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Abstract. Gaussian convolution and its discrete analogue, Gauss transform, have many
science and engineering applications, such as mathematical statistics, thermodynamics and
machine learning, and are widely applied to computer vision and image processing tasks. Due
to its computational expense (quadratic and exponential complexities with respect to the
number of points and dimensionality, respectively) and rapid spreading of high quality data
(bit depth/dynamic range), accurate approximation has become important in practice
compared with conventional fast methods, such as recursive or box kernel methods. In this
paper, we propose a novel approximation method for fast Gaussian convolution of two-
dimensional uniform point sets, such as 2D images. Our method employs L1 distance metric
for Gaussian function and domain splitting approach to achieve fast computation (linear
computational complexity) while preserving high accuracy. Our numerical experiments show
the advantages over conventional methods in terms of speed and precision. We also introduce
a novel and effective joint image filtering approach based on the proposed method, and
demonstrate its capability on edge-aware smoothing and detail enhancement. The
experiments show that filters based on the proposed L1 Gauss transform give higher quality
of the result and are faster than the original filters that use box kernel for Gaussian
convolution approximation.

Keywords: Gaussian smoothing, Laplace distribution, fast approximation algorithms.
DOI: 10.15514/ISPRAS-2017-29(4)-4

For citation: Bashkirova D.R., Yoshizawa S., Latypov R.H., Yokota H. Fast L1 Gauss
Transforms for Edge-Aware Filtering. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017,
pp. 55-72. DOI: 10.15514/ISPRAS-2017-29(4)-4

55



Bashkirova D.R., Yoshizawa S., Latypov R.H., Yokota H. Fast L1 Gauss Transforms for Edge-Aware Filtering. Trudy
ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 55-72.

1. Introduction

Gaussian convolution is a core tool in mathematics and many related research areas,
such as probability theory, physics, and signal processing. Gauss transform is a
discrete analogue to the Gaussian convolution, and has been widely used for many
applications including kernel density estimation [1] and image filtering [2]. Despite
its reliable performance and solid theoretical foundations, Gauss transform in its
exact form along with other kernel-based methods has a drawback — it is very
computationally expensive (has quadratic computational complexity w.r.t. the
number of points) and hard to scale to higher dimensions. Which is why there have
been many attempts to overcome these problems by creating approximation
algorithms, such as fast Gauss transform [3], dualtree fast Gauss transforms [4], fast
KDE [5], and Gaussian kd-trees [6]. Also, box kernel averaging [7] and recursive
filtering [8] have been popular in computer graphics and image processing because
of their simplicity, see the surveys [9], [10] for numerical comparisons of these
approximation methods.

Since high bit depth (also dynamic range) images have become popular in both digital
entertainment and scientific/engineering applications, it is very important to acquire
high approximation precision and to reduce artefacts caused by drastic truncation
employed in many conventional methods focused on computational speed. One of the
highly accurate methods is called fast L* Gauss transform approximation [11] based on
using L* distance instead of conventional L? Euclidean metric. This L* metric preserves
most of the properties of the L? Gaussian, and is separable, hence it allows to perform
computations along each dimension separately, which is very beneficial in terms of
computational complexity. Also, L* Gaussian has only one peak in Fourier domain at
the coordinate origin, and therefore its convolution does not have some undesirable
artefacts that box kernels and truncation methods usually have. However, this
algorithm works only on one-dimensional (1D) point sets, although it can be extended
to uniformly distributed points in higher dimensions by performing it separately in
each dimension. In order to be able to acquire Gauss transform for non-uniformly
distributed two-dimensional points and to further generalize it to higher dimensional
cases, we need to extend existing method [11] to the 2D uniform case.

In this paper we propose a novel approximation method for fast Gauss two-
dimensional (2D) image transform. Our method is based on extending the fast L*
Gauss transform approximation on uniformly distributed 2D points that allows to
perform Gaussian convolution quickly while preserving high accuracy. We
demonstrate that efficiency of the proposed method in terms of computational
complexity, numerical timing, and approximation precision.

We also successfully applied our method in the novel filtering approach based on
combining the approximated L' Gauss transformations into the so-called guided
filter [12] (joint image filtering via ridge regression). Our approach reduces
computational costs while providing higher quality results compared to the
conventional one. We show the application to edge-aware smoothing and image
detail enhancement.
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2. Fast L1 Gauss Transform

In this section, we briefly describe the 1D domain splitting algorithm [11] employed
for fast L* Gauss transforms.

