
39

A contract-based method to specify
stimulus-response requirements

1
A. Naumchev <a.naumchev@innopolis.ru>
1
M. Mazzara <m.mazzara@innopolis.ru>

1, 2, 3
B. Meyer <Bertrand.Meyer@inf.ethz.ch>

3
J.-M. Bruel <bruel@irit.fr>

3
F. Galinier <galinier@irit.fr>

3
S. Ebersold <ebersold@irit.fr>

1
Innopolis University,

1

Universitetskaya st., Innopolis, 420500, Russian Federation.

2
Politecnico di Milano,

Piazza Leonardo da Vinci, 32, 20133 Milano MI, Italy.
3
Paul Sabatier University,

118 Route de Narbonne, 31062 Toulouse, France.

Abstract. The verification of many practical systems – in particular, embedded systems –

involves processes executing over time, for which it is common to use models based on

temporal logic, in either its linear (LTL) or branching (CTL). Some of today’s most advanced

automatic program verifiers, however, rely on non-temporal theories, particularly Hoare-style

logic. Can we still take advantage of this sophisticated verification technology for more

challenging systems? As a step towards a positive answer, we have defined a translation

scheme from temporal specifications to contract-equipped object-oriented programs,

expressed in Eiffel and hence open for processing by the AutoProof program prover. We have

applied this scheme to a published CTL model of a widely used realistic example, the

“landing gear” system which has been the subject of numerous competing specifications. An

attempt to verify the result in AutoProof failed to prove one temporal property, which on

further inspection seemed to be wrong in the original published model, even though the

published work claimed to have verified an Abstract State Machine implementation of that

model. Correcting the CTL specification to reflect the apparent informal attempt, re-

translating again to contracted Eiffel and re-running the verification leads to success. The

LTL-to-contracted-Eiffel process is still ad hoc, and tailored to generate the kind of scheme

that the target verification tool (AutoProof) can handle best, rather than the simplest or most

elegant scheme. Even with this limitation, the results highlight the need for rigor in the

verification process, and (on the positive side) demonstrate that the highly advanced

mechanized proof technology developed over several decades for the verification of

traditional programs also has the potential of handling the demanding needs of embedded

systems and other demanding contemporary developments.

Keywords: seamless requirements; design by contract; autoproof; eiffel; landing gear system

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify

stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

40

DOI: 10.15514/ISPRAS-2017-29(4)-3

For citation: Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A

contract-based method to specify stimulus-response requirements. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 39-54. DOI: 10.15514/ISPRAS-2017-29(4)-3

1. Overview and main results

The present article describes a technique for specification and verification of

stimulus-response requirements using a general-purpose programming language

(Eiffel) and a program prover (AutoProof [1]) based on the principles of Design by

Contract [2].

Real-time, or reactive, systems are often run by a software controller that repeatedly

executes one and the same routine and it is specified to take actions at specific time

intervals or according to external stimuli [3]. This architecture is reasonable when

the software has to react timely to non-deterministic changes in the environment. In

this case the program should react to the external stimuli in small steps, so that in

the event of a new change it responds timely.

Computation tree logics (CTL) [4] represent a frequent choice when it comes to

capturing stimulus-response requirements. Although it may be easier to reason

about requirements using declarative logic like CTL, the reasoning may be of little

value for the software developer who will implement the requirements. Mainstream

programming languages are all imperative, and the translation between declarative

requirements and imperative programs is semi-formal.

Requirements have to be of imperative nature from the beginning. This would

bridge the gap in how customers and developers understand them. For a software

developer it is preferable to reason about the future program without switching to an

additional formalism, notation and tools not connected to the original programming

language and the IDE.

The present article describes a technique to achieve this goal, in particular:

 Introduces the Landing Gear System (LGS) case study and the LGS

baseline requirements (Section 2).

 Generalizes the LGS baseline requirements, maps them to a well-

established taxonomy, and complements the taxonomy (Section 3).

 Provides a general scheme for capturing semantics of the stimulus-

response requirements in the form of imperative program routines with

assertions (Section 4).

 Exercises utility of the approach by applying it to an Abstract State

Machine (ASM) specification of the Landing Gear System case study

(Section 5).

