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Abstract. The verification of many practical systems – in particular, embedded systems – 

involves processes executing over time, for which it is common to use models based on 

temporal logic, in either its linear (LTL) or branching (CTL). Some of today’s most advanced 

automatic program verifiers, however, rely on non-temporal theories, particularly Hoare-style 

logic. Can we still take advantage of this sophisticated verification technology for more 

challenging systems? As a step towards a positive answer, we have defined a translation 

scheme from temporal specifications to contract-equipped object-oriented programs, 

expressed in Eiffel and hence open for processing by the AutoProof program prover. We have 

applied this scheme to a published CTL model of a widely used realistic example, the 

“landing gear” system which has been the subject of numerous competing specifications. An 

attempt to verify the result in AutoProof failed to prove one temporal property, which on 

further inspection seemed to be wrong in the original published model, even though the 

published work claimed to have verified an Abstract State Machine implementation of that 

model. Correcting the CTL specification to reflect the apparent informal attempt, re-

translating again to contracted Eiffel and re-running the verification leads to success. The 

LTL-to-contracted-Eiffel process is still ad hoc, and tailored to generate the kind of scheme 

that the target verification tool (AutoProof) can handle best, rather than the simplest or most 

elegant scheme. Even with this limitation, the results highlight the need for rigor in the 

verification process, and (on the positive side) demonstrate that the highly advanced 

mechanized proof technology developed over several decades for the verification of 

traditional programs also has the potential of handling the demanding needs of embedded 

systems and other demanding contemporary developments. 
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1. Overview and main results 

The present article describes a technique for specification and verification of 

stimulus-response requirements using a general-purpose programming language 

(Eiffel) and a program prover (AutoProof [1]) based on the principles of Design by 

Contract [2]. 

Real-time, or reactive, systems are often run by a software controller that repeatedly 

executes one and the same routine and it is specified to take actions at specific time 

intervals or according to external stimuli [3]. This architecture is reasonable when 

the software has to react timely to non-deterministic changes in the environment. In 

this case the program should react to the external stimuli in small steps, so that in 

the event of a new change it responds timely. 

Computation tree logics (CTL) [4] represent a frequent choice when it comes to 

capturing stimulus-response requirements. Although it may be easier to reason 

about requirements using declarative logic like CTL, the reasoning may be of little 

value for the software developer who will implement the requirements. Mainstream 

programming languages are all imperative, and the translation between declarative 

requirements and imperative programs is semi-formal. 

Requirements have to be of imperative nature from the beginning. This would 

bridge the gap in how customers and developers understand them. For a software 

developer it is preferable to reason about the future program without switching to an 

additional formalism, notation and tools not connected to the original programming 

language and the IDE. 

The present article describes a technique to achieve this goal, in particular: 

 Introduces the Landing Gear System (LGS) case study and the LGS 

baseline requirements (Section 2). 

 Generalizes the LGS baseline requirements, maps them to a well-

established taxonomy, and complements the taxonomy (Section 3). 

 Provides a general scheme for capturing semantics of the stimulus-

response requirements in the form of imperative program routines with 

assertions (Section 4). 

 Exercises utility of the approach by applying it to an Abstract State 

Machine (ASM) specification of the Landing Gear System case study 

(Section 5). 

 Concludes the possibility of statically checking a sequential imperative 

program directly against a stimulus-response requirement whose semantics 
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is expressed in the same programming language through conditionals, 

loops, and assertions (Section 7). 

Application of the technique leads to discovery of an error in the published model of 

the LGS ASM [5]. The error is not present in the specification the authors have 

actually used for proving the properties, but the error has found its way into the 

publication. 

2. The landing gear system 

Landing Gear System was proposed as a benchmark for techniques and tools 

dedicated to the verification of behavioral properties of systems [6]. It physically 

consists of the landing set, a gear box that stores the gear in the retracted position, 

and a door attached to the box (Figure 1). The door and the gear are actuated 

independently by a digital controller. The controller reacts to changes in position of 

a handle in the cockpit by initiating either gear extension or retraction process. The 

task is to program the controller so that it correctly aligns in time the events of 

changing the handle’s position and sending commands to the door and the gear 

actuators. 

