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Abstract. Gaussian convolution and its discrete analogue, Gauss transform, have many 

science and engineering applications, such as mathematical statistics, thermodynamics and 

machine learning, and are widely applied to computer vision and image processing tasks. Due 

to its computational expense (quadratic and exponential complexities with respect to the 

number of points and dimensionality, respectively) and rapid spreading of high quality data 

(bit depth/dynamic range), accurate approximation has become important in practice 

compared with conventional fast methods, such as recursive or box kernel methods. In this 

paper, we propose a novel approximation method for fast Gaussian convolution of two-

dimensional uniform point sets, such as 2D images. Our method employs L1 distance metric 

for Gaussian function and domain splitting approach to achieve fast computation (linear 

computational complexity) while preserving high accuracy. Our numerical experiments show 

the advantages over conventional methods in terms of speed and precision. We also introduce 

a novel and effective joint image filtering approach based on the proposed method, and 

demonstrate its capability on edge-aware smoothing and detail enhancement. The 

experiments show that filters based on the proposed L1 Gauss transform give higher quality 

of the result and are faster than the original filters that use box kernel for Gaussian 

convolution approximation.   
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1. Introduction 

Gaussian convolution is a core tool in mathematics and many related research areas, 

such as probability theory, physics, and signal processing. Gauss transform is a 

discrete analogue to the Gaussian convolution, and has been widely used for many 

applications including kernel density estimation [1] and image filtering [2]. Despite 

its reliable performance and solid theoretical foundations, Gauss transform in its 

exact form along with other kernel-based methods has a drawback – it is very 

computationally expensive (has quadratic computational complexity w.r.t. the 

number of points) and hard to scale to higher dimensions. Which is why there have 

been many attempts to overcome these problems by creating approximation 

algorithms, such as fast Gauss transform [3], dualtree fast Gauss transforms [4], fast 

KDE [5], and Gaussian kd-trees [6]. Also, box kernel averaging [7] and recursive 

filtering [8] have been popular in computer graphics and image processing because 

of their simplicity, see the surveys [9], [10] for numerical comparisons of these 

approximation methods. 

Since high bit depth (also dynamic range) images have become popular in both digital 

entertainment and scientific/engineering applications, it is very important to acquire 

high approximation precision and to reduce artefacts caused by drastic truncation 

employed in many conventional methods focused on computational speed. One of the 

highly accurate methods is called fast L
1 
Gauss transform approximation [11] based on 

using L
1 
distance instead of conventional L

2 
Euclidean metric. This L

1 
metric preserves 

most of the properties of the L
2 

Gaussian, and is separable, hence it allows to perform 

computations along each dimension separately, which is very beneficial in terms of 

computational complexity. Also, L
1 

Gaussian has only one peak in Fourier domain at 

the coordinate origin, and therefore its convolution does not have some undesirable 

artefacts that box kernels and truncation methods usually have. However, this 

algorithm works only on one-dimensional (1D) point sets, although it can be extended 

to uniformly distributed points in higher dimensions by performing it separately in 

each dimension. In order to be able to acquire Gauss transform for non-uniformly 

distributed two-dimensional points and to further generalize it to higher dimensional 

cases, we need to extend existing method [11] to the 2D uniform case. 

In this paper we propose a novel approximation method for fast Gauss two-

dimensional (2D) image transform. Our method is based on extending the fast L
1 

Gauss transform approximation on uniformly distributed 2D points that allows to 

perform Gaussian convolution quickly while preserving high accuracy. We 

demonstrate that efficiency of the proposed method in terms of computational 

complexity, numerical timing, and approximation precision. 

We also successfully applied our method in the novel filtering approach based on 

combining the approximated L
1
 Gauss transformations into the so-called guided 

filter [12] (joint image filtering via ridge regression).  Our approach reduces 

computational costs while providing higher quality results compared to the 

conventional one. We show the application to edge-aware smoothing and image 

detail enhancement. 
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2. Fast L1 Gauss Transform 

In this section, we briefly describe the 1D domain splitting algorithm [11] employed 

for fast L
1 
Gauss transforms. 

Consider the ordered point set  Each 

point  has a corresponding value  e.g. pixel intensity in case of images. 

The L
1 
Gauss transform for each point in set  is given by 

 
where G(x), x ∈ R, is a L

1 
Gaussian function (also called Laplace distribution in 

statistics) with its standard deviation σ. It is convenient to decompose L
1 

norm by 

splitting its domain by using the point x1 such that 

 
 Thus, Gauss transform (1) using the equation (2) becomes 

(3) 

Such representation (3) allows to reduce the amount of computational operations, 

since values  and the sums  and 

 can be precomputed in linear time. However, using the equation (3) 

may imply some numerical issues, such as overflow, if the distance between  and 

 is relatively large. To avoid such issues, this algorithm introduced 

certain representative points (poles)  instead of using the single point  

where the distance between  is smaller than the length that causes the 

numerical instability. Hence the equation (3) becomes more complex form, a highly 

accurate truncation can be applied where  is numerically equal to zero, 

see [11] for further technical details. 