 Concludes the possibility of statically checking a sequential imperative

program directly against a stimulus-response requirement whose semantics

Наумчев А., Маццара М., Мейер Б., Брюэль Ж.-М., Галинье Ф., Эберсоль С. Контрактный метод спецификации

реактивных требований. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 39-54.

41

is expressed in the same programming language through conditionals,

loops, and assertions (Section 7).

Application of the technique leads to discovery of an error in the published model of

the LGS ASM [5]. The error is not present in the specification the authors have

actually used for proving the properties, but the error has found its way into the

publication.

2. The landing gear system

Landing Gear System was proposed as a benchmark for techniques and tools

dedicated to the verification of behavioral properties of systems [6]. It physically

consists of the landing set, a gear box that stores the gear in the retracted position,

and a door attached to the box (Figure 1). The door and the gear are actuated

independently by a digital controller. The controller reacts to changes in position of

a handle in the cockpit by initiating either gear extension or retraction process. The

task is to program the controller so that it correctly aligns in time the events of

changing the handle’s position and sending commands to the door and the gear

actuators.

3. Stimulus-response requirements

The LGS case study defines a number of requirements, including several for the

normal mode of operation (Figure 2). The requirements communicate a common

meaning of the form: If stimulus holds, then response will eventually hold in the

future. For requirement R11bis,

𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 ⇔ "𝑇ℎ𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒 𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙 𝑎𝑛𝑑 𝑡ℎ𝑒 ℎ𝑎𝑛𝑑𝑙𝑒 𝑖𝑠 𝐷𝑂𝑊𝑁" and

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ⇔ (𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 ⇒ "𝑇ℎ𝑒 𝑔𝑒𝑎𝑟 𝑖𝑠 𝑑𝑜𝑤𝑛 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑜𝑜𝑟 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑").
The implication in the definition of response reflects the “and stays DOWN” part of

the original requirement. In addition to that, requirements R21 and R22 communicate

something else:

 Once response holds in the presence of stimulus, and stimulus holds

forever, response will hold forever.

3.1 Temporal interpretation of the requirements

The authors of the LGS ASM specification start with a ground model that satisfies a

subset of requirements, and then refine the model to satisfy more requirements. The

present article focuses on their ground model and the corresponding baseline

requirements it covers (Figure 2). The work expresses the baseline requirements as

CTL properties. The CTL interpretation assigns precise meanings to the

requirements by assuming small-step execution semantics of ASM’s. In particular,

for requirements R11bis and R12bis “the future” means “after a finite number of

execution steps”, while for R21 and R22 “the future” means “after one execution

step”.

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify

stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

42

Fig. 1. Landing set (source: [6]).

(R11bis) When the command line is working (normal mode), if the landing

gear command handle has been pushed DOWN and stays DOWN,

then eventually the gears will be locked down and the doors will be

seen closed.

(R12bis) When the command line is working (normal mode), if the landing

gear command handle has been pushed UP and stays UP, then

eventually the gears will be locked retracted and the doors will be

seen closed.

(R21) When the command line is working (normal mode), if the landing

gear command handle remains in the DOWN position, then

retraction sequence is not observed.

(R22) When the command line is working (normal mode), if the landing

gear command handle remains in the UP position, then outgoing

sequence is not observed.

Fig. 2. Baseline LGS requirements.

The finite number of steps in R11bis and R12bis may be unacceptably large though

for a system like an LGS of an aircraft. In particular, flights have some expected

durations, and the gears have to react to commands in some limited time frame as

well. The following two major categories of stimulus-response requirements stem

from the speculations above:

 If stimulus holds, then response will hold in not more than k execution

steps.

Наумчев А., Маццара М., Мейер Б., Брюэль Ж.-М., Галинье Ф., Эберсоль С. Контрактный метод спецификации

реактивных требований. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 39-54.

43

Requirements of this form are also called maximal distance requirements

[7].

 If stimulus holds, then response will hold in exactly k execution steps.

Requirements of this form are also called exact distance, or delay

requirements.