Consider the ordered point set X = {;}Y |, 2; € R, 2; >x,;_y, Vi = 2, N. Each
point z; has a corresponding value I; € R, e.g. pixel intensity in case of images.
The L* Gauss transform for each point in set X is given by

xr ) = ZG(J‘?? — :II.E)Ij. G(T) — EXp(—%). (1)

where G(x), X € R, is a L' Gaussian function (also called Laplace distribution in
statistics) with its standard deviation . It is convenient to decompose L' norm by
splitting its domain by using the point x; such that

oy — ] = lzj — @] = vy — @ ifay <@y <ay,
J ' |.I?i7.171‘7‘{1'j7.’(?1| if.T‘ES.TjSI,;.

2

Thus, Gauss transform (1) using the equatlon (2) becomes

J(z;) =1+ G(z ZG(TFTI)
1 N
' ﬁzc(*)f N

Such representation (3) allows to reduce the amount of computational operations,
since values G(x; — 1), ﬁ and the sums X1 LG(z: —a1) and
Zf_l m can be precomputed in linear time. However, using the equation (3)
may imply some numerical issues, such as overflow, if the distance between 1 and
x;, L € {i,7} isrelatively large. To avoid such issues, this algorithm introduced
certain representative points (poles) {ax € R} instead of using the single point 1,
where the distance between «j and z; is smaller than the length that causes the
numerical instability. Hence the equation (3) becomes more complex form, a highly
accurate truncation can be applied where G(ay — ;) is numerically equal to zero,
see [11] for further technical details.

Although this algorithm can be used in case of multidimensional images by
applying it separately in each dimension, this separable implementation approach is
not applicable to nonuniformly distributed high-dimensional point sets. Therefore,
we present a novel and natural extension of the domain splitting concept on 2D
cases (images) in the following sections.
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3. Two-Dimensional Algorithm

For a given 2D point set X = {x; }¥ |, x; = (4, ;) € R?, L' distance between two
points in R? is given by |x; —x;| = [2; —xi|+[y; —yil, thus the Gauss transform (1)
is represented by the formula:

N
|z — il + |y; — vl
J(x;) = Zcxp(f z 5 1 M

i=
Domain splitting (2) for 2D points is given by

laj — 21| = |2 — o[+ |y — | = |y —wn| ifxi€ Dy
|2; — @] = |oj — a1 + |y — w1l — |yi —wn|  ifx; € Dy
|zj — w1| = @i — 1| + |y — | — ly; —wn|  if xi € Dy
|xz'_$l|_txj_ml|+|yz'_y1|_‘yj_yl‘ if x; € Dy,
see Fig. 1a for geometric illustration of the domains.

|l — x| + |y — vil =

D, . D

Dy D? Ds Dy

(a) Single pole x; case (b) Multipole {a} case
Fig. 1. lllustration of 2D domain splliting.

Using the above decomposition, Gauss transform is represented similar to (3):

J(x5) = 1)) + Fla,) F(y;) Z muxan
x; €D, (j)
F(ugx; PO 10+ ) ;UF(
Z I mz )
x;€D4(5) (4)
where F(z;) = G(z; — :c1) and F(yj) G(y; — yl)
Precomputation and storage of values = F—“J—) and 71) require O(4N) operations

and O(4N) space, and all the subsequent sums F(z; ) F(y;). ?Efg{ can be iteratively
computed in O(N) operations. Gauss transform for all points using the formula (4)
requires O(10N) as opposed to employing the separable implementation of equation
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(3) for O(6N) operations. Since computing the Gauss transform using the equation
(4) is numerically troublesome, it is reasonable to divide the space into smaller
groups and perform computations separately, as it was proposed in [11]. Let us
introduce a novel 2D multipole approach for solving this problem.
Consider a set of poles {ax}M ., a = (ag,br) € R2. The distance between
points using poles oy is given by

where

Xi = Xj|

Dy = {xilz: € D¥,y; € DV}, Dz = {xilz: € D,
Dy = {x;|x; € D3,y; € DY}, D4 = {x|x; € DY,
Ds = {xi|x; € D3, y; € DY}, D = {x;|z; € Dj,

D7 = {x;|z; € DY,y € D':}Dg = {x;|z; € Dj.

|xi —ag| — |z; — ak| + |yi — bk| — [y
lzj — ag| = @ — ag| + |y — bl = |y;
lzi — ag| + |25 — ar] + [yi — bl = y;
|zi — ak| — |zj — ak| + y; — bx| — yi
[z — ak| — |v; — ag] + [y — bl — v

lei — ak| + |z; — ak] + |y; — be| — |vi
|w; —ag| — |o; — a| + |y — bi] + |y;
|5 — ak| — |z — ak| + |yi — bie| + |y;

