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Abstract. The Metric Travelling Salesman Problem is a subcase of the Travelling Salesman
Problem (TSP), where the triangle inequality holds. It is a key problem in combinatorial
optimization. Solutions of the Metric TSP are generally used for costs minimization tasks in
logistics, manufacturing, genetics and other fields. Since this problem is NP-hard, heuristic
algorithms providing near optimal solutions in polynomial time will be considered instead of
the exact ones. The aim of this article is to experimentally find Pareto optimal heuristics for
Metric TSP under criteria of error rate and run time efficiency. Two real-life kinds of inputs
are intercompared - VLSI Data Sets based on very large scale integration schemes and
National TSPs that use geographic coordinates of cities. This paper provides an overview and
prior estimates of seventeen heuristic algorithms implemented in C++ and tested on both data
sets. The details of the research methodology are provided, the computational scenario is
presented. In the course of computational experiments, the comparative figures are obtained
and on their basis multi-objective optimization is provided. Overall, the group of Pareto-
optimal algorithms for different N consists of some of the MC, SC, NN, DENN, CI, GRD, CI
+2-Opt, GRD + 2-Opt, CHR and LKH heuristics.

Keywords: metric travelling salesman problem, heuristic algorithms, Pareto-optimality
DOI: 10.15514/ISPRAS-2017-29(4)-8

For citation: Avdoshin S.M., Beresneva E.N. The Metric Travelling Salesman Problem:
Pareto-optimal Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017. pp. 123-
138. DOI: 10.15514/ISPRAS-2017-29(4)-8

1. Introduction

The Travelling Salesman Problem (TSP) is one of the most widely known questions
in a class of combinatorial optimization problems. Essentially, to meet a challenge
of the TSP is to find a Hamiltonian circuit of minimal length. A subcase of the TSP
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is Metric TSP where all of the edge costs are symmetric, and they satisfy the
triangle inequality.

The methods for solving the TSP have been developed for many years, and since the
problem is NP-hard, it continues to be topical. The TSP has seen applications in the
areas of logistics, genetics, manufacturing, telecommunications and neuroscience
[1]. The most common practical interpretation of the TSP relates to the movement
of people and vehicles around tours, such as searching for the shortest tour through
N cities, school bus route planning, and postal delivery. In addition, the TSP plays
an important role in very large-scale integration (VLSI).

The purpose of this study is to determine the group of Pareto-optimal algorithms
among the set of selected ones for Metric TSP by criteria of run time and qualitative
performance.

Clearly, a study of this type is inevitably restricted by various constraints, in this
research only heuristic algorithms constructing near optimal solutions in polynomial
time will be considered instead of the exact ones.

The paper is structured as follows. First, the theoretical basis is described. It
presents definition of resource-efficient parameters, Pareto optimization and, at last,
the formulation of the aim of the project. Then the description of methods to be used
is provided with their prior estimates. After that the details of the research
methodology and expected results are mentioned.

2. Theoretical basis
In this paper, mathematical formulation of Metric TSP is adopted as stated here [2].

2.1 Parameters for Pareto-optimality

Let M be a set of selected heuristic algorithms for Metric TSP. There are two
parameters of resource-efficiency for m € M for each number of vertices N in data
set:

e f.(m,N) — qualitative performance;

e fi;(m,N) — running time.
Qualitative performance can be calculated using:

f(s) = f(so)
= —_— % 0,
fe(m,N) FG0) 100%,

where f(s) is the obtained tour length and f(s,) is the optimal tour length. The
values of optimal tour lengths are taken from the open libraries VLSI Data Sets and
National TSPs as the lengths of the best found (exactly) or reported solutions for
each of the instances [3] [4].
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2.2 Pareto-optimality

The algorithm my € M is said to be Pareto optimal if (vm € M) ((m = my) =

(f:0m) > fu(me)) V (f.m) > fi(m))).

2.3 The aim of the study
The aim is to find a set M, = {(Vm € M) ((m #mg) = (fum) > fi(mgy)) Vv

(f:(m) > ft(mo)))} of Pareto-optimal algorithms for Metric TSP by criteria of
time and qualitative performance.