These two categories are not enough though for capturing stimulus-response

requirements. For example, if according to R11bis the gears are locked down and the

doors seen closed as the result of the handle staying down, we want this state to be

stable if the handle stays down. This leads us to stimulusresponse requirements of

the following form:

 If response holds under stimulus, it will still hold after one execution step

in the presence of that stimulus.

Let us call such requirements response stability requirements.

It makes sense to complement requirements (R11bis) and (R12bis) with the

corresponding response stability requirements (Figure 3): not only do we want the

LGS to respond to a change in the handle’s position, but we also want it to maintain

the response if the position does not change.

(R11rs) If the gears are locked extended and the doors are closed when the

landing gear command handle is DOWN, this state will still hold if

the handle stays DOWN.

(R12rs) If the gears are locked retracted and the doors are closed when the

landing gear command handle is UP, this state will

still hold if the handle stays UP.

Fig. 3. LGS response stability requirements.

4. Translation of stimulus-response requirements

Assuming the presence of an infinite loop from until False loop main end that runs

a reactive system, a temporal stimulus-response requirement (Section 3.1) takes the

form of a routine with an assertion (check end construct in Eiffel). The authors draw

this idea from the notion of a specification driver [8] - a contracted routine that

forms a proof obligation in Hoare logic. AutoProof is a prover of Eiffel programs

that makes it possible to statically check the assertions.

response_holds_within_k_steps

-- If stimulus holds, response will hold within k steps.

 local

 steps: NATURAL

 do

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify

stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

44

 if (stimulus) then

 from

 steps := 0

 until

 response or (steps = k)

 loop

 main

 steps := steps + 1

 end

 check response end

 end

 end

Fig. 4. Representation of a maximal distance requirement. Regardless of the actual reason

for the loop to terminate, the response has to hold if the stimulus held at the entry to the loop.

response_holds_in_k_steps

-- If stimulus holds, response will hold in k steps.

 local

 steps: NATURAL

 do

 if (stimulus) then

 from

 steps := 0

 until

 response or (steps=k)

 loop

 main

 steps := steps + 1

 end

 check (response and (steps = k)) end

 end

 end

Fig. 5. Representation of an exact distance requirement. Both of the loop exit conditions have

to hold for the first time simultaneously if the stimulus held at the entry to the loop.

Наумчев А., Маццара М., Мейер Б., Брюэль Ж.-М., Галинье Ф., Эберсоль С. Контрактный метод спецификации

реактивных требований. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 39-54.

45

4.1 Maximal distance

In the representation of a maximal distance requirement (Figure 4) the “if stimulus
then” clause captures the presence of the stimulus before the up-to-k-length

execution fragment, and the “check response end” assertion expresses the need for

the response upon completion of the subexecution. The sub-execution may complete

for two possible reasons: either occurrence of the response or consumption of all of

the available k steps. In the both cases the response has to hold.

4.2 Exact distance

Representation of an exact distance requirement (Figure 5) is very similar to that

one of a maximal distance, with the “check (response and (steps = k)) end”

assertion that makes the difference. Regardless of whether the loop terminates

because of “response or steps = k”, the both have to hold upon the termination.

4.3 Response stability

Representation of a response stability requirement (Figure 6) says: whenever

response holds under stimulus in a state, it will still hold in the presence of the same

stimulus in the next state.

response_is_stable_under_stimulus

-- response keeps holding under stimulus.

 do

 if (stimulus and response) then

 main

 check (stimulus implies response) end

 end

 end

Fig. 6. Representation of a response stability requirement. If response holds under stimulus

in some state, the response should hold in the next state in the presence of the same stimulus.

5. Applying the translation scheme to the landing gear example

The article exercises the approach on the LGS ASM specification, which is

operational by the definition and thus is a subject for translation into an imperative

program. For this reason the present section starts with explanation of the rules

according to which the authors converted the original specification into an Eiffel

program.

5.1 Translation of ASM specifications

An ASM specification is a collection of rules taking one of the following three

forms [9]: assignment (Section V-A1), do-in-parallel (Section V-A2), and

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify

stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

46

conditional (Section V-A3). If we have general rules for translating these operators

into Eiffel then we will be able to translate an arbitrary ASM into an Eiffel program.

