. 5 provides its instantiation. A pattern
includes component and interface net which might be merged according to the
morphism composition rules if there is a need to produce a model for
comprehensive simulation.

o ¥

-
STV
-0

ofs

OO

Q
O8O 3@

O FO-B
-

(OH
O

Behaviour of agents Interface

Fig.5. Instantiating simple causality pattern
29

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

It also has to be mentioned that to preserve concurrency in the implementation of
interacting agents we expand interface nets with additional places and transitions
keeping them weakly bisimilar with original interfaces. Consequently, extended
interfaces allow us to obtain composition results with the clearly identified behavior
of each component.

Figure 5(b) shows how we have expanded interface net for this pattern. We use
expanded interfaces only for our inner purposes. The end user does not need to
know the underlying theoretical aspects of our approach.

6. Some Experimental Evaluation

In this section, we describe a preliminary experiment on using the simple causality
pattern for compositional process discovery. To test our approach we use artificial
event logs obtained from the instantiated simple causality pattern. Then we also
assess quality metrics of discovered models and provide a balanced consideration.

6.1. Processing Event Logs

Using GENA and the composition result obtained from the instantiated simple
causality pattern (see Fig. 5) we have generated the event log with 3000 traces.
Then we have filtered the initial log by executors using ProM. The obtained event
logs have the characteristics presented in Table 2. Generation results for Agent A
show bigger values due to cycles.

Table 2. Characteristics of event logs

LogL LogLs LoglLg

Number of traces 3000 3000 3000
Number of events 58466 34466 24000
Events per trace (min) 17 9 8
Events per trace (max) 43 35 8
Events per trace (mean) 19 11 8

6.2. Discovering a System Model from Log L

Figure 6 shows the fragment of the Petri net discovered from the event log L using
Inductive Miner and ProM. The behavior of agents is distinguished by colors.

30

Hecrepos P.A., Jloma3osa .A. ABTOMaTH3MPOBaHHbIH KOMIIO3UIIMOHAIBHBII CHHTE3 MOZIENICH pacTpeieIeHHbIX
CHCTEM C IOMOIIBIO TaTTepHOB uHTepdeiicos. Tpyou UCIT PAH, 2017, Tom 29, Bbim. 4, ctp. 21-38.

Fig.6. The fragment of the system model discovered from L

This discovered model is quite well-structured (constructed out of clear blocks) but
it does not allow to identify the behavior of different agents. That is why, it is hard
to yield the complete picture of agent intercommunication scheme.

6.3. Discovering and Composing Models from Logs Lyand Lg

Figure 7 shows the fragment of the composed Petri nets we have discovered from
the agent event logs L and Lg also using Inductive Miner and ProM. It has to be
mentioned that Petri nets discovered by Inductive Miner are always safe. Hence we
can apply the approach based on morphisms to compose separately discovered
models of agent behavior.

OO
(} +Q+ 4.(},“@*.#...

@ _.Q_, - B = -

Fig.7. The fragment of the composed system model discovered from L,and Lg

The merged model allows us to identify the behavior of agents clearly and how they
intercommunicate. Using morphisms guarantees inheritance of properties such as
deadlock-freeness and proper termination of agents by the entire net.

31

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

6.4. Analysis of the Experiment Results

ProM implementation of Inductive miner offers three configuration options:
1. event logs with infrequent behavior;

2. event logs with incomplete behavior;
3. event logs with lifecycle events (start/finish of events);
4. exhaustive k-successor algorithm.

We do not work with incomplete logs or with lifecycle logs for now. So, in our
experiment we have discovered models of system and agents shown in previous
subsections in accordance with options 1 and 4 and compared them using structural
process discovery metrics.

Table 3 provides the comparison of structural characteristics for the directly
discovered and composed system models. We have compared obtained models with
respect to the number of Petri net elements and structure metric which assess the
overall complexity of a model by breaking it into trivial constructs and assigning
weights to each reducing step. Models discovered with infrequent configuration are
denoted as INFR, models discovered with exhaustive configuration are denoted as
EXHS.