3. Algorithms
Algorithms for solving the TSP may be divided into two classes:

e Exactalgorithms, and

e Heuristic (or approximate) algorithms.
Exact algorithms are aimed at finding optimal solutions. However, a major
drawback is connected with their time efficiency. It is a common knowledge that
there are no exact algorithms running in polynomial time. Thus, only small datasets
can be solved in reasonable time. For example, the 4410-vertex problem is believed
to be the largest Metric TSP ever solved with respect to optimality [3].
In this paper, some algorithms from a class of heuristic search algorithms will be
taken into account. They are designed to run quickly and to get an approximate
solution to a given problem.
Heuristic algorithms are subdivided into two groups. The first group includes tour
construction algorithms that have one feature in common — the tour is built by
adding a new vertex at each step. The second group consists of tour-improving
algorithms that, according to Applegate, °...take as input an approximate solution to
a problem and attempt to iteratively improve it by moving to new solutions that are
close to the original’. Full classification of heuristic algorithms has already been
presented in [2].
In order to restrict our investigation, it was decided to choose only three types of
tour improving algorithms — the most simple local-optimal method (2-Opt), the
most perspective one (LKH) and one of the best swarm intelligence methods —
algorithm qCABC based on bee colony agents.
The list of used algorithms for Metric TSP is as follows.

3.1 Nearest Neighbour (NN)

The key to NN is to initially choose a random vertex and to add repeatedly the
nearest vertex to the last appended, unless all vertices are used [5].
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3.2 Double Ended Nearest Neighbour (DENN)

This algorithm is a modification of NN. Unlike NN, not only the last appended
vertex is taken into consideration, so the closest vertex to both of endpoints in the
tour is added [6].

3.3 Greedy (GRD)

The Greedy heuristic constructs a path by adding the shortest edge to the tour until a
cycle with K edges, K < N, is created, or the degree of any vertex exceeds two [7].

3.4 Nearest Addition (NA)

The fundamental idea of NA is to start with an initial subtour made of the shortest
edge and to add repeatedly other vertices which are the closest to the vertices being
already in the cycle. It should be noted that insertion place is not specially
calculated. It is always added after the nearest vertex in the cycle. Algorithm is
terminated when all vertices are used and inserted in the tour.

3.5 Nearest Insertion (NI), Cheapest Insertion (Cl), Farthest
Insertion (FI), Arbitrary Insertion (Al), Nearest Segment
Insertion (NSI)

The start step of these algorithms is similar to NA (except for FI, where the longest

edge is found). Next, other vertices are added repeatedly using various rules.

Depending on the algorithm the vertex not yet in the cycle should be inserted so

that:

e In NIl itis the closest to any node in the tour;

e In Cl its addition to the tour gives a minor increment of its length;

e InFlitis the farthest to any node in the cycle;

e IN Al itis the random vertex not yet in the cycle;

e In NSI distance between the node and any edge in the tour is minimal.

The previous step should be repeated until all vertices are added to the cycle.

The feature of these methods is additional computation that selects the best place for
each inserting node [6] [8].

3.6 Double Minimum Spanning Tree (DMST)

DMST method is based on the construction of a minimal spanning tree (MST) from
the set of all vertices. After MST is built, the edges are doubled in order to obtain an
Eulerian cycle, containing each vertex at least once. Finally, a Hamiltonian circuit is
made from an Eulerian circuit by sequential (or greedy) removing occurrences of
each node [9].
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3.7 Double Minimum Spanning Tree Modified (DMST-M)

This algorithm is a modification of DMST. Unlike DMST, it is necessary to remove
duplicate nodes from an Eulerian cycle using triangle inequality instead of greedy
method.

3.8 Christofides (CHR)

This method is a modification of DMST that was proposed by Christofides [10].
The difference between CHR and DMST is addition of minimum weight matching
calculation to the first algorithm.

3.9 Moore Curve (MC)

This is a recursive geometric method. Vertices are sorted by the order they are
located on the plane. Only the two-dimensional example of Moore curve is
implemented [11]. Figure 1 shows the order of the cells after one, two and three
subdivision steps respectively [11].
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Fig. 1. The order for the Moore curve after 1, 2 and 3 subdivision steps

3.10 Sierpinski Curve (SC)

This algorithm is also included in the family of Space-Filling Curves combinatorial
algorithms as MC. SC is more symmetric than MC [12]. Figure 2 shows the order of
the cells after one, two and three subdivision steps respectively.