An ASM assignment looks as follows:

𝑓 (𝑡1, … , 𝑡𝑗) ∶= 𝑡0 (1)

The semantics is: update the current content of location λ = (f,(a1,..,aj)), where ai are

values referenced by ti, with the value referenced by t0.

In Eiffel locations are represented with class attributes, so an ASM’s location update

corresponds in Eiffel to an attribute assignment.

An ASM do-in-parallel operation can apply several rules simultaneously in one

step:

𝑅1|| … || 𝑅𝑘 (2)

In order to emulate a parallel assignment in a synchronous setting, one needs to

assign first to fresh variables and then assign their values to the original ones. For

example, an ASM do-in-parallel statement

𝑎, 𝑏 ∶= max(𝑎 − 𝑏, 𝑏) , min (𝑎 − 𝑏, 𝑏) (3)

in Eiffel would look like:

local

 a_intermediate, b_intermediate: INTEGER

do

 a_intermediate := max (a−b, b)

 b_intermediate := min (a−b, b)

 a := a_intermediate

 b := b_intermediate

end

An attempt to update in parallel identical locations in an ASM corresponds

semantically to a crash. The translation scheme not only preserves but strengthens

this semantics: an Eiffel program with two local variables declared with identical

names will not compile.

Conditional: An ASM conditional if t then R1 else R2 carries the same meaning as

in Eiffel, so the translation is straightforward.

Наумчев А., Маццара М., Мейер Б., Брюэль Ж.-М., Галинье Ф., Эберсоль С. Контрактный метод спецификации

реактивных требований. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 39-54.

47

5.2 An error in the ground model

Translation of the original LGS ASM specification into Eiffel is publicly available

in a GitHub repository [10] The error is not handling the situation when the door is

closing and the handle is pushed down, in which case the ground model will not

meet requirement (R11bis). To catch this error with the SVR method one needs first

to introduce it back by commenting out two lines in the “open_door” routine of the

Eiffel translation:

open_door

 do

 inspect door_status

 when closed_position then

 door_status := opening_state

 -- when closing_state then

 -- door_status := opening_state

and then submit routine r11_bis to verification with AutoProof; the verification will

fail. We have contacted an author of the article that contains the erroneous ASM

specification, and he admitted the presence of the error.

5.3 Requirements

The two classes include the translations of the baseline requirements plus the

response stability requirements introduced in the present article. We do not discuss

all of them here: requirements (R11bis) and (R12bis), (R21) and (R22), (R11rs) and

(R12rs) are pairwise similar, which is why we prefer to pick one from each pair.

Translation of requirement r11_bis (Figure 7) is an application of the

response_holds_within_k_steps pattern (Figure 4), where:

 stimulus equates to:

is_normal_mode and (handle_status = is_handle_down)

 response equates to:

(not (is_normal_mode and (handle_status = is_handle_down))) or
((gear_status = is_gear_extended) and (door_status = is_door_closed))

The idea behind the response is that there may be two reasons for the gear not to

extend and the door not to close:

 An abnormal situation that leads to quitting the normal mode.

 The crew changes their mind and pushes the handle up.

r11_bis

-- If (is_normal_mode and (handle_status = is_handle_down)) hold

and remain,

-- ((gear_status = is_gear_extended) and (door_status =

is_door_closed)) will hold within 10 steps.

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify

stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

48

 local

 steps: NATURAL

 do

 if (is_normal_mode and (handle_status = is_handle_down)) then

 from

 steps := 0

 until

 (not (is_normal_mode and (handle_status = is_handle_down)))

or ((gear_status = is_gear_extended) and

 (door_status = is_door_closed)) or (steps = 10)

 loop

 main

 steps := steps + 1

 end

 check (not (is_normal_mode and (handle_status =
is_handle_down))) or

 ((gear_status = is_gear_extended) and (door_status =
is_door_closed)) end

 end

 end

Fig. 7. Translation of the “r11 bis” requirement.

r21

-- If (is_normal_mode and (handle_status = is_handle_up)) holds and

remains,

-- (gear_status= is_gear_extending) will hold within 1 step.

 local

 steps: NATURAL

 do

 if (is_normal_mode and (handle_status = is_handle_up)) then

 from

 steps := 0

 until

 (not (is_normal_mode and (handle_status = is_handle_up))) or

 (gear_status = is_gear_extending) or

 (steps = 1)

 loop

 main

 steps := steps + 1

Наумчев А., Маццара М., Мейер Б., Брюэль Ж.-М., Галинье Ф., Эберсоль С. Контрактный метод спецификации

реактивных требований. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 39-54.