Although this algorithm can be used in case of multidimensional images by 

applying it separately in each dimension, this separable implementation approach is 

not applicable to nonuniformly distributed high-dimensional point sets. Therefore, 

we present a novel and natural extension of the domain splitting concept on 2D 

cases (images) in the following sections. 
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3. Two-Dimensional Algorithm 

For a given 2D point set  L
1 

distance between two 

points in  is given by   thus the Gauss transform (1) 

is represented by the formula: 

 
Domain splitting (2) for 2D points is given by  

 

see Fig. 1a for geometric illustration of the domains. 

 

(a) Single pole x1 case                          (b) Multipole {αk} case 

Fig. 1. Illustration of 2D domain splliting. 

Using the above decomposition, Gauss transform is represented similar to (3):  

 
where  and  

Precomputation and storage of values  and  require O(4N) operations 

and O(4N) space, and all the subsequent sums  can be iteratively 

computed in O(N) operations. Gauss transform for all points using the formula (4) 

requires O(10N) as opposed to employing the separable implementation of equation 
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(3) for O(6N) operations. Since computing the Gauss transform using the equation 

(4) is numerically troublesome, it is reasonable to divide the space into smaller 

groups and perform computations separately, as it was proposed in [11]. Let us 

introduce a novel 2D multipole approach for solving this problem. 

Consider a set of poles  The distance between 

points using poles αk is given by 

 

where 

 
see Fig. 1b for geometric illustration of the domains with their poles. The point  

is assigned for one representative pole defined by 

 
which is the closest pole to  that has absolute values of coordinate smaller than 

 

   For each point  the multipole L
1 
Gauss transform is given by the equation (5), 
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where  

and  is an index function defined by  

 
For the sake of simplicity, we assume that the numbers of poles in 2D are same M. 

Following [11], M and the poles  are given by 

 

 
where [·] is the ceiling function, MAX is the maximum value of precision (e.g., 

double floating point: DBL_MAX in C programming language), and ϕ is a user-

specified parameter (0.5 is employed in our numerical experiments). The above pole 

selection scheme leads to  which 

theoretically guarantees numerical stability in our method. 

When the distance between poles is determined by the equation (6) and  

becomes numerically zero if  we can efficiently truncate Gauss 

transform by approximating the values: 

 
where  

In other words, instead of computing terms  across all the 

corresponding point sets, we consider only the neighbouring points, which allows to 

avoid nested loop structures in our implementation and speed up the computational 

process. 

As in the 1D algorithm [11], the terms can be iteratively computed in linear time. 

Assume that an image consists of  pixels and the number of poles along 

each dimension is M, total complexity of our method is  which 
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is a little bit slower than the separable implementation employed in [11] that 

requires  operations. 

 

(a) Input image 1  (b) Input image 2 

Fig. 2. Input images. 

4. Numerical Experiments 

We held all the experiments on Intel Core i7-6600U 2.60 GHz dual core computer 

with 16GB RAM and a 64-bit operating system. We compared the multipole version 

of our algorithm with box kernel (Box) using moving average method [7], the 1D 

domain splitting (YY14) with separable implementations [11], and Fast Discrete 

Cosine Transform (FDCT) via the FFT package [13] well-known for its efficiency. 

To evaluate the performance of the methods mentioned above we used randomly 

generated 2D point sets with 10 different sizes from 128
2 

to 5120
2 

and 10 various 

values of σ = 5,10,...,50. The radius for the Box method was chosen equal to σ. The 

timing results (see Fig. 5) show that our method is slightly slower than the 1D 

domain splitting (YY14) despite its theoretical complexity is much larger. It is 

worth noticing that the implementation of our method can be further improved by 

using GPU-based or parallel computing techniques. 

However, the accuracy evaluation results (see Table 1) show that our method 

achieves best approximation quality among the discussed methods. We evaluate the 

precision using  and PSNR measures. Consider  is the exact result of  

Gauss transform,  is the approximation achieved by a given algorithm, and 

 is calculated using formula  

 

We also use peak signal-to-noise ratio (PSNR) [2] to measure the performance of 

our algorithm according to the equation 

 
We performed linear image smoothing by the following normalized convolutions 

for each color channel: 
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where the denominator is also obtained by our method convolving  Gaussian 

with the image whose intensity is equal to one everywhere. 