Fig. 2. The order for the Sierpinski curve after 1, 2 and 3 subdivision steps

3.11 2-Opt

The main idea behind 2-Opt is to take a tour that has one or more self-intersections
and to remove them repeatedly. In mathematical terms, edges ab and cd should be

127



Avdoshin S.M., Beresneva E.N. The Metric Travelling Salesman Problem: The Experiment On Pareto-optimal
Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 123-138.

deleted and new edges ac and bd should be inserted, if d(a,b) + d(c,d) >
d(a,c) +d(b,d) [13].

a c a C
2-Opt
d b 9,

Fig. 3. 2-Opt modification

3.12 Helsgaun’s Lin and Kernighan Heuristic (LKH)
LKH uses the principle of 2-Opt algorithm and generalizes it. In this heuristic, the

k-Opt, where k = 2..+/N, is applied, so the switches of two or more edges are made
in order to improve the tour. This method is adaptive, so decision about how many
edges should be replaced is taken at each step [14].

It should be noted that because of complexity of LKH algorithm, it was not
implemented by the authors of research. The original open source code [15] was
used to carry out experiments. All the parameters were not changed, so they were
used by default.

3.13 Quick Combinatorial Artificial Bee Colony (QCABC).

This is one of the Swarm Intelligence methods, which is based on colony of bees.
Algorithm suggests that all agents are divided into the three groups: scout bees
(looking for new random solutions), employed bees (keeping information and
sharing it) and onlooker bees (choosing the solution to explore) [16].

3.14 Estimates

f(s)
f TSO).
According to [1], for any k-Opt algorithm, where k < N/4, problems may be
constructed such that the error is almost 100%. So 2-Opt and LKH algorithms have
approximate upper bound 2. Upper-bound estimates and running times of the
algorithms are represented in Table 1.

Estimated upper bounds for the algorithms can be calculated as are the ratio o
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Table 1. Upper-bound estimates and running time of algorithms

# Algorithm Upper-bound estimate Running time
1 NN
5 DENN 0.5[log, N + 1] O(N?)
3 GRD O(N?logN)
4 NA o)
5 NI
6 Cl O(N?logN)
7 Fl 2
8 Al 27N
9 NSI O(N?)
10 DMST
11 DMST-M
12 CHR 3.1 O(N®)

2 N
13 2-Opt O(N?%)
14 LKH 2 O(N??)
15 MC
6 sC log N O(NlogN)
17 qCABC ? 0(N?)

4. Experimental research

This section documents details of the research methodology. The experiment is
carried out on a 1.3 GHz Intel Core i5 MacBook Air. It includes the qualitative
performance and the run time efficiency of the current implementations.

Heuristics are implemented in C++. Two types of data bases from an open library
TSPLIB are selected. The first one is VLSI data sets [3]. There are 102 instances in
the VLSI collection that range in size from 131 vertices up to 744,710 vertices. All
of these instances are tested. The first dataset is National TSPs, which includes 25
instances that vary from 29 to 71009 points [4].

There is one data set for each number of vertices for all input data. The integer
Euclidean metric distance is used, so coordinates of nodes and distances between
them have integer values. The distance d between some nodes v and w is calculated
as follows:

d(w,w) = [Ix@) = x> + [y(w) —yW) [ + 05|
The computational experiment corresponds to the following scenario:

Input: Algorithms, input datasets (VLSI Data Sets, National TSPs)
foreach tour construction and composite algorithm m
foreach tour improving algorithm m’
foreach dataset type DT from input datasets
foreach dataset D form DT

A WN R
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for i € {1..11} // tour construction stage
solution s = run algorithm m on D
if (1 > 1)
calculate f;(m,D), f,(m,D)
calculate f, . (m,D)
remember best solution s,
calculate o3} f;,(m, D))

calculate f,, (mD) = f—fl(m'D)+"1':ff1°(m'D)
if (m is composite) continue
for i € {1..11} // improvement stage on s,

solution s = run algorithm m’ on D

if (1> 1)

calculate f;(so +m',D), f;(so+m'D)

calculate f, . (so+m,D)
calculate o3} f;,(so +m', D))
calculate fta,,g(so"‘mI:D) :ft1(50+m ,D)+~1-(-)+-ft1u(50+m D)
calculate E(f;,,(mD)), E(fe,,.(5+m’D)) for all D
calculate a(fgmm(m,D)), a(fgmm(so+m’,D)) for all D
calculate max (f;mm(m,D)), max (fgmin(so+m’,D)) for all D

calculate min (f;mm(m,D)), min (fgmin(so+m’,D)) for all D

Fig. 3. Computational scenario

Metrics used in scenario have following meanings:

fe,(m, D) — qualitative performance of m (one iteration),

ft,(m, D) — running time of m (one iteration),

fermin Ms N) — best qualitative performance of m,

ftavg (m, N) — average running time of m (sec),

0(2321 ft,(m, D)) — standard deviation of running time estimates through
10 iterative runs,