The experiment results show the increase in transition numbers because of adding
silent transitions. Compositional patterns obviously decrease a number of arcs,
compared to direct discovery, as long as we simplify agent intercommunication.
Composed models also preserve complex control flows as shown by structuredness
measure. Separately discovered agent models and their composition exhibit more
precise cycle discovery.

Table 3. Structural analysis of system models

Direct Composed
Source INFR EXHS INFR EXHS
Places 28 30 47 35 39
Transitions 27 44 46 40 41
Arcs 68 100 114 89 93
Structuredness 9360 240 496 872 1208

We have also conducted conformance checking for directly discovered and
composed models. As it was mentioned above, there are four standard quality
dimensions, namely fitness, precision, simplicity, and generalization. Simplicity is
analyzed above via structural analysis. We do not estimate generalization since there
are no complex cyclic or concurrent constructs to instantiate the simple causality
pattern. Table 4 shows values obtained for fitness and precision of discovered and
composed system models.

32

Hecrepos P.A., Jloma3osa .A. ABTOMaTH3MPOBaHHbIH KOMIIO3UIIMOHAIBHBII CHHTE3 MOZIENICH pacTpeieIeHHbIX
CHCTEM C IOMOIIBIO TaTTepHOB uHTepdeiicos. Tpyou UCIT PAH, 2017, Tom 29, Bbim. 4, ctp. 21-38.

Table 4. Quality analysis of system models

Direct Composed
Source INFR EXHS INFR EXHS
Fitness 1,0000 1,0000 0,9684 1,0000 1,0000
Precision 0,6992 10,3631 0,5508 0,5629 10,6232

Both discovered and composed system models preserve the appropriate level of
fitness, the composition does not block its preservation. What is more important,
using compositional patterns produces models with precision nearer to that of the
source model compared to direct discovery results. Composed models
approximately 30% more precise than discovered ones.

To sum up, we used the simple causality pattern to produce the model of the multi-
agent system. Assessment results showed that the composed models are highly
competitive with the models directly discovered from complete event logs in the
context of their relative structural complexity evaluations and conformance
checking results.

7. Conclusion and Future Work

In this paper, we have proposed the solution to the problem of discovering
structured models for the processes with several participants (agents). The key idea
is to automatically obtain the correct and complete process models from the separate
source models of its components. The interaction between agents is defined by
experts.

To prove the correctness of the composition we adopt the approach based on Petri
net morphisms. We refer to the compositional patterns proposed for the correct
synthesis of models for multi-agent processes. In the context of this work, we
conducted the preliminary experiment on using the simple causality pattern for
constructing the complete model from discovered agent models. The analysis of
experimental results (conformance and complexity) showed that composed models
are highly competitive compared to the models obtained directly. Moreover, our
compositional approach to process discovery allows producing models with the
clearly identified behavior of interacting agents.

We aim to continue developing of compositional patterns for typical interfaces and
providing experimental process discovery implementations for them using also real-
live event logs. Also, we will proceed with complex synchronization patterns with
relations on action sets and their correct combinations.

References

[1]. van der Aalst W.M.P. Process Mining: Discovery, Conformance and Enhancement of
Business Processes, 1st ed. Springer Publishing Company, Incorporated, 2011. DOI:
10.1007/978-3-642-19345-3.

33

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

2.

(3]

[4].

[5].

[6].

[7].

(8].

[9].
[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

34

Nesterov R.A., Lomazova |.A. Compositional process model synthesis based on
interface patterns. Communications in Computer and Information Science, 2017.
Bernardinello L., Mangioni E., Pomello L. Local state refinement and composition of
elementary net systems: An approach based on morphisms. Transactions on Petri Nets
and Other Models of Concurrency, 2013, vol. 8, pp. 48-70. DOI: 10.1007/978-3-642-
40465-8_3.