3. Stimulus-response requirements 

The LGS case study defines a number of requirements, including several for the 

normal mode of operation (Figure 2). The requirements communicate a common 

meaning of the form: If stimulus holds, then response will eventually hold in the 

future. For requirement R11bis, 

𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 ⇔ "𝑇ℎ𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒 𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙 𝑎𝑛𝑑 𝑡ℎ𝑒 ℎ𝑎𝑛𝑑𝑙𝑒 𝑖𝑠 𝐷𝑂𝑊𝑁" and 

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ⇔ (𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 ⇒ "𝑇ℎ𝑒 𝑔𝑒𝑎𝑟 𝑖𝑠 𝑑𝑜𝑤𝑛 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑜𝑜𝑟 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑"). 
The implication in the definition of response reflects the “and stays DOWN” part of 

the original requirement. In addition to that, requirements R21 and R22 communicate 

something else: 

 Once response holds in the presence of stimulus, and stimulus holds 

forever, response will hold forever. 

3.1 Temporal interpretation of the requirements 

The authors of the LGS ASM specification start with a ground model that satisfies a 

subset of requirements, and then refine the model to satisfy more requirements. The 

present article focuses on their ground model and the corresponding baseline 

requirements it covers (Figure 2). The work expresses the baseline requirements as 

CTL properties. The CTL interpretation assigns precise meanings to the 

requirements by assuming small-step execution semantics of ASM’s. In particular, 

for requirements R11bis and R12bis “the future” means “after a finite number of 

execution steps”, while for R21 and R22 “the future” means “after one execution 

step”. 
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Fig. 1. Landing set (source: [6]). 

 

(R11bis) When the command line is working (normal mode), if the landing 

gear command handle has been pushed DOWN and stays DOWN, 

then eventually the gears will be locked down and the doors will be 

seen closed. 

(R12bis) When the command line is working (normal mode), if the landing 

gear command handle has been pushed UP and stays UP, then 

eventually the gears will be locked retracted and the doors will be 

seen closed. 

(R21) When the command line is working (normal mode), if the landing 

gear command handle remains in the DOWN position, then 

retraction sequence is not observed. 

(R22) When the command line is working (normal mode), if the landing 

gear command handle remains in the UP position, then outgoing 

sequence is not observed. 

Fig. 2. Baseline LGS requirements. 

The finite number of steps in R11bis and R12bis may be unacceptably large though 

for a system like an LGS of an aircraft. In particular, flights have some expected 

durations, and the gears have to react to commands in some limited time frame as 

well. The following two major categories of stimulus-response requirements stem 

from the speculations above: 

 If stimulus holds, then response will hold in not more than k execution 

steps. 
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Requirements of this form are also called maximal distance requirements 

[7]. 

 If stimulus holds, then response will hold in exactly k execution steps. 

Requirements of this form are also called exact distance, or delay 

requirements. 

These two categories are not enough though for capturing stimulus-response 

requirements. For example, if according to R11bis the gears are locked down and the 

doors seen closed as the result of the handle staying down, we want this state to be 

stable if the handle stays down. This leads us to stimulusresponse requirements of 

the following form: 

 If response holds under stimulus, it will still hold after one execution step 

in the presence of that stimulus. 

Let us call such requirements response stability requirements. 

It makes sense to complement requirements (R11bis) and (R12bis) with the 

corresponding response stability requirements (Figure 3): not only do we want the 

LGS to respond to a change in the handle’s position, but we also want it to maintain 

the response if the position does not change. 

 

(R11rs) If the gears are locked extended and the doors are closed when the 

landing gear command handle is DOWN, this state will still hold if 

the handle stays DOWN. 

(R12rs) If the gears are locked retracted and the doors are closed when the 

landing gear command handle is UP, this state will 

still hold if the handle stays UP. 

Fig. 3. LGS response stability requirements. 

4. Translation of stimulus-response requirements 

Assuming the presence of an infinite loop from until False loop main end that runs 

a reactive system, a temporal stimulus-response requirement (Section 3.1) takes the 

form of a routine with an assertion (check end construct in Eiffel). The authors draw 

this idea from the notion of a specification driver [8] - a contracted routine that 

forms a proof obligation in Hoare logic. AutoProof is a prover of Eiffel programs 

that makes it possible to statically check the assertions. 

 

response_holds_within_k_steps 

-- If stimulus holds, response will hold within k steps. 

  local 

    steps: NATURAL 

  do 



Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify 

stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54. 

44 

    if (stimulus) then 

      from 

        steps := 0 

      until 

        response or (steps = k) 

      loop 

        main 

        steps := steps + 1 

      end 

      check response end 

    end 

  end 

Fig. 4. Representation of a maximal distance requirement. Regardless of the actual reason 

for the loop to terminate, the response has to hold if the stimulus held at the entry to the loop. 