Uzi — ak| + |5 — ar] + lyi — bel + |y

Dy = {xi|x; € D3, y; € Di},

—l’);.-,‘ if x; € Dy
—bg| ifx; € Dy
— by ifx; € Dy
— by if x; € Dy
—by| ifx; € Dy
— ()A:‘ if x; € Dg
— by ifx; € Dy
—bg| ifx; € Dy

— f)k‘ if x; € Dy,

yi € DY},
y; € DY},
y; € DY},

vi € Di},

DY = {zjlap <z <zxjorxy <y <ap},
D3 = A{wilax <zj <apora; <xj <agl,
Dy = Azl <ap <zjor zy <ap < i},
DY = Ayilbr <wyi <yjory; <y <bi},
Dy = Ayilbk <yj <wiory <y; <bil,
DY {wilys < bx <yj; or y; < b < wi},

see Fig. 1b for geometric illustration of the domains with their poles. The point X;
is assigned for one representative pole defined by
ak(x;) = max{aglay < ;b <y},

which is the closest pole to x; that has absolute values of coordinate smaller than

Xj.

For each point x;, the multipole L' Gauss transform is given by the equation (5),
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_ 1 \ (y;)
o) =%+ () 9(”’)L<ﬂ 56w GEew 2, Slegl + G2 Z;, Gl G0 -

FY A Y B Y oy Y Dl Y EL (&)
apeDy agpeDy ap€Dy oDy ap D6
A(k+1)—1 Alk+1)-1 g(_! ) v\(k+l) 1
A =0)0) 3 GGl Bi=G@)w) 3 gk ( Z Gle)Gy!
xi=A(k) x:=A(k) * xi=A(k)
Alk+1)—1 A(k41)—1
i _ 6t G(x:) i _ Glaj)
D} = 6(z)6 () X‘Z:,m O 1% XZW GG (w1
where g(;) = Gz; —ax). Gly;) = Gly; — be),
and A(-) is an index function defined by
Ak) = min (xjlar < 2z; < agyq and by <y < bpga).
1<j<N

For the sake of simplicity, we assume that the numbers of poles in 2D are same M.
Following [11], M and the poles {« } are given by

{ar)} = (b} = {0,1,2, ,A([ju —1)}w

w=max(|x; — x| |y —ynl|), M =

(6)

w
[Lpa 10g(MAX)]
where [-] is the ceiling function, MAX is the maximum value of precision (e.g.,
double floating point: DBL_MAX in C programming language), and ¢ is a user-
specified parameter (0.5 is employed in our numerical experiments). The above pole
selection scheme leads to max(G(ars1 —ak), G(brky1 — b)) < MAX  Which
theoretically guarantees numerical stability in our method.
When the distance between poles is determined by the equation (6) and G (ar, —x;)
becomes numerically zero if |ax —x;| >Z% - we can efficiently truncate Gauss
transform by approximating the values:

ZA‘L% Z A ZBiz Z Bi,

arp€Dg ar€u(Dg) ar€Dy ar€p(D7)
J o J J J
E Ci =~ E cy, E Dy ~ E Dy,
areDsg ap€p(Ds) apeDsg ap Ep(D3g)
J J
Y B~ Y E]|
ap€Dsg apcp(Dg)

where p(D.) = {x;i € D | or(x;) — ar(xi)| < iz}

In other words, instead of computing terms Aj, B, C{,Di.E] across all the
corresponding point sets, we consider only the neighbouring points, which allows to
avoid nested loop structures in our implementation and speed up the computational
process.

As in the 1D algorithm [11], the terms can be iteratively computed in linear time.
Assume that an image consists of vV x v/N pixels and the number of poles along
each dimension is M, total complexity of our method is O(16~N +2¥X 14, ) which
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is a little bit slower than the separable implementation employed in [11] that
requires O(12N +2v/N + M) operations.

N

(@) Inputimage 1 (b) Input image 2

Fig. 2. Input images.