Buijs J.C.A.M., Dongen B., van der Aalst W.M.P. On the Role of Fitness, Precision,
Generalization and Simplicity in Process Discovery. Lecture Notes in Computer
Science, 2012, vol. 7565, pp. 305-322. DOI: 10.1007/978-3-642-33606-5_19.

Lassen K.B., van der Aalst W.M.P. Complexity metrics for workflow nets. Information
and Software Technology, 2009, wvol. 51, issue 3, pp. 610-626. DOI:
10.1016/j.infsof.2008.08.005.

Wen L., van der Aalst W.M.P., Wang J., Sun J. Mining process models with non-free-
choice constructs. Data Mining and Knowledge Discovery, 2007, vol. 15, issue 2, pp.
145-180. DOI: 10.1007/s10618-007-0065-y.

Leemans S.J.J., Fahland D., van der Aalst W.M.P. Discovering block-structured process
models from event logs containing infrequent behavior. Lecture Notes in Business
Information Processing, 2013, vol. 171, pp. 66-78. DOI: 10.1007/978-3-319-06257-0_6.
Weijters A.J.M.M., van der Aalst W.M.P., de Medeiros A.K.A. Process Mining with the
HeuristicsMiner Algorithm. BETA Working Paper Series, 2006, vol. 166, Einhoven
University of Technology.

van Zelst S.J., van Dongen B.F., van der Aalst W.M.P. ILP-based process discovery
using hybrid regions. CEUR Workshop Proceedings, 2015, vol. 1731, pp. 47-61.
Gunther C.W., van der Aalst W.M.P. Fuzzy mining — adaptive process simplification
based on multi-perspective metrics. Lecture Notes in Computer Science, 2007, vol 4714,
pp. 328-343. DOI: 10.1007/978-3-540-75183-0_24.

van der Aalst W.M.P., Gunther C.W. Finding structure in unstructured processes: The
case for process mining. ACSD '07 Proceedings of the Seventh International Conference
on Application of Concurrency to System Design, 2007, pp. 3-12. DOI:
10.1109/ACSD.2007.50

Buijs J.C.A.M. Flexible Evolutionary Algorithms for Mining Structured Process
Models. Ph.D. dissertation, Eindhoven University of Technology, 2014.

Smedt J.D., Weerdt J.D., Vanthienen J. Multi-paradigm process mining: Retrieving
better models by combining rules and sequence. Lecture Notes in Computer Science,
2014, vol. 8841, pp. 446-453. DOI: 10.1007/978-3-662-45563-0_26.

de San Pedro J., Cortadella J. Mining Structured Petri Nets For The Visualization Of
Process Behavior. SAC '16 Proceedings of the 31st Annual ACM Symposium on
Applied Computing, 2016, pp. 839-846. DOI: 10.1145/2851613.2851645.

Kalenkova A.A., Lomazova |.A., van der Aalst W.M.P. Process Model Discovery: A
Method Based on Transition System Decomposition. Lecture Notes in Computer
Science, 2014, vol. 8489, pp. 71-90. DOI: 10.1007/978-3-319-07734-5_5

Kalenkova A.A., Lomazova |.A. Discovery of Cancellation Regions within Process
Mining Techniques. Fundamenta Informaticae, 2014, vol. 133, issue 2-3, pp. 197-209.
DOI: 10.3233/F1-2014-1071.

van der Aalst, Kalenkova A., Rubin V., Verbeek E. Process Discovery Using Localized
Events. Lecture Notes in Computer Science, 2015, vol. 9115, pp. 287-307. DOI:
10.1007/978-3-319-19488-2_15.

Hecrepos P.A., Jloma3osa .A. ABTOMaTH3MPOBaHHbIH KOMIIO3UIIMOHAIBHBII CHHTE3 MOZIENICH pacTpeieIeHHbIX
CHCTEM C IOMOIIBIO TaTTepHOB uHTepdeiicos. Tpyou UCIT PAH, 2017, Tom 29, Bbim. 4, ctp. 21-38.