 

 

response_holds_in_k_steps 

-- If stimulus holds, response will hold in k steps. 

  local 

    steps: NATURAL 

  do 

    if (stimulus) then 

      from 

        steps := 0 

      until 

        response or (steps=k) 

      loop 

        main 

        steps := steps + 1 

      end 

      check (response and (steps = k)) end 

    end 

  end 

Fig. 5. Representation of an exact distance requirement. Both of the loop exit conditions have 

to hold for the first time simultaneously if the stimulus held at the entry to the loop. 
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4.1 Maximal distance 

In the representation of a maximal distance requirement (Figure 4) the “if stimulus 
then” clause captures the presence of the stimulus before the up-to-k-length 

execution fragment, and the “check response end” assertion expresses the need for 

the response upon completion of the subexecution. The sub-execution may complete 

for two possible reasons: either occurrence of the response or consumption of all of 

the available k steps. In the both cases the response has to hold. 

4.2 Exact distance 

Representation of an exact distance requirement (Figure 5) is very similar to that 

one of a maximal distance, with the “check (response and (steps = k)) end” 

assertion that makes the difference. Regardless of whether the loop terminates 

because of  “response or steps = k”, the both have to hold upon the termination. 

4.3 Response stability 

Representation of a response stability requirement (Figure 6) says: whenever 

response holds under stimulus in a state, it will still hold in the presence of the same 

stimulus in the next state. 

 

response_is_stable_under_stimulus 

-- response keeps holding under stimulus. 

  do 

    if (stimulus and response) then 

      main 

      check (stimulus implies response) end 

    end 

  end 

Fig. 6. Representation of a response stability requirement. If response holds under stimulus 

in some state, the response should hold in the next state in the presence of the same stimulus. 

5. Applying the translation scheme to the landing gear example 

The article exercises the approach on the LGS ASM specification, which is 

operational by the definition and thus is a subject for translation into an imperative 

program. For this reason the present section starts with explanation of the rules 

according to which the authors converted the original specification into an Eiffel 

program. 

5.1 Translation of ASM specifications 

An ASM specification is a collection of rules taking one of the following three 

forms [9]: assignment (Section V-A1), do-in-parallel (Section V-A2), and 
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conditional (Section V-A3). If we have general rules for translating these operators 

into Eiffel then we will be able to translate an arbitrary ASM into an Eiffel program. 

An ASM assignment looks as follows: 

𝑓 (𝑡1, … , 𝑡𝑗) ∶= 𝑡0 (1) 

 

The semantics is: update the current content of location λ = (f,(a1,..,aj)), where ai are 

values referenced by ti, with the value referenced by t0. 

In Eiffel locations are represented with class attributes, so an ASM’s location update 

corresponds in Eiffel to an attribute assignment. 

An ASM do-in-parallel operation can apply several rules simultaneously in one 

step: 

 

𝑅1|| … || 𝑅𝑘 (2) 

 

In order to emulate a parallel assignment in a synchronous setting, one needs to 

assign first to fresh variables and then assign their values to the original ones. For 

example, an ASM do-in-parallel statement 

𝑎, 𝑏 ∶= max(𝑎 − 𝑏, 𝑏) , min (𝑎 − 𝑏, 𝑏) (3) 

 

in Eiffel would look like: 

 

local 

  a_intermediate, b_intermediate: INTEGER 

do 

  a_intermediate := max (a−b, b) 

  b_intermediate := min (a−b, b) 

  a := a_intermediate 

  b := b_intermediate 

end 

 

An attempt to update in parallel identical locations in an ASM corresponds 

semantically to a crash. The translation scheme not only preserves but strengthens 

this semantics: an Eiffel program with two local variables declared with identical 

names will not compile. 

Conditional: An ASM conditional if t then R1 else R2 carries the same meaning as 

in Eiffel, so the translation is straightforward. 
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5.2 An error in the ground model 

Translation of the original LGS ASM specification into Eiffel is publicly available 

in a GitHub repository [10] The error is not handling the situation when the door is 

closing and the handle is pushed down, in which case the ground model will not 

meet requirement (R11bis). To catch this error with the SVR method one needs first 

to introduce it back by commenting out two lines in the “open_door” routine of the 

Eiffel translation: 

open_door 

  do 

    inspect door_status 

    when closed_position then 

      door_status := opening_state 

    -- when closing_state then 

    --   door_status := opening_state 

and then submit routine r11_bis to verification with AutoProof; the verification will 

fail. We have contacted an author of the article that contains the erroneous ASM 

specification, and he admitted the presence of the error. 