E ( fermin M N)) — expected value of qualitative performance of m for
one DT,

o (fgmin (m, N)) — standard deviation of qualitative performance of m for
one DT,

max (fgmin (m, N)) ,min (fgmm(m, N)) —  maximum and minimum
values of qualitative performance of m for one DT.

Qualitative performance metrics are represented in Table 2. Table color scheme
varies from green (the best result in a column) to red (the worst value in a column).
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Table 2. Running time of algorithms

Algorithms E(f,) max f, min f, o(fe)

LKH 0,08% 0,23% 0,00% 0,07%
CHR + 2-Opt 6,14% 12,14% 3,47% 1,59%
GRD + 2-Opt 6,79% 10,82% 4,69% 1,57%
DENN + 2-Opt 11,06% 22,26% 4,39% 5,30%
NN + 2-Opt 11,89% 24,91% 3,90% 2,36%
CHR 12,60% 16,82% 9,31% 1,41%
Cl + 2-Opt 13,04% 21,86% 6,74% 2,83%
NI + 2-Opt 14,60% 29,66% 5,86% 6,33%
DMST-M + 2-Opt 16,08% 35,78% 4,80% 9,29%
GRD 17,31% 31,34% 10,30% 3,83%
NSI + 2-Opt 17,63% 33,65% 8,92% 6,87%
DMST + 2-Opt 19,08% 39,12% 6,91% 10,52%
Cl 20,28% 25,05% 12,46% 1,96%
DENN 22,82% 33,38% 11,97% 2,47%
NN 25,38% 32,68% 13,94% 2,62%
NA + 2-Opt 27,04% 57,90% 6,79% 17,84%
NI 28,07% 35,29% 14,89% 2,87%
FI + 2-Opt 28,90% 58,05% 4,01% 17,68%
DMST-M 32,46% 41,68% 18,55% 4,32%
SC + 2-Opt 36,20% | 166,45% 8,11% 31,69%
NSI 36,23% 48,17% 19,15% 5,46%
MC + 2-Opt 36,47% | 177,83% 6,21% 39,70%
DMST 40,09% 48,88% 33,16% 3,07%
Al + 2-Opt 50,23% 77,85% 5,26% 23,43%
NA 51,30% 59,23% 35,38% 4,67%
Fl 56,88% 66,09% 31,59% 5,98%
MC 64,49% | 242,41% 33,07% 41,08%
SC 66,16% | 246,64% 30,76% 42,13%
Al 85,20% | 100,92% 65,78% 6,81%

The time limit on algorithm’s running time is introduced. It is 11 800 seconds = 3
hours and 20 minutes, at the maximum. That means computational time for one
experiment cannot exceed 11 800 seconds * 11 runs ~ 36 hours ~ 1.5 days.

5. Results

Experimental results showed that algorithm qCABC takes a large amount of time
(more than ‘the slowest” CHR) and gives improvement in accuracy even less than
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‘the most rough’ 2-Opt. So qCABC as tour improving algorithm is admitted to be
“unviable”.

Running time

16 s====CHR + 2-Opt
14 ==CHR +qCABC
12
=]
210
o
E s
=
6
4
? /_/—/
0
SR D P P @D
N

Number of vertices, N
Fig. 4. Running time comparison of CHR + 2-Opt and CHR + qCABC algorithms.

We decided to select 10 pairs of data sets from VLSI and National TSPs with
similar number of vertices (see Table 3) to plot charts that illustrate Paretos.

Table 3. Pairs of input datasets from VLSI and National TSPs

VLSI National TSP
737 734
z 984 980
é" 1973 1979
B 3386 3496
2 7168 7146
5 10150 9976
3 14233 14185
E 16 928 16 862
z 22 777 22775
33203 33708

The charts for pair with N = 22 775 and N = 22 777 are shown below (see Fig. 5,
Fig. 6, Fig. 7, Fig. 8). The name of each TSPLIB instance is shown in chart title.
The horizontal axis represents the time performance of methods in seconds. The
vertical axis shows the gap between optimal and obtained solutions, expressed in
percent. Pareto-optimal methods are highlighted in red. The points which are
represented by Pareto solutions are bigger than non-Pareto-optimal solutions.