49

 end

 check (not (is_normal_mode and (handle_status =
is_handle_up))) or

 (gear_status = is_gear_extending) end

 end

 end

Fig. 8. Translation of the “r21” requirement.

r11_rs

-- ((gear_status = is_gear_extended) and (door_status =
is_door_closed)) keeps holding under

-- (is_normal_mode and (handle_status = is_handle_down))

 do

 if ((is_normal_mode and (handle_status = is_handle_down)) and

 ((gear_status = is_gear_extended) and (door_status =
is_door_closed))) then

 main

 check ((is_normal_mode and (handle_status = is_handle_down))

implies

 ((gear_status = is_gear_extended) and (door_status =
is_door_closed))) end

 end

 end

Fig. 9. Translation of the “r11 rs” requirement.

6. Related work

Modeling of real-time computation and related requirements is a well-investigated

matter [12]. Representation of real-time requirements, expressed in general or

specific form, is a challenging task that has been attacked by the use of several

formalisms both in sequential and concurrent settings, and in a broad set of

application domains. The difficulty (or impossibility) to fully represents general

real-time requirements other than in natural language, or making use of excessively

complicated formalisms (unsuitable for software developers), has been recognized.

In [13] the domain of real-time reconfiguration of system is discussed, emphasizing

the necessity of adequate formalisms. The problem of modeling real time in the

context of services orchestration in Business Process, and in presence of abnormal

behavior has been examined in [14] and [15] by means, respectively, of process

algebra and temporal logic. Modeling of protocols also requires real-time aspects to

be represented [16]. Event-B has also been used as a vector for real-time extension

[17] in order to handle embedded systems requirements.

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify

stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

50

In all these studies, the necessity emerged of focusing on specific typology of

requirements using ad-hoc formalisms and techniques, and making use of

abstractions. The notion of “real-time” is often abstracted as number of steps, a

metric commonly used. In this paper we follow the same approach, inheriting both

strength (simplicity of the model and effectiveness for applicative purposes) and

limitations (temporal logic and time automata themselves miss to capture a precise

notion of real-time).

7. Conclusions and future work

Software developers reason in an imperative/operational manner. This claim is

supported both by anecdotal experience and by empirical evidence [18].

Requirements expressed in imperative/operational fashion would therefore results of

easier comprehensions for developers and would simplify the process of negotiation

behind requirements elicitation. In the method described in this paper, requirements

are expressed in a formalism (or language) that seamlessly stay the same along the

whole process, without the need of switching between different instruments or

mental paradigms. At the same time, the linguistic tool used to define them also

allows for automatic verification of correctness.

The meaning of correctness here remains subject to the assumption that

requirements engineers and stakeholders agree on a list of desiderata that is indeed

the intended one. Assuming a non-faulty process of intention transferring (and this

assumption is common to any other approach too), requirements are now more

easily manageable by software engineerings all the way from elicitation to

verification.

The result of elicitation process is a set of requirements in natural language. The full

realization of the presented method would imply an automatic (or semi-automatic)

translation from natural language into a structured representation that, although

completely intuitive for software developers, it is possibly not easy to manage for

average stakeholders. The first part of this process, i.e., the translation from natural

language into the current representation (and back) is under development. A tool

automatically translates semi-structured natural language into the Hoare-triple-based

representation [19], allowing also the opposite direction, i.e. back to natural

language [20], so that software engineers would be able to negotiate back

requirements with stakeholders using a format they would comprehend. The role of

the requirement engineers would then consist in concluding the elicitation phase

with a set of requirements in semi-structured natural language, which the tool would

be able to process in an entirely automatic manner.