5.3 Requirements 

The two classes include the translations of the baseline requirements plus the 

response stability requirements introduced in the present article. We do not discuss 

all of them here: requirements (R11bis) and (R12bis), (R21) and (R22), (R11rs) and 

(R12rs) are pairwise similar, which is why we prefer to pick one from each pair. 

Translation of requirement r11_bis (Figure 7) is an application of the 

response_holds_within_k_steps pattern (Figure 4), where: 

 stimulus equates to: 

is_normal_mode and (handle_status = is_handle_down) 

 response equates to: 

(not (is_normal_mode and (handle_status = is_handle_down))) or 
((gear_status = is_gear_extended) and (door_status = is_door_closed)) 

The idea behind the response is that there may be two reasons for the gear not to 

extend and the door not to close: 

 An abnormal situation that leads to quitting the normal mode. 

 The crew changes their mind and pushes the handle up. 

 

r11_bis 

-- If (is_normal_mode and (handle_status = is_handle_down)) hold 

and remain, 

-- ((gear_status = is_gear_extended) and (door_status = 

is_door_closed)) will hold within 10 steps. 
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  local 

    steps: NATURAL 

  do 

    if (is_normal_mode and (handle_status = is_handle_down)) then 

      from 

        steps := 0 

      until 

        (not (is_normal_mode and (handle_status = is_handle_down))) 

or ((gear_status = is_gear_extended) and 

        (door_status = is_door_closed)) or (steps = 10) 

      loop 

        main 

        steps := steps + 1 

      end 

      check (not (is_normal_mode and (handle_status = 
is_handle_down))) or 

        ((gear_status = is_gear_extended) and (door_status = 
is_door_closed)) end 

     end 

  end 

Fig. 7. Translation of the “r11 bis” requirement. 

r21 

-- If (is_normal_mode and (handle_status = is_handle_up)) holds and 

remains, 

-- (gear_status= is_gear_extending) will hold within 1 step. 

  local 

    steps: NATURAL 

  do 

    if (is_normal_mode and (handle_status = is_handle_up)) then 

      from 

        steps := 0 

      until 

        (not (is_normal_mode and (handle_status = is_handle_up))) or 

        (gear_status = is_gear_extending) or 

        (steps = 1) 

      loop 

        main 

        steps := steps + 1 
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      end 

      check (not (is_normal_mode and (handle_status = 
is_handle_up))) or 

        (gear_status = is_gear_extending) end 

    end 

  end 

Fig. 8. Translation of the “r21” requirement. 

r11_rs 

-- ((gear_status = is_gear_extended) and (door_status = 
is_door_closed)) keeps holding under 

-- (is_normal_mode and (handle_status = is_handle_down)) 

  do 

    if ((is_normal_mode and (handle_status = is_handle_down)) and 

        ((gear_status = is_gear_extended) and (door_status = 
is_door_closed))) then 

      main 

      check ((is_normal_mode and (handle_status = is_handle_down)) 

implies 

        ((gear_status = is_gear_extended) and (door_status = 
is_door_closed))) end 

    end 

  end 

Fig. 9. Translation of the “r11 rs” requirement. 

6. Related work 

Modeling of real-time computation and related requirements is a well-investigated 

matter [12]. Representation of real-time requirements, expressed in general or 

specific form, is a challenging task that has been attacked by the use of several 

formalisms both in sequential and concurrent settings, and in a broad set of 

application domains. The difficulty (or impossibility) to fully represents general 

real-time requirements other than in natural language, or making use of excessively 

complicated formalisms (unsuitable for software developers), has been recognized. 

In [13] the domain of real-time reconfiguration of system is discussed, emphasizing 

the necessity of adequate formalisms. The problem of modeling real time in the 

context of services orchestration in Business Process, and in presence of abnormal 

behavior has been examined in [14] and [15] by means, respectively, of process 

algebra and temporal logic. Modeling of protocols also requires real-time aspects to 

be represented [16]. Event-B has also been used as a vector for real-time extension 

[17] in order to handle embedded systems requirements. 
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In all these studies, the necessity emerged of focusing on specific typology of 

requirements using ad-hoc formalisms and techniques, and making use of 

abstractions. The notion of “real-time” is often abstracted as number of steps, a 

metric commonly used. In this paper we follow the same approach, inheriting both 

strength (simplicity of the model and effectiveness for applicative purposes) and 

limitations (temporal logic and time automata themselves miss to capture a precise 

notion of real-time). 