There are two charts (see Fig. 6, Fig. 8) where not all algorithms are compared.
These auxiliary charts are enlarged copies of their originals. Their role is to
graphically illustrate Pareto-optimal algorithms at scale-up.

Results on VLSI Data sets only are reported in more detail in [2].
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Fig. 5. Pareto-optimal algorithms for LSB22777.tsp (N = 22777)
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Fig. 6. Pareto-optimal algorithms for LSB22777.tsp (N = 22777), scaled-up
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Fig. 7. Pareto-optimal algorithms for VM22775.tsp (N = 22775)
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Fig. 8. Pareto-optimal algorithms for VM22775.tsp (N = 22775), scaled-up
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Pareto-optimal solutions, that can be suggested on the basis of both data sets only,
are shown in Table 4 and they are sorted in the order of increase of running time:

Moore Curve (MC);

Sierpinski Curve (SC) — this algorithm depends on type of input data, so
qualitative performance estimates are unstable;

Nearest Neighbour (NN);

Double Ended Nearest Neighbour (DENN);

Cheapest Insertion (CI) is Pareto-optimal if N < 400000 because of
introduced time limit; if N < 3 500 CI’s behavior fluctuates;

Greedy (GRD) — is Pareto-optimal if N < 30 000 because of memory

limits — w pairs of edges are needed to be kept simultaneously ;

Cheapest Insertion and 2-Opt (Cl + 2-Opt) — is Pareto-optimal if
30000 = N <100000;

Greedy and 2-Opt (GRD + 2-Opt) — is Pareto-optimal if N < 800;
Christofides (CHR) — is Pareto-optimal if N < 2 000;

Helsgaun’s Lin and Kernighan Heuristic (LKH) — this algorithm works

excellent if N < 55 000, however if input data size exceeds 55 000 than
time limit is met.

Table 4. Pairs of input datasets from VLSI and National TSPs

Algorithm Number of vertices, N (thousands)

(0;0.8) | [0.8;2) | [2;3.5) | [3.5;30) | [30; 55) | [55; 100) | [100; 400) | [400; 700)
MC + + + + + + i +
SC + + + + + + + +
NN + + + + + + + +
DENN + + + + + + + +
Cl + + + hts s 5 il
GRD s s i s
Cl +2-Opt T T
GRD + 2-Opt +
CHR + b
LKH + + + + +

The “+” sign means that the algorithm in the same row is supposed to be Pareto-
optimal at the range of vertices defined in the same column. The “+” sign shows
that experiments did not clearly define if it is Pareto-optimal or not.

6. Conclusion

The presented study is undertaken to determine what heuristics for Metric TSP
should be used in specific circumstances with limited resources.

This paper provides an overview of seventeen heuristic algorithms implemented in
C++ and tested on both the VLSI data set and instances of National TSPs. In the
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course of computational experiments, the comparative figures are obtained and on
their basis multi-objective optimization is provided. Overall, the group of Pareto-
optimal algorithms for different N consists of some of the MC, SC, NN, DENN, ClI,
GRD, CI + 2-Opt, GRD + 2-Opt, CHR and LKH heuristics.

In our future work, we are going to fine-tune parameters of LKH method using
genetic algorithms of search optimization. Further, it is possible to increase the
number of heuristic algorithms, to transit to other types of test data and to conduct
experiments using different metrics in order to ensure that a Pareto optimal group is
sustainable.

The practical applicability of our findings is to present Pareto optimal algorithms
that lead to solutions with maximum accuracy under the given resource limitations.
The results can be used for scientific purposes by other researchers and for cost
minimization tasks.
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MeTqueCKaﬂ 3agavdya KOMMuBosixKepa.
JKCnepumMmeHTanbHoOe uccrnegoBaHue I'IapeTo-
onTUMalibHbIX anNropuTmMoB

C.M. Agoowun <savdoshin@hse.ru>
E.H. Bepecnesa <katrinberesneva@yandex.ru>
Jenapmamenm npoepammuou undceHepuu,
Hayuonanvnolii uccneoosamenvckuti ynugepcumem “Buvicwas wikona skonomuxu”,
101000, Poccus, e. Mockea, yn. Macnuykas, 0. 20.