[18]. Reisig W. Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case
Studies. Springer, 2013, 145 p. DOI: 10.1007/978-3-642-33278-4.

[19]. Winskel G. Petri nets, morphisms and compositionality. Lecture Notes in Computer
Science, 1985, vol. 222, pp. 453-477. DOI: 10.1007/BFb0016226.

[20]. Bernardinello L., Monticelli E., Pomello L. On Preserving Structural and Behavioural
Properties by Composing Net Systems on Interfaces. Fundamenta Informaticae, 2007,
vol. 80, issue 1-3, pp. 31-47.

[21]. Bernardinello L., Pomello L., Scaccabarozzi S. Morphisms on Marked Graphs. CEUR
Workshop Proceedings, 2014, vol. 1160, pp. 113-127.

[22]. Lomazova I.A. Interacting Workflow Nets For Workflow Process Reengineering.
Fundamenta Informaticae, 2010, vol. 101, issue 1-2, pp. 59-70. DOI: 10.3233/F1-2010-
275.

[23]. Cardinale Y., Haddad J.E., Manouvrier M., Rukoz M. Web Service Composition Based
On Petri Nets: Review and Contribution. Lecture Notes in Computer Science, vol. 8194,
2012, pp. 83-122. DOI: 10.1007/978-3-642-45263-5_5.

[24]. Hamadi R., Benatallah B. A Petri Net-Based Model For Web Service Composition.
ADC*03 Proceedings of the 14th Australasian database conference, 2003, pp. 191-200.

[25]. XES (eXtensible Event Stream). Available at: http://www.processmining.org/logs/xes,
accessed 10.03.2017.

[26]. van Dongen B.F., de Medeiros A.K.A., Verbeek H.M.W., Weijters A.J.M.M., van der
Aalst W.M.P. The ProM Framework: A New Era in Process Mining Tool Support.
Lecture Notes in Computer Science, 2005, vol. 3536, pp. 444-454. DOI:
10.1007/11494744 _25.

[27]. Gunther C.W., Rozinat A. Disco: Discover your processes. CEUR Workshop
Proceedings, 2012, vol. 940, pp. 40-44.

[28]. Ailenei I.M. Process Mining Tools: A Comparative Analysis. Master’s thesis,
Eindhoven University of Technology, 2011.

[29]. BPM Tool — mylnvenio. Available: https://www.my-invenio.com, accessed 10.03.2017.

[30]. Shugurov I.S., Mitsyuk A.A. Generation of a Set of Event Logs with Noise. Proceedings
of the 8th Spring/Summer Young Researchers Colloquium on Software Engineering
(SYRCoSE 2014), 2014, pp. 88-95.DOI: 10.15514/SYRCOSE-2014-8-13.

35

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

ABTOMaTU3NPOBaHHbLIA KOMNO3ULIMOHANbHbLIA CUHTE3
Mopernen pacnpeaeneHHbIX CUCTEM C MOMOLLbIO
naTTepHoOB UHTepcencon

P.A. Hecmepos <ranesterov@edu.hse.ru>
H.A. Jlomazosa <ilomazova@hse.ru>
Hayuno-yuebnas nabopamopust npoyeccHo-opueHmupo8anHbix
ungopmayuonnvix cucmem (IIOUC),
Hayuonanvnwiii ucciedosamenvckuil ynusepcumem « Bolcuiast wikoaia 5KOHOMUKUY
101000, Poccus, e. Mockea, yn. Macrhuyxas, 0. 20