7. Conclusions and future work 

Software developers reason in an imperative/operational manner. This claim is 

supported both by anecdotal experience and by empirical evidence [18]. 

Requirements expressed in imperative/operational fashion would therefore results of 

easier comprehensions for developers and would simplify the process of negotiation 

behind requirements elicitation. In the method described in this paper, requirements 

are expressed in a formalism (or language) that seamlessly stay the same along the 

whole process, without the need of switching between different instruments or 

mental paradigms. At the same time, the linguistic tool used to define them also 

allows for automatic verification of correctness. 

The meaning of correctness here remains subject to the assumption that 

requirements engineers and stakeholders agree on a list of desiderata that is indeed 

the intended one. Assuming a non-faulty process of intention transferring (and this 

assumption is common to any other approach too), requirements are now more 

easily manageable by software engineerings all the way from elicitation to 

verification. 

The result of elicitation process is a set of requirements in natural language. The full 

realization of the presented method would imply an automatic (or semi-automatic) 

translation from natural language into a structured representation that, although 

completely intuitive for software developers, it is possibly not easy to manage for 

average stakeholders. The first part of this process, i.e., the translation from natural 

language into the current representation (and back) is under development. A tool 

automatically translates semi-structured natural language into the Hoare-triple-based 

representation [19], allowing also the opposite direction, i.e. back to natural 

language [20], so that software engineers would be able to negotiate back 

requirements with stakeholders using a format they would comprehend. The role of 

the requirement engineers would then consist in concluding the elicitation phase 

with a set of requirements in semi-structured natural language, which the tool would 

be able to process in an entirely automatic manner. 

This paper supports the idea of seamless development describing a method 

supported by a formalism that stay the same along the whole process, from 

requirements to deployment. Alternative approaches have also been experimented 

which make use of formalism-based toolkits, where ad hoc notations are adopted for 

each development phase [21]. 
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Аннотация. Верификация многих прикладных систем – в частности, встроенных, - 

включает в себя процессы, исполняющиеся во времени, для моделирования которых 

обычно используется временная логика, линейная (LTL) или ветвящаяся (CTL). 

Наиболее развитые автоматические доказатели программ, однако, основаны на 

невременных теориях: например, на логике Хоара. Возможно ли все же применение 

этой развитой технологии верификации к более сложным системам? В качестве шага 

на пути к положительному ответу, мы разработали схему перевода подмножества LTL 

спецификаций в объектно-ориентированные программы с контрактами на языке Eiffel, 

которые являются естественными целями для доказателя программ AutoProof. Мы 

применили эту схему к опубликованной временной модели широко используемого 

реалистичного примера, авиационной системы контроля шасси, являющейся своего 

рода эталонной задачей для сравнения применимости различных методов 

спецификации. Верификация переведенной спецификации с помощью AutoProof 

обнаружила ошибку в одном из временных свойств. Углубленное изучение данной 

ошибки привело к обнаружению ошибки в опубликованной абстрактной машине 

состояний (ASM), которая реализует переведенную модель; авторы публикации, в 

свою очередь, заявили об успешной верификации. Корректировка исходной 
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спецификации и перевод результата в Eiffel с контрактами с последующей 

верификацией привели к успешному результату. Процесс перевода из LTL в Eiffel все 

еще находится в зачаточном состоянии и оптимизирован для используемого 

инструмента верификации (AutoProof), поэтому схема перевода не выглядит простой и 

элегантной. Даже с учетом указанных ограничений полученные результаты 

демонстрируют потенциал технологии автоматического доказательства традиционных 

программ в части ее применимости к специфичным проблемам встроенных систем. 

Ключевые слова: бесшовные требования; проектирование по контракту; autoproof; 

эйфель; система контроля шасси 

DOI: 10.15514/ISPRAS-2017-29(4)-3 

Для цитирования: Наумчев А., Маццара М., Мейер Б., Брюэль Ж.-М., Галинье Ф., 

Эберсоль С.  Контрактный метод спецификации реактивных требований. Труды ИСП 

РАН, том 29, вып. 4, 2017 г., стр. 39-54 (на английском языке). DOI: 10.15514/ISPRAS-
2017-29(4)-3 

Список литературы 
[1]. J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova, “Autoproof: Auto-active 

functional verification of object-oriented programs,” arXiv preprint arXiv:1501.03063, 

2015. 