This paper supports the idea of seamless development describing a method

supported by a formalism that stay the same along the whole process, from

requirements to deployment. Alternative approaches have also been experimented

which make use of formalism-based toolkits, where ad hoc notations are adopted for

each development phase [21].

Наумчев А., Маццара М., Мейер Б., Брюэль Ж.-М., Галинье Ф., Эберсоль С. Контрактный метод спецификации

реактивных требований. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 39-54.

51

References
[1]. J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova, “Autoproof: Auto-active

functional verification of object-oriented programs,” arXiv preprint arXiv:1501.03063,

2015.

[2]. B. Meyer, Touch of Class: learning to program well with objects and contracts.

Springer, 2009.

[3]. I. J. Hayes, M. A. Jackson, and C. B. Jones, Determining the Specification of a Control
System from That of Its Environment, pp. 154–169. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2003.

[4]. E. Clarke and E. Emerson, “Design and synthesis of synchronization skeletons using

branching time temporal logic,” Logics of programs, pp. 52–71, 1982.

[5]. P. Arcaini, A. Gargantini, and E. Riccobene, “Modeling and analyzing using asms: the

landing gear system case study,” in International Conference on Abstract State
Machines, Alloy, B, TLA, VDM, and Z, pp. 36–51, Springer, 2014.

[6]. F. Boniol and V. Wiels, “The landing gear system case study,” in International
Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z, pp. 1–18, Springer,

2014.

[7]. R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-time
systems, vol. 2, no. 4, pp. 255– 299, 1990.

[8]. A. Naumchev and B. Meyer, “Complete contracts through specification drivers,” in

2016 10th International Symposium on Theoretical Aspects of Software Engineering
(TASE), pp. 160–167, July 2016.

[9]. Y. Gurevich, “Sequential abstract-state machines capture sequential algorithms,” ACM
Transactions on Computational Logic (TOCL), vol. 1, no. 1, pp. 77–111, 2000.

[10]. A. Naumchev, “Lgs asm ground model in eiffel”

https://github.com/anaumchev/lgs_ground_model, 2017.

[11]. N. Polikarpova, J. Tschannen, C. A. Furia, and B. Meyer, “Flexible invariants through

semantic collaboration,” in FM 2014: Formal Methods, pp. 514–530, Springer, 2014.

[12]. H. Yamada, “Real-time computation and recursive functions not real-time computable,”

IRE Transactions on Electronic Computers, vol. EC-11, pp. 753–760, Dec 1962.

[13]. M. Mazzara and A. Bhattacharyya, “On modelling and analysis of dynamic

reconfiguration of dependable real time systems,” in Proceedings of the 2010 Third
International Conference on Dependability, DEPEND ’10, (Washington, DC, USA), pp.

173–181, IEEE Computer Society, 2010.

[14]. M. Mazzara, “Timing issues in web services composition,” in Formal Techniques for
Computer Systems and Business Processes, European Performance Engineering
Workshop, EPEW 2005 and International Workshop on Web Services and Formal
Methods, WS-FM 2005, Versailles, France, September 1-3, 2005, Proceedings, pp. 287–

302, 2005.

[15]. L. Ferrucci, M. M. Bersani, and M. Mazzara, “An LTL semantics of business workflows

with recovery,” in ICSOFTPT 2014 - Proceedings of the 9th International Conference on

Software Paradigm Trends, Vienna, Austria, 2931 August, 2014, pp. 29–40, 2014.

[16]. M. Berger and K. Honda, “The two-phase commitment protocol in an extended pi-

calculus,” Electr. Notes Theor. Comput. Sci., vol. 39, no. 1, pp. 21–46, 2000.

[17]. A. Iliasov, A. Romanovsky, L. Laibinis, E. Troubitsyna, and T. Latvala, “Augmenting

event-b modelling with real time verification,” in Proceedings of the First International

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify

stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

52

Workshop on Formal Methods in Software Engineering: Rigorous and Agile

Approaches, FormSERA ’12, 2012.

[18]. D. Fahland, D. Lubke, J. Mendling, H. Reijers, B. Weber,¨ M. Weidlich, and S. Zugal,

Declarative versus Imperative Process Modeling Languages: The Issue of

Understandability. Springer Berlin Heidelberg, 2009.