AunHotaumsi. CpeacTBa W METOIbI Process MIning mo3BOJSIOT HCCICIOBATh pasIHYHbBIC
ACIEKThI MPOLECCHO-OPHEHTHPOBAHHbBIX HH(GOPMaLOHHBIX ciucTeM. Kak mpaBuio, B paMkax
TaKUX CHCTEM HECKOJBKO HCIIONHHUTENEeH (areHToB) B3aHMMOAEHCTBYIOT APYT C IPYTOM.
TloBeneHne areHTOB, a Takke MEXaHM3MBI UX B3aMMOJECHUCTBHUS OIMCBHIBAIOTCS C ITOMOIIBIO
MoJierieid TporieccoB. JIJisi MOJETUPOBaHUs MPOIIECCOB MBI IPUMEHSEM OOBIKHOBCHHBIC CETH
Ierpu. Aunroput™bl process diSCOVery mo3BOJISIOT BOCCTAHOBHUTh MOJEIH PEaIbHOTO
MOBEJICHUsI areHTOB M3 JKypHaJla COOBITHH cucTeMbl. OJJHAKO B CiIydae MacIITaOHBIX CHCTEM
aHaNM3 B3aUMOJICHCTBHUS KaK MOBE/ICHUS OTACNIBHBIX areHTOB, TaK M BCEi CHCTEMBI B LIEJIOM
3aTpyIHUTENEH, TaK KaK MOTyJaeMble MOAEIH KPYTHOMACIITAOHBIX CHCTEM B OOJBIIHMHCTBE
cllydaeB KpalHE TpOMO3AKHE H IUIOXO 4YMTaeMble. [y pemeHdss 3TOH HpOOJIEMBI MBI
IpeJIaraéM UCIoIb30BaTh TAK HA3bIBAEMBbIC IMATTEPHBI HHTEP(HEHCOB, KOTOPHIE ONUCHIBAIOT,
KaK areHThl B3aMMOAEHCTBYIOT Apyr ¢ apyroM. C HX MOMOINBIO MONHAas MOJAEIb
MYJIBTHAareHTHOW CHCTEMBI MOXKET OBITh MOJy4YeHa IyTeM KOMITO3ULMH OTICIBbHBIX Mozeneit
areHToB. Kpome TOro, Mojenu MyJIbTHAreHTHBIX CHCTEM, ITOCTPOCHHBIC C HMPUMEHEHHEM
naTTepHoB MHTep(deiicoB, MO3BONSET JIETKO HMIACHTH(GUIMPOBATH IIOBEACHHE KaXJOTO
OTAENBHOTO areHTra. B 1emsx oOecreueHus KOPPEKTHOCTH IPUMEHEHUs] IaTTEPHOB
UHTEPQEHCOB MBI MPUMEHSIEM CIEIHAIbHbIE KOHCTPYKIMH Ha ceTax Iletpm — MOpGOHU3MEL
Pesynprarsl SKCIIepUMeHTa MO NMPUMEHEHHWIO TaTTepHa Ul KOMITO3HI[MOHAIBHOTO CHHTE3a
MOZENN MyJIbTHATEHTHONH CHCTEMBI, MPEJCTaBICHHBIE B padoTe, IIOKAa3ald IPHUPOCT
OCHOBHBIX METPUK KadecTBa IO CPABHEHUIO C MOJETAMH, ITOMy9aeMBIMH C HOMOIIBIO
CTaHIApPTHOTO MMOX0a Process discovery.

KiroueBble ciioBa: cetu HeTpI/I; MaTTCPHbI HHTep(beﬁCOB; CUHXpOHMU3alUsA; KOMIIO3UIIUS,
MOpq)I/ISMBI; H3BJICYCHUE NIPOLICCCOB; MYJIbTHAICHTHBIC CUCTEMBI; PaCIPCACIICHHBIC CUCTEMBI.