Fig. 3 illustrates the smoothing results using naive implementation (Exact), our 

method, Box kernel, and FDCT algorithms. The gradient magnitude  of 

smoothed images on Figs. 4  and 6 show that, in contrast to FDCT and box kernel, 

our method does not produce some undesirable artifacts and is extremely close to 

the exact implementation. 

Table 1. Precision and speed evaluation results (speed measured in Mpix/sec). 

 Our YY14 FDCT Box 

Emax 1.8×10
−11

 3.8×10
−10

 0.44 3.73 

PSNR 291.05 281.81 58.98 41.45 

Speed 7.19 9.76 3.37 8.58 
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(a) Exact   (b) Our 

 

 (c) Box         (d) FDCT 

Fig. 3. Results of smoothing (σ = 20), where the input image is given by Fig.2a. 
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(a) Exact  (b) Our 

 
(c) Box   (d) FDCT 

 
 (e) Exact   (f) Our 

 
(g) Box  (h) FDCT 

Fig. 4: Visualisation of |∇I| for comparison of artifacts (σ = 20). 
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Fig. 5: Timing with respect to image size (averaged by σ). 

   

 (a) Exact                              (b) Our                           (c) FDCT  

   

(a) Exact                              (b) Our                           (c) FDCT 

Fig. 6: Visualisation of |∇I| for comparison of artifacts of FDCT (σ = 20), where the input 

image is given by Fig.2b. 

5. Edge-Aware Filtering 

The proposed algorithm for Gauss transform approach can be applied in various 

computer vision tasks. We present one of the possible applications of our method by 

introducing the novel approach for improving the so-called guided filter [12]. 
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Guided filter is categorized into a joint image filtering technique consisting of two 

input images where one of them is called guidance image, and reflects guidance 

colors into the other input. One of the most popular joint image filters is the joint 

bilateral filter [14] which averages the neighbouring colors using the weights that 

depend on the guidance image. Guided filter is an approach for joint image filtering 

that allows to overcome a problem with the undesirable gradient reversal artifacts 

that joint bilateral filter suffers from. Besides edge-aware filtering, it has various 

image processing applications such as matting, flash-noflash synthesis, HDR-

compression, and haze removal. 

Consider a point set  guidance image 

 an input image   a desired output image  and an 

image region  centered at  The guided filter is defined as the following 

linear transformation: 

 
where  are the coefficients constant in  that depend on the input 

image  Such representation is very useful for image processing tasks, since it 

preserves the gradient extrema  and hence the edges of the guidance 

image. The coefficients  are obtained using the linear ridge regression model 

[15]:        

 
where  is the weight that determines the importance of the point  in  

and  is the regularization parameter. One can obtain values  by minimizing 

  This leads to the following 

representation: 

 
Here  is an averaging function. Since a point  is included in many overlapping 

regions  and values  for  are different for each region, the  final 

coefficients are found by averaging over all possible values of  

 
Guided filtering of color images involves inversion of  coefficient matrix in 

order to solve the equation (7) (see [12] for further details). If we set  then 

the guided filter preserves salient edges while smoothing the flat regions (edge-

aware filtering). In the simplest case of  being is a grayscale image, 

computing guided filter involves performing 4 smoothing operations 

 and it takes 33 smoothing operations for a color image if

  Which is why the choice of the smoothing operator  is crucial, since it 

determines the overall speed and quality of filtering. Authors of the guided filter 

[12] suggested employing classic  Gauss transform or box kernel method but 



Башкирова Д.Р., Йошидзава Ш., Латыпов Р.Х., Йокота Х. Быстрое L1-преобразование Гаусса для сглаживания 

изображений с сохранением границ. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 55-72. 

67 

prefer the latter due to its simplicity and speed despite the fact that box kernel 

produces undesired artifacts discussed above.   

We introduce the new approach for computing guided filtering where our  Gauss 

transform algorithm is employed for  instead of the box kernel method. As it 

was shown before, our algorithm gives a much higher quality of smoothing, and this 

allows us to eliminate smoothing of  in the equation (8):  

 
Thus, using our algorithm involves 2 operations of  compared to 4 operations in 

the original method if    (grayscale case), and 21 operations compared to 33 

operations if  and both of them are color images.  

We examined edge-aware filtering on color images, where the number of  is 

equal to 21 for the box kernel method and 10 for our approach (9 operations for 

smoothing of the coefficients and one operation for normalization). As seen on the 

Figs. 7 and 9, our approach with the reduced amount of smoothing operations  

gives quality of edge-aware filtering higher than [12] with the box kernel method, 

and is faster (0.24 and 0.28 sec for Figs. 9a and 9d respectively). 