[19]. A. Bormotova, “Translation of natural language into hoare triples.”

https://github.com/An-Dole/ Semantic-mapping.

[20]. V. Skukov, “Translation of hoare triples into natural language.”

https://github.com/flosca/hybrid.

[21]. R. Gmehlich, K. Grau, F. Loesch, A. Iliasov, M. Jackson, and M. Mazzara, “Towards a

formalism-based toolkit for automotive applications,” in 1st FME Workshop on Formal

Methods in Software Engineering, FormaliSE 2013, San Francisco, CA, USA, May 25,

2013, pp. 36–42, 2013.

Контрактный метод спецификации реактивных
требований

1
А. Наумчев <a.naumchev@innopolis.ru>

1
М. Маццара <m.mazzara@innopolis.ru>

1, 2, 3
Б. Мейер <Bertrand.Meyer@inf.ethz.ch>

3
Ж.-М. Брюэль <bruel@irit.fr>

3
Ф. Галинье <galinier@irit.fr>

3
С. Эберсоль <ebersold@irit.fr>

1
Университет Иннополис,

420500, Российская Федерация, г. Иннополис, ул. Университетская, д. 1.
2
Миланский технический университет,

20133, Италия, г. Милан, Piazza Leonardo da Vinci, 32.
3
Университет Тулузы,

31062, Франция, г. Тулуза, Route de Narbonne, 118.

Аннотация. Верификация многих прикладных систем – в частности, встроенных, -

включает в себя процессы, исполняющиеся во времени, для моделирования которых

обычно используется временная логика, линейная (LTL) или ветвящаяся (CTL).

Наиболее развитые автоматические доказатели программ, однако, основаны на

невременных теориях: например, на логике Хоара. Возможно ли все же применение

этой развитой технологии верификации к более сложным системам? В качестве шага

на пути к положительному ответу, мы разработали схему перевода подмножества LTL

спецификаций в объектно-ориентированные программы с контрактами на языке Eiffel,

которые являются естественными целями для доказателя программ AutoProof. Мы

применили эту схему к опубликованной временной модели широко используемого

реалистичного примера, авиационной системы контроля шасси, являющейся своего

рода эталонной задачей для сравнения применимости различных методов

спецификации. Верификация переведенной спецификации с помощью AutoProof

обнаружила ошибку в одном из временных свойств. Углубленное изучение данной

ошибки привело к обнаружению ошибки в опубликованной абстрактной машине

состояний (ASM), которая реализует переведенную модель; авторы публикации, в

свою очередь, заявили об успешной верификации. Корректировка исходной

Наумчев А., Маццара М., Мейер Б., Брюэль Ж.-М., Галинье Ф., Эберсоль С. Контрактный метод спецификации

реактивных требований. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 39-54.

53

спецификации и перевод результата в Eiffel с контрактами с последующей

верификацией привели к успешному результату. Процесс перевода из LTL в Eiffel все

еще находится в зачаточном состоянии и оптимизирован для используемого

инструмента верификации (AutoProof), поэтому схема перевода не выглядит простой и

элегантной. Даже с учетом указанных ограничений полученные результаты

демонстрируют потенциал технологии автоматического доказательства традиционных

программ в части ее применимости к специфичным проблемам встроенных систем.

Ключевые слова: бесшовные требования; проектирование по контракту; autoproof;

эйфель; система контроля шасси

DOI: 10.15514/ISPRAS-2017-29(4)-3

Для цитирования: Наумчев А., Маццара М., Мейер Б., Брюэль Ж.-М., Галинье Ф.,

Эберсоль С. Контрактный метод спецификации реактивных требований. Труды ИСП

РАН, том 29, вып. 4, 2017 г., стр. 39-54 (на английском языке). DOI: 10.15514/ISPRAS-
2017-29(4)-3

Список литературы
[1]. J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova, “Autoproof: Auto-active

functional verification of object-oriented programs,” arXiv preprint arXiv:1501.03063,

2015.

[2]. B. Meyer, Touch of Class: learning to program well with objects and contracts.

Springer, 2009.