DOI: 10.15514/ISPRAS-2017-29(4)-2

Jass murupoBanus: Hecrepos P.A., JlomazoBa WM.A. ABTOMaTM3HpOBaHHBIN
KOMIIO3UIMOHATBHBI CHHTE3 MOJeNell paclpeeeHHBIX CHCTEM C MOMOIIBIO ITAaTTEPHOB
unrepdeiicos. Tpyowr UCII PAH, tom 29, Bem. 4, 2017 1., crp. 21-38 (Ha aHriHiicKOM
s3pike). DOI: 10.15514/ISPRAS-2017-29(4)-2

36

Hecrepos P.A., Jloma3osa .A. ABTOMaTH3MPOBaHHbIH KOMIIO3UIIMOHAIBHBII CHHTE3 MOZIENICH pacTpeieIeHHbIX
CHCTEM C IOMOIIBIO TaTTepHOB uHTepdeiicos. Tpyou UCIT PAH, 2017, Tom 29, Bbim. 4, ctp. 21-38.

Cnucok nutepaTtypbl

(1].

(2.

[3].

[4].

(5]

[6].

[71.

(8].

[9].
[10].

[11].

[12].

[13].

[14].

[15].

[16].

van der Aalst W.M.P. Process Mining: Discovery, Conformance and Enhancement of
Business Processes, 1st ed. Springer Publishing Company, Incorporated, 2011. DOI:
10.1007/978-3-642-19345-3.
Nesterov R.A., Lomazova |.A. Compositional process model synthesis based on
interface patterns. Communications in Computer and Information Science, 2017.
Bernardinello L., Mangioni E., Pomello L. Local state refinement and composition of
elementary net systems: An approach based on morphisms. Transactions on Petri Nets
and Other Models of Concurrency, 2013, vol. 8, pp. 48-70. DOI: 10.1007/978-3-642-
40465-8_3.
Buijs J.C.A.M., Dongen B., van der Aalst W.M.P. On the Role of Fitness, Precision,
Generalization and Simplicity in Process Discovery. Lecture Notes in Computer
Science, 2012, vol. 7565, pp. 305-322. DOI: 10.1007/978-3-642-33606-5_19.
Lassen K.B., van der Aalst W.M.P. Complexity metrics for workflow nets. Information
and Software Technology, 2009, wvol. 51, issue 3, pp. 610-626. DOI:
10.1016/j.infsof.2008.08.005.
Wen L., van der Aalst W.M.P., Wang J., Sun J. Mining process models with non-free-
choice constructs. Data Mining and Knowledge Discovery, 2007, vol. 15, issue 2, pp.
145-180. DOI: 10.1007/s10618-007-0065-y.
Leemans S.J.J., Fahland D., van der Aalst W.M.P. Discovering block-structured process
models from event logs containing infrequent behavior. Lecture Notes in Business
Information Processing, 2013, vol. 171, pp. 66—78. DOI: 10.1007/978-3-319-06257-0_6.
Weijters A.J.M.M., van der Aalst W.M.P., de Medeiros A.K.A. Process Mining with the
HeuristicsMiner Algorithm. BETA Working Paper Series, 2006, vol. 166, Einhoven
University of Technology.
van Zelst S.J., van Dongen B.F., van der Aalst W.M.P. ILP-based process discovery
using hybrid regions. CEUR Workshop Proceedings, 2015, vol. 1731, pp. 47-61.
Gunther C.W., van der Aalst W.M.P. Fuzzy mining — adaptive process simplification
based on multi-perspective metrics. Lecture Notes in Computer Science, 2007, vol 4714,
pp. 328-343. DOI: 10.1007/978-3-540-75183-0_24.
van der Aalst W.M.P., Gunther C.W. Finding structure in unstructured processes: The
case for process mining. ACSD '07 Proceedings of the Seventh International Conference
on Application of Concurrency to System Design, 2007, pp. 3-12. DOI:
10.1109/ACSD.2007.50
Buijs J.C.A.M. Flexible Evolutionary Algorithms for Mining Structured Process
Models. Ph.D. dissertation, Eindhoven University of Technology, 2014.
Smedt J.D., Weerdt J.D., Vanthienen J. Multi-paradigm process mining: Retrieving
better models by combining rules and sequence. Lecture Notes in Computer Science,
2014, vol. 8841, pp. 446-453. DOI: 10.1007/978-3-662-45563-0_26.
de San Pedro J., Cortadella J. Mining Structured Petri Nets for the Visualization of
Process Behavior. SAC '16 Proceedings of the 31st Annual ACM Symposium on
Applied Computing, 2016, pp. 839-846. DOI: 10.1145/2851613.2851645.
Kalenkova A.A., Lomazova I.A., van der Aalst W.M.P. Process Model Discovery: A
Method Based on Transition System Decomposition. Lecture Notes in Computer
Science, 2014, vol. 8489, pp. 71-90. DOI: 10.1007/978-3-319-07734-5_5.
Kalenkova A.A., Lomazova |.A. Discovery of Cancellation Regions within Process
Mining Techniques. Fundamenta Informaticae, 2014, vol. 133, issue 2-3, pp. 197-209.
DOI: 10.3233/F1-2014-1071.