AHHOTanMs. 3agadya KOMMHBOSDKEpa — OJHA W3 BaXHEHIINX 3amad Teopudu TrpadoB U
KOMOWHATOPHOM ONTHMHU3AIIMH, CYTh KOTOPOU COCTOUT B HAXOXKICHHH FaMUJIBTOHOBA IUKJIA
HavMeHbIeH JUIMHBL Pa3paboTka METONOB IS pPEHICHUS 3a7adydl  KOMMHBOSIKEpa
OCYIIECTBIIACTCS Ha MPOTSHKCHHH MHOTHX JIET, W, MO-TIPSKHEMY, OCTAeTCS aKTYaIbHOM,
MOCKOJIbKY 3amada siBisercss NP-TpymHoi. PelieHHs NpPUMEHSIOTCS, B OCHOBHOM, ISt
MHUHAMH3AIAH TPOU3BOACTBCHHBIX M JIOTHCTHYECKHX 3aTparT W u3Iepkek. B pabore
paccMatpuBaeTCs YacTHBIA caydail OOIIel MOCTAaHOBKH 3a1aud KOMMHUBOSDKEpA, B KOTOPOM
BBITNOJIHAETCS. CBOMCTBO METPUKU — METpUUecKas 3ajadya KOMMHUBOsDKepa. Llenpio manHoM
paboTel sBIsIETCA oOmpenereHHe Tpynnsl [lapeTo ONTHMaNbHBIX aNTOPUTMOB PEUICHUS
METPHUYECKOH 3a1a4i KOMMHBOSDKEpPa M0 KPUTEPHSIM BPEMEHH PaObOTHl M TOYHOCTH PEIICHUS
B XOJIe DKCHEPUMEHTAILHOIO HCCENoBaHUsA. B CBS3UM ¢ TeM, 4TO 3ajadya KOMMHBOSDKEpA
spisiercsi NP-TpynmHO#H, B paboTe pacCMaTpUBAKOTCSA TOJBKO 3BPUCTHYECKHE AITOPHTMBI,
MO3BOJIAIONINE TIONYYHTh TMPUOIMKCHHBIC PEIICHHs 3a TMOJMHOMHAIbHOE BpeMs. B crathe
MPEJICTABIEHO KpPaTKOE OIMUCAHHE HCIOJIb3YEMbIX alTOPUTMOB PEUICHUS METPUUYECKON
3aMaud KOMMHUBOSDKEpa, yKa3aHbl HMX AamnpHOPHBIE TOYHOCTHBIE M BpPEMEHHBIC OIIEHKH.
IIpuBeneno ommcanne TIaHA OKCIEpUMEHTa. JIaHHBIMH IS OKCIIEPUMEHTAIBHOTO
WCCIICIOBAHUS TIOCTY KU 1Ba HA0OpA U3 OTKPBHITON OMOIMOTEKH NAHHBIX JJISI METPUIECKOU
3alaud KOMMHBOSKEPA, OCHOBAHHBIE Ha BBICOKO-WHTETPABHBIX BBIYHCIUTENBHBIX CXEMax
(VLS| Data Sets) u reorpaduueckux KoopauHaTax (BbICOTE W UIMPOTE) TOPOJOB B
pasmuunbix crpanax (National TSPs). B pesynbrare vcciieoBaHn BbISBIEHBI ONITUMAIIBLHbIE
no [Tapero anroput™msl A1 HAOOPOB AAHHBIX Pa3IUYHBIX pazmepHocTedt — 110 700 ThICSY
BepiuH. [ kaxmoro N B umcio [TapeTo-onTHMAaIbHBIX aITOPUTMOB BXOIAT HEKOTOPBIC U3
airoputMoB MC, SC, NN, DENN, CI, GRD, CI + 2-Opt, GRD + 2-Opt, CHR u LKH.
[IpuBenena Tabnuia, coaepixarias HHPOPMAIHIO O Pe3yNIbTaTax IKCIIEPUMEHTOB.

KinroudeBble ci0Ba: MeTpuueckass 3ajada KOMMUBOSDKEpa, 3BPUCTUUECKHH allOPUTM,
ontuManbHOCTH 10 [Tapero.
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