4. Numerical Experiments

We held all the experiments on Intel Core i7-6600U 2.60 GHz dual core computer
with 16GB RAM and a 64-bit operating system. We compared the multipole version
of our algorithm with box kernel (Box) using moving average method [7], the 1D
domain splitting (YY14) with separable implementations [11], and Fast Discrete
Cosine Transform (FDCT) via the FFT package [13] well-known for its efficiency.
To evaluate the performance of the methods mentioned above we used randomly
generated 2D point sets with 10 different sizes from 1282 to 5120? and 10 various
values of ¢ = 5,10,...,50. The radius for the Box method was chosen equal to ¢. The
timing results (see Fig. 5) show that our method is slightly slower than the 1D
domain splitting (YY14) despite its theoretical complexity is much larger. It is
worth noticing that the implementation of our method can be further improved by
using GPU-based or parallel computing techniques.

However, the accuracy evaluation results (see Table 1) show that our method
achieves best approximation quality among the discussed methods. We evaluate the
precision using E,., and PSNR measures. Consider /¢ is the exact result of 71!
Gauss transform, [® is the approximation achieved by a given algorithm, and
d; = |If — I?|. Emax is calculated using formula

E = max d;.
max 151SN T

We also use peak signal-to-noise ratio (PSNR) [2] to measure the performance of

our algorithm according to the equation
N

PSNR = —10log(} *(

i=1
We performed linear image smoothing by the following normalized convolutions
for each color channel:

(.il'

I I ¥
max (I, [:‘}) ):
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JGx—y)y)dy J(x;)
] G(x—y)dy Z:V G(xj —x;)
where the denominator is also obtained by our method convolving ! Gaussian
with the image whose intensity is equal to one everywhere.
Fig. 3 illustrates the smoothing results using naive implementation (Exact), our

method, Box kernel, and FDCT algorithms. The gradient magnitude VI of
smoothed images on Figs. 4 and 6 show that, in contrast to FDCT and box kernel,
our method does not produce some undesirable artifacts and is extremely close to
the exact implementation.

Table 1. Precision and speed evaluation results (speed measured in Mpix/sec).

Our YY14 FDCT | Box

Emax 1.8x10° 1 3.8x10° W0 0.44 | 3.73

PSNR 291.05 281.81 58.98 | 41.45

Speed 7.19 9.76 3.37 | 8.58
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(a) Exact (b) Our
-
(c) Box (d) FDCT

Fig. 3. Results of smoothing (¢ = 20), where the input image is given by Fig.2a.
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) FDCT

(e) Exact (f) Our

v ira»”

L i
(9) Box (h) FDCT
Fig. 4: Visualisation of | M| for comparison of artifacts (¢ = 20).
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10 I

—&— Qur YY14 4= Box == FDCT

" / &

Time, sec
3

A

S
e

o% l'd/ﬁzl

10 15 20 25
Image sixe, Mpix

(4]

Fig. 5: Timing with respect to image size (averaged by o).
- R - - R

jl i+ | lﬂl i+ |

- - ol -
(a) Exact (b) Our
’ ¥
I b
(a) Exact (b) Our (c) FDCT

Fig. 6: Visualisation of | M| for comparison of artifacts of FDCT (¢ = 20), where the input
image is given by Fig.2b.

5. Edge-Aware Filtering
The proposed algorithm for Gauss transform approach can be applied in various
computer vision tasks. We present one of the possible applications of our method by
introducing the novel approach for improving the so-called guided filter [12].
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Guided filter is categorized into a joint image filtering technique consisting of two
input images where one of them is called guidance image, and reflects guidance
colors into the other input. One of the most popular joint image filters is the joint
bilateral filter [14] which averages the neighbouring colors using the weights that
depend on the guidance image. Guided filter is an approach for joint image filtering
that allows to overcome a problem with the undesirable gradient reversal artifacts
that joint bilateral filter suffers from. Besides edge-aware filtering, it has various
image processing applications such as matting, flash-noflash synthesis, HDR-
compression, and haze removal.
Consider a point set X = {x;}¥,, x; = (z;,%) € R%, a guidance image
g = g(x) € R, aninput image I(x;) € R, adesired output image H(x;) € R, and an
image region Q(x) centered at x. The guided filter is defined as the following
linear transformation:
H(y) =ag(y) + b,y € Q(x),
where a.b € R are the coefficients constant in ©(x) that depend on the input
image I. Such representation is very useful for image processing tasks, since it
preserves the gradient extrema VH = aVyg, and hence the edges of the guidance
image. The coefficients a and b are obtained using the linear ridge regression model
[15]:
K(a,b) = Y W(x—y)((agly) +b—I(y))* — ea®).
yeQ(x)

where W(x—y) is the weight that determines the importance of the point y in Q(x)
and € is the regularization parameter. One can obtain values a and & by minimizing
K(a,b): ;%K(u.b) =0 and 7‘;\%1\'((1, b)=0. This leads to the following
representation:

fUg) - fI)f(9) : :