[3]. I. J. Hayes, M. A. Jackson, and C. B. Jones, Determining the Specification of a Control
System from That of Its Environment, pp. 154–169. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2003.

[4]. E. Clarke and E. Emerson, “Design and synthesis of synchronization skeletons using

branching time temporal logic,” Logics of programs, pp. 52–71, 1982.

[5]. P. Arcaini, A. Gargantini, and E. Riccobene, “Modeling and analyzing using asms: the

landing gear system case study,” in International Conference on Abstract State
Machines, Alloy, B, TLA, VDM, and Z, pp. 36–51, Springer, 2014.

[6]. F. Boniol and V. Wiels, “The landing gear system case study,” in International
Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z, pp. 1–18, Springer,

2014.

[7]. R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-time
systems, vol. 2, no. 4, pp. 255– 299, 1990.

[8]. A. Naumchev and B. Meyer, “Complete contracts through specification drivers,” in

2016 10th International Symposium on Theoretical Aspects of Software Engineering
(TASE), pp. 160–167, July 2016.

[9]. Y. Gurevich, “Sequential abstract-state machines capture sequential algorithms,” ACM
Transactions on Computational Logic (TOCL), vol. 1, no. 1, pp. 77–111, 2000.

[10]. A. Naumchev, “Lgs asm ground model in eiffel..”

https://github.com/anaumchev/lgs_ground_model, 2017.

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify

stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

54

[11]. N. Polikarpova, J. Tschannen, C. A. Furia, and B. Meyer, “Flexible invariants through

semantic collaboration,” in FM 2014: Formal Methods, pp. 514–530, Springer, 2014.

[12]. H. Yamada, “Real-time computation and recursive functions not real-time computable,”

IRE Transactions on Electronic Computers, vol. EC-11, pp. 753–760, Dec 1962.

[13]. M. Mazzara and A. Bhattacharyya, “On modelling and analysis of dynamic

reconfiguration of dependable real time systems,” in Proceedings of the 2010 Third
International Conference on Dependability, DEPEND ’10, (Washington, DC, USA), pp.

173–181, IEEE Computer Society, 2010.

[14]. M. Mazzara, “Timing issues in web services composition,” in Formal Techniques for
Computer Systems and Business Processes, European Performance Engineering
Workshop, EPEW 2005 and International Workshop on Web Services and Formal
Methods, WS-FM 2005, Versailles, France, September 1-3, 2005, Proceedings, pp. 287–

302, 2005.

[15]. L. Ferrucci, M. M. Bersani, and M. Mazzara, “An LTL semantics of business workflows

with recovery,” in ICSOFTPT 2014 - Proceedings of the 9th International Conference on

Software Paradigm Trends, Vienna, Austria, 2931 August, 2014, pp. 29–40, 2014.

[16]. M. Berger and K. Honda, “The two-phase commitment protocol in an extended pi-

calculus,” Electr. Notes Theor. Comput. Sci., vol. 39, no. 1, pp. 21–46, 2000.

[17]. A. Iliasov, A. Romanovsky, L. Laibinis, E. Troubitsyna, and T. Latvala, “Augmenting

event-b modelling with real time verification,” in Proceedings of the First International

Workshop on Formal Methods in Software Engineering: Rigorous and Agile

Approaches, FormSERA ’12, 2012.

[18]. D. Fahland, D. Lubke, J. Mendling, H. Reijers, B. Weber,¨ M. Weidlich, and S. Zugal,

Declarative versus Imperative Process Modeling Languages: The Issue of

Understandability. Springer Berlin Heidelberg, 2009.

[19]. A. Bormotova, “Translation of natural language into hoare triples.”

https://github.com/An-Dole/ Semantic-mapping.

[20]. V. Skukov, “Translation of hoare triples into natural language.”

https://github.com/flosca/hybrid.

[21]. R. Gmehlich, K. Grau, F. Loesch, A. Iliasov, M. Jackson, and M. Mazzara, “Towards a

formalism-based toolkit for automotive applications,” in 1st FME Workshop on Formal

Methods in Software Engineering, FormaliSE 2013, San Francisco, CA, USA, May 25,

2013, pp. 36–42, 2013.