37

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

[17].

[18].
[19].

[20].

[21].

[22].

[23].

[24].
[25].

[26].

[27].
[28].

[29].
[30].

38

van der Aalst, Kalenkova A., Rubin V., Verbeek E. Process Discovery Using Localized
Events. Lecture Notes in Computer Science, 2015, vol. 9115, pp. 287-307. DOI:
10.1007/978-3-319-19488-2_15.

Reisig W. Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case
Studies. Springer, 2013, 145 p. DOI: 10.1007/978-3-642-33278-4.

Winskel G. Petri nets, morphisms and compositionality. Lecture Notes in Computer
Science, 1985, vol. 222, pp. 453-477. DOI: 10.1007/BFb0016226.

Bernardinello L., Monticelli E., Pomello L. On Preserving Structural and Behavioural
Properties by Composing Net Systems on Interfaces. Fundamenta Informaticae, 2007,
vol. 80, issue 1-3, pp. 31-47.

Bernardinello L., Pomello L., Scaccabarozzi S. Morphisms on Marked Graphs. CEUR
Workshop Proceedings, 2014, vol. 1160, pp. 113-127.

Lomazova I.A. Interacting Workflow Nets For Workflow Process Reengineering.
Fundamenta Informaticae, 2010, vol. 101, issue 1-2, pp. 59-70. DOI: 10.3233/FI1-2010-
275.

Cardinale Y., Haddad J.E., Manouvrier M., Rukoz M. Web Service Composition Based
On Petri Nets: Review and Contribution. Lecture Notes in Computer Science, vol. 8194,
2012, pp. 83-122. DOI: 10.1007/978-3-642-45263-5_5.

Hamadi R., Benatallah B. A Petri Net-Based Model For Web Service Composition.
ADC*03 Proceedings of the 14th Australasian database conference, 2003, pp. 191-200.
XES (eXtensible Event Stream). Available at: http://www.processmining.org/logs/xes,
accessed 10.03.2017.

van Dongen B.F., de Medeiros A.K.A., Verbeek H.M.W., Weijters A.J.M.M., van der
Aalst W.M.P. The ProM Framework: A New Era in Process Mining Tool Support.
Lecture Notes in Computer Science, 2005, vol. 3536, pp. 444-454. DOI:
10.1007/11494744_25.

Gunther C.W., Rozinat A. Disco: Discover your processes. CEUR Workshop
Proceedings, 2012, vol. 940, pp. 40-44.

Ailenei I.M. Process Mining Tools: A Comparative Analysis. Master’s thesis,
Eindhoven University of Technology, 2011.

BPM Tool — mylnvenio. Available: https://www.my-invenio.com, accessed 10.03.2017.
Shugurov 1.S., Mitsyuk A.A. Generation of a Set of Event Logs with Noise. Proceedings
of the 8th Spring/Summer Young Researchers Colloguium on Software Engineering
(SYRCoSE 2014), 2014, pp. 88-95. DOI: 10.15514/SYRCOSE-2014-8-13.