= T = flgE+e b= f(I)—af(g) (7
Here f(«) is an averaging function. Since a point y is included in many overlapping
regions ©(x) and values « and b for y are different for each region, the final
coefficients are found by averaging over all possible values of y:
H(x) = f(a)g(x) + f(b). (8)

Guided filtering of color images involves inversion of 3 x 3 coefficient matrix in
order to solve the equation (7) (see [12] for further details). If we set I = g, then
the guided filter preserves salient edges while smoothing the flat regions (edge-
aware filtering). In the simplest case of I = ¢ and I being is a grayscale image,
computing guided filter involves performing 4 smoothing operations
(e.g. f(I), f(I%), [(a), F(b)). and it takes 33 smoothing operations for a color image if
I # g. Which is why the choice of the smoothing operator f(x) is crucial, since it
determines the overall speed and quality of filtering. Authors of the guided filter
[12] suggested employing classic 72 Gauss transform or box kernel method but
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prefer the latter due to its simplicity and speed despite the fact that box kernel
produces undesired artifacts discussed above.
We introduce the new approach for computing guided filtering where our L' Gauss
transform algorithm is employed for f(x) instead of the box kernel method. As it
was shown before, our algorithm gives a much higher quality of smoothing, and this
allows us to eliminate smoothing of f(«a) and f(b) in the equation (8):

H(x) =ag(x)+b 9
Thus, using our algorithm involves 2 operations of f(x) compared to 4 operations in
the original method if I = ¢ (grayscale case), and 21 operations compared to 33
operations if I # g and both of them are color images.
We examined edge-aware filtering on color images, where the number of f(*) is
equal to 21 for the box kernel method and 10 for our approach (9 operations for
smoothing of the coefficients and one operation for normalization). As seen on the
Figs. 7 and 9, our approach with the reduced amount of smoothing operations f(x)
gives quality of edge-aware filtering higher than [12] with the box kernel method,
and is faster (0.24 and 0.28 sec for Figs. 9a and 9d respectively).
We examine the differences of equations (8) and (9) in terms of filtering quality on
Figs. 9 and 10, which show us that the box kernel method causes artifacts similar to
linear filtering case.
We also applied our approach for the detail enhancement filter defined by:

D(x) = I(x)+ 7(1(x) — H(x)),

where 7 is the enhancement parameter. The experiments show that applying our
approach for detail enhancement filtering gives high quality results (see Fig. 8).

Fig.10: Edge-aware filtering results (6=8, £=0.04). a: input image, b-d: visualization of
gradients | 'H| of edge-aware filtering via our approach, eq. (9) and box kernel using egs.
(9) and (8) respectively.

6. Conclusion

In this paper" we presented a novel and fast approximation method for L* Gauss 2D
image transforms. Series of numerical experiments have shown that our method is
generally more accurate than the conventional methods and faster than the widely
used FFT. We also demonstrated capability of the proposed method in image
smoothing application where the conventional box kernel averaging and FFT both
suffer from undesirable artifacts. Despite our method is slightly slower than the
separable implementations of 1D algorithm [11], this approach can be efficiently
used for non-uniformly distributed points.

! It is an extension of our previous work [16]. The main difference from [16] is the novel
approach to joint image filtering and its numerical experiments.
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We have also proposed a novel approach for improving the guided filtering [12] via
our L' Gauss transform and showed its advantages in terms of quality and speed
over [12].

Our method is applicable only to uniformly distributed structures, such as images.
Hence our future work includes extending the proposed method to higher-
dimensional nonuniform cases which can be done for example by using treelike
structures. We also would like to investigate possible applications of the proposed
method to various machine learning and image processing tasks, such as regression,
segmentation, and registration.

(b) L*GT (#f: 10

(@) Input (c) Box (#f: 21)

Fig. 7: Edge-aware filtering results (6=8, ¢=0.0016).

(b) Edge-aware filtering (c) Detail énhne

ih

ment

Fig. 8: Our results of edge-aware filtering and detail enhancement (6=8, ¢=0.04, t=3).
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(@) L'GT (#f: 10) (b) Box (#: 9) (©) LGT (#f: 22) (d) Box (#f: 21)
V% \ ’/ \ v/ \ / \
CER o Bt w61 Gk
/ || 7 \ ‘1\
() | TH| L:GT of (a) (f) | PH| Box of (b) © |H|L'GTof ¢)  (h) | 7H]| Box of (d)

Fig. 9: Edge-aware filtering results (6=8, £=0.0016). a: L' Gauss transform with eq. (9), b:
using box kernel with eq. (9), ¢: L' Gauss transform with eq. (8), d: box kernel with eq. (8).
e-h: visualization of | 'H| of the corresponding images.