We examine the differences of equations (8) and (9) in terms of filtering quality on 

Figs. 9 and 10, which show us that the box kernel method causes artifacts similar to 

linear filtering case.  

We also applied our approach for the detail enhancement filter defined by: 

 
where  is the  enhancement parameter. The experiments show that applying our 

approach for detail enhancement filtering gives high quality results (see Fig. 8). 

Fig.10: Edge-aware filtering results (σ=8, ε=0.04). a: input image, b-d: visualization of 

gradients |∇H|  of edge-aware  filtering via our approach, eq. (9)  and box kernel using eqs. 

(9) and (8) respectively. 

6. Conclusion 

In this paper
1
 we presented a novel and fast approximation method for L

1 
Gauss 2D 

image transforms. Series of numerical experiments have shown that our method is 

generally more accurate than the conventional methods and faster than the widely 

used FFT. We also demonstrated capability of the proposed method in image 

smoothing application where the conventional box kernel averaging and FFT both 

suffer from undesirable artifacts. Despite our method is slightly slower than the 

separable implementations of 1D algorithm [11], this approach can be efficiently 

used for non-uniformly distributed points. 

                                                           
1 It is an extension of our previous work [16]. The main difference from [16] is the novel 

approach to joint image filtering and its numerical experiments. 
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We have also proposed a novel approach for improving the guided filtering [12] via 

our  Gauss transform and showed its advantages in terms of quality and speed 

over [12]. 

Our method is applicable only to uniformly distributed structures, such as images. 

Hence our future work includes extending the proposed method to higher-

dimensional nonuniform cases which can be done for example by using treelike 

structures. We also would like to investigate possible applications of the proposed 

method to various machine learning and image processing tasks, such as regression, 

segmentation, and registration. 

 
       (a) Input                   (b) L1 GT (#f: 10)               (c) Box (# f: 21) 

Fig. 7: Edge-aware filtering results (σ=8, ε=0.0016). 

 
(a) Input 

 
 (b) Edge-aware filtering  (c) Detail enhancement 

Fig. 8: Our results of edge-aware filtering and detail enhancement (σ=8, ε=0.04, τ=3). 
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(a) L1 GT (# f: 10)            (b) Box (# f: 9)                 (c) L1 GT (#f: 22)                (d) Box (#f: 21) 

 

(e) |∇H| L1 GT of (a)           (f) |∇H| Box of (b)             (g) |∇H| L1 GT of (c)         (h) |∇H| Box of (d) 

Fig. 9: Edge-aware filtering results (σ=8, ε=0.0016).   a: L1 Gauss transform with eq. (9), b: 

using box kernel with eq. (9), c:  L1 Gauss transform with eq. (8), d: box kernel with eq. (8). 

e-h:  visualization of |∇H| of the corresponding images. 

          

    (a) Input           (b)  |∇H| Our (#f: 10)    (c) |∇H|  Box (#f: 9)  (d) |∇H|  Box (#f: 21) 
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Аннотация. Преобразование Гаусса, также как и его дискретный аналог, является 

важнейшим инструментом во множестве математических дисциплин и находит свое 

применение во многих научных и инженерных областях, таких как математическая 

статистика и теория вероятностей, физика, математическое моделирование, машинное 

обучение и обработка изображений и прочие. Ввиду высокой вычислительной 

сложности  преобразования Гаусса (квадратичная сложность относительно количества 

точек и экспоненциальная — относительно размерности точек), необходимы 

эффективные и быстрые методы его аппроксимации, обладающие большей точностью 

по сравнению с существующими ныне методами, такими как Быстрое Преобразование 

Фурье или оконное преобразование. В данной статье предложен новый метод 

аппроксимации преобразования Гаусса для равномерно распределенный множеств 

точек (например, двумерных изображений), основанный на использовании 𝑳𝟐 метрики 

и метода разделения доменов. Такой подход позволяет значительно сократить 

количество вычислительных операций путем выполнения предварительных 

вычислений, и снизить вычислительную сложность метода до линейной. Результаты 

ряда численных экспериментов показали, что  разработанный алгоритм позволяет 

получить более высокую точность аппроксимации без потери скорости вычисления в 

сравнении со стандартными методами. Также в качестве примера применения 

предлагаемого алгоритма была разработана новая схема смежной фильтрации 

изображения. Было показано, что новый фильтр на основе быстрого 𝑳𝟏 преобразования 

Гаусса позволяет получить результат более высокого качества при сопоставимой 

скорости вычисления и при этом избежать появления нежелательных артефактов в 
результате обработки, таких как эффект ореола. 

Ключевые слова: фильтр Гаусса, распреледение Лапласа, быстрый метод 
аппроксимации 
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