[2]. B. Meyer, Touch of Class: learning to program well with objects and contracts. 

Springer, 2009. 

[3]. I. J. Hayes, M. A. Jackson, and C. B. Jones, Determining the Specification of a Control 
System from That of Its Environment, pp. 154–169. Berlin, Heidelberg: Springer Berlin 

Heidelberg, 2003. 

[4]. E. Clarke and E. Emerson, “Design and synthesis of synchronization skeletons using 

branching time temporal logic,” Logics of programs, pp. 52–71, 1982. 

[5]. P. Arcaini, A. Gargantini, and E. Riccobene, “Modeling and analyzing using asms: the 

landing gear system case study,” in International Conference on Abstract State 
Machines, Alloy, B, TLA, VDM, and Z, pp. 36–51, Springer, 2014. 

[6]. F. Boniol and V. Wiels, “The landing gear system case study,” in International 
Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z, pp. 1–18, Springer, 

2014. 

[7]. R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-time 
systems, vol. 2, no. 4, pp. 255– 299, 1990. 

[8]. A. Naumchev and B. Meyer, “Complete contracts through specification drivers,” in 

2016 10th International Symposium on Theoretical Aspects of Software Engineering 
(TASE), pp. 160–167, July 2016. 

[9]. Y. Gurevich, “Sequential abstract-state machines capture sequential algorithms,” ACM 
Transactions on Computational Logic (TOCL), vol. 1, no. 1, pp. 77–111, 2000. 

[10]. A. Naumchev, “Lgs asm ground model in eiffel..” 

https://github.com/anaumchev/lgs_ground_model, 2017. 



Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify 

stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54. 

54 

[11]. N. Polikarpova, J. Tschannen, C. A. Furia, and B. Meyer, “Flexible invariants through 

semantic collaboration,” in FM 2014: Formal Methods, pp. 514–530, Springer, 2014. 

[12]. H. Yamada, “Real-time computation and recursive functions not real-time computable,” 

IRE Transactions on Electronic Computers, vol. EC-11, pp. 753–760, Dec 1962. 

[13]. M. Mazzara and A. Bhattacharyya, “On modelling and analysis of dynamic 

reconfiguration of dependable real time systems,” in Proceedings of the 2010 Third 
International Conference on Dependability, DEPEND ’10, (Washington, DC, USA), pp. 

173–181, IEEE Computer Society, 2010. 

[14]. M. Mazzara, “Timing issues in web services composition,” in Formal Techniques for 
Computer Systems and Business Processes, European Performance Engineering 
Workshop, EPEW 2005 and International Workshop on Web Services and Formal 
Methods, WS-FM 2005, Versailles, France, September 1-3, 2005, Proceedings, pp. 287–

302, 2005. 

[15]. L. Ferrucci, M. M. Bersani, and M. Mazzara, “An LTL semantics of business workflows 

with recovery,” in ICSOFTPT 2014 - Proceedings of the 9th International Conference on 

Software Paradigm Trends, Vienna, Austria, 2931 August, 2014, pp. 29–40, 2014. 

[16]. M. Berger and K. Honda, “The two-phase commitment protocol in an extended pi-

calculus,” Electr. Notes Theor. Comput. Sci., vol. 39, no. 1, pp. 21–46, 2000. 

[17]. A. Iliasov, A. Romanovsky, L. Laibinis, E. Troubitsyna, and T. Latvala, “Augmenting 

event-b modelling with real time verification,” in Proceedings of the First International 

Workshop on Formal Methods in Software Engineering: Rigorous and Agile 

Approaches, FormSERA ’12, 2012. 

[18]. D. Fahland, D. Lubke, J. Mendling, H. Reijers, B. Weber,¨ M. Weidlich, and S. Zugal, 

Declarative versus Imperative Process Modeling Languages: The Issue of 

Understandability. Springer Berlin Heidelberg, 2009. 

[19]. A. Bormotova, “Translation of natural language into hoare triples.” 

https://github.com/An-Dole/ Semantic-mapping. 

[20]. V. Skukov, “Translation of hoare triples into natural language.” 

https://github.com/flosca/hybrid. 

[21]. R. Gmehlich, K. Grau, F. Loesch, A. Iliasov, M. Jackson, and M. Mazzara, “Towards a 

formalism-based toolkit for automotive applications,” in 1st FME Workshop on Formal 

Methods in Software Engineering, FormaliSE 2013, San Francisco, CA, USA, May 25, 

2013, pp. 36–42, 2013. 

 

 