(a) Input (b) |H| Our (#f: 10) (c) | H| Box (#f: 9) (d) |[/H| Box (#f: 21)
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Annotamus. [IpeoOpazoBanne ["aycca, Takke Kak M €ro AWCKPETHBI aHAJOT, SBISETCS
BOKHEHIINM MHCTPYMEHTOM BO MHOXKECTBE MaTEMAaTHYECKHX IHCLMIUIMH M HAXOIHUT CBOE
IpUMEHEHHEe BO MHOTHMX HAay4YHBIX M HHXXEHEPHBIX OOJIACTSIX, TAKMX KaK MaTeMaTHYecKas
CTaTHCTUKA U TEOPHs BEPOSTHOCTEH, (pr3nka, MaTeMaTHIECKOe MOJEINPOBAHNE, MAIIHHHOE
oOydenne u o0paboTka H300pakeHHH W Tpouyde. BBUAY BBICOKOH BBIYHUCIUTEIHHON
CIIOXHOCTH TpeoOpasoBaHus ['aycca (KBagpaTHUHAs CIIOXKHOCTh OTHOCHTENIFHO KOJTMYIECTBA
TOYEK ¥ OKCIHOHCHIMAIbHAs — OTHOCHTEJIBHO pPa3MEPHOCTH TOYEK), HEOOXOIMMBI
3¢ (G eKTHBHBIC U OBICTPBIC METOBI €0 AMMPOKCHUMAIINH, 00IaIatoNie OOIbIICH TOYHOCTHIO
10 CPAaBHEHHMIO C CYLIECTBYIOLIMMH HBIHE METOJIaMH, TaKUMH Kak brictpoe [IpeoOpazoBanne
Oypre WM OKOHHOE mpeoOpa3oBaHWe. B JaHHON cTaThbe NpeIOKEH HOBBI METO]
anmpoKcuManuu mpeobpazosanus [aycca i paBHOMEPHO pPAaCHpeeleHHbII MHOXKECTB
TOUEK (HampHuMep, IBYMEPHBIX M300paKeHH i), OCHOBAHHBIH Ha HCIIONb30BaHMH L2 MeTpuKH
U MeTo/la pasfesicHHs] JOMEHOB. Takod IOIX0J TO3BOJISIET 3HAYUTENBHO COKPAaTHTh
KOJIMYECTBO  BBIYUCIHUTENBHBIX  OMEpalii IyTeM  BBIIOJHEHUS  IIPEIBApPUTEIBHBIX
BBIUMCIIEHUH, U CHU3UTh BBIUMCIUTENBHYIO CIOXHOCTh METO/a /10 JUHEWHOU. Pesynprarsl
psla YHCICHHBIX SKCHEPHMEHTOB IIOKA3ald, YTO Pa3pabOTaHHBIN aNTOPUTM IIO3BOJISET
HONY4YHUTh OoJiee BBICOKYIO TOYHOCTH aNMPOKCHMANUK 0€3 IMOTepU CKOPOCTU BBIUHCICHHS B
CPaBHEHHH CO CTaHAAPTHBIMH MeTojaMmu. Tarke B KadecTBe NpHMepa INPHMEHEHUs
IpelaraeMoro airopuTMa Obula pa3pa0oTaHa HOBas CXeMa CMEXHOW (HUIbTpaluu
m306pakeHus. BBIIO MOKa3aHo, 4TO HOBEIA (GUILTP Ha ocHOBe GhicTporo L mpeoGpasosannus
laycca MO3BOJSIET MONYYHTHh PE3YyNbTaT Ooyiee BBICOKOTO KadyecTBa IPH COMOCTaBUMOMN
CKOPOCTH BBIYHCIICHUSI M IIPU 3TOM HM30€KaTh IOSIBJICHHs HEXeJaTeJbHBIX apTe(akToB B
pe3ynbrare 00paboTKH, TakuX Kak 3¢ dexT opeona.

KnwueBsie caoBa: ¢unetp [aycca, pacmpenenenue Jlammaca, OBICTPBIA  METOJ
AnNpOKCUMALIUH
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