Mining Hybrid UML Models from Event Logs
of SOA Systems

K.V. Davydova <kvdavydova@edu.hse.ru>
S.A. Shershakov <sshershakov@hse.ru>
National Research University Higher School of Economics,
PAIS Lab at the Faculty of Computer Science,
20 Myasnitskaya st., Moscow, 101000, Russia

Abstract. In the paper we consider a method for mining so-called “hybrid” UML models,
that refers to software process mining. Models are built from execution traces of information
systems with service-oriented architecture (SOA), given in the form of event logs. While
common reverse engineering techniques usually require the source code, which is often
unavailable, our approach deals with event logs which are produced by a lot of information
systems, and some heuristic parameters. Since an individual type of UML diagrams shows
only one perspective of a system’s model, we propose to mine a combination of various types
of UML diagrams (namely, sequence and activity), which are considered together with
communication diagrams. This allows us to increase the expressive power of the individual
diagram. Each type of diagram correlates with one of three levels of abstraction (workflow,
interaction and operation), which are commonly used while considering web-service
interaction. The proposed algorithm consists of four tasks. They include splitting an event log
into several parts and building UML sequence, activity and communication diagrams. We
also propose to encapsulate some insignificant or low-level implementation details (such as
internal service operations) into activity diagrams and connect them with a more general
sequence diagram by using interaction use semantics. To cope with a problem of immense
size of synthesized UML sequence diagrams, we propose an abstraction technique based on
regular expressions. The approach is evaluated by using a developed software tool as a
Windows-application in C#. It produces UML models in the form of XML-files. The latter
are compatible with well-known Sparx Enterprise Architect and can be further visualized and
utilized by that tool.

Keywords: event log, process mining, hybrid UML model, UML sequence diagram, UML
activity diagram, reverse engineering.

DOI: 10.15514/ISPRAS-2017-29(4)-10

For citation: Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event
Logs of SOA Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.
DOI: 10.15514/ISPRAS-2017-29(4)-10

155

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

1. Introduction

Nowadays we use information systems everywhere. They are used not only at home
to increase the comfort of our life but also to support business processes. The
complexity of the systems is growing together with the complexity of processes and
tasks. Moreover, a lot of systems interact with each other. There is an increasing
chance of error as the complexity of the system increases. If the system finds these
errors, they are written into so-called event logs together with other information
about system execution. The logs store a lot of information during the work of the
system. On the one hand, manual processing of the logs is almost impossible
because of their size and lack of structure. On the other hand, the event logs are an
inestimable source of knowledge about real-life system behavior. Tools, which help
to obtain this knowledge in suitable form for analytics are extremely useful.
Different approaches, such as modeling, development within the standardized life
cycle, testing, quality assurance (QA), verification, etc., are applied to improve the
system quality and error correction. Using combinations of these instruments (for
example, testing and verification, modeling and reverse engineering with continuous
delivery) gives good results. New tools, modeling tools in particular, help to make
the process more convenient and more effective.

Models are built on different life cycle stages. In the classic approach, an architect
models an information system based on the customer‘s requirements. However, the
implemented system often differs from previously developed models because the
system is developed faster than its models. Developers may sometimes make
mistakes and may need to spend additional time on critical situations and deadlines.
This means that the design and implementation of some components is not
completed properly.

When there is no complete model of a system, reverse engineering techniques can
be applied to extract the necessary information from the system and build an
appropriate model. It allows us to obtain models of a real-life system automatically
or semi-automatically. These models correspond to a developed system rather than
to an initial plan and initial models. Such models aim both to understand a
structure/behavior of a real system and to eliminate any inadequacy of a real model
as compared to the initial model. This also makes it easier to fix errors in the
system. There are a number of approaches and tools aimed for this purpose. Most of
them require the source code of a system to perform analysis. It is not always
possible because of different reasons: the source code may not be available to
analysts; it is impossible to get the last copy of code or it can be lost. Moreover,
different work groups can develop different system components which complicates
centralized collection of source code.

Unlike existing reverse engineering approaches that use source code, we propose an
approach that works with system execution traces which can be extracted from
event logs. Our approach can be considered as a particular implementation of
Process Mining [1], a discipline aimed to discover, analyze and improve business

156

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

processes and their models. Our approach also includes features that are relevant to
software engineering. Hence, we refer to it as software process mining [2].

Process mining usually uses process models such as Petri nets, BPMN, Fuzzy maps,
etc. which are produced by applying different algorithms such as a-algorithm [1],
[3], [4], NLP-algorithm [5] or fuzzy miner [6] respectively. However, these models
are not perfectly suitable for software developers. In the software engineering area,
more specific approaches such as the Unified Modeling Language (UML) [7] are
more common. The most common approaches deal with static class diagrams,
statecharts, sequence and activity diagrams considering them as more descriptive
than other. According to UML 2.5, there are two groups of diagrams: structural and
behavioral. In this work we primarily focus on the behavioral group, in particular,
on sequence, activity and communication diagrams.

Modern approaches to the development of information systems make out small reusable
well-defined pieces of code, which are commonly refered to as services. Systems, using
services as a main component, are based on service-oriented architecture (SOA) [8]. Services
from heterogeneous SOA-systems are developed using different languages, environments
and tools, but they work in a single information space. Mining unified models of those
systems is a challenge and has some difficulties. For example, none of the popular reverse
engineering tools works with all languages used for web-service development [9]. As almost
all systems produce event logs which contain information about interesting system
components, it is possible to build models including all of these components. It simplifies the
process of reverse engineering and allows us to expand its application area.

In the paper, we consider event logs written by SOA-systems. Our goal is to expand
the applicability of UML-based models for SOA-systems by developing new
approaches and tools for mining such models from event logs. UML standard
describes different types of models which suit different modeling aspects of an
information system. Nevertheless, there are situations when analysts would like to
use expressive opportunities of several diagram types. UML 2.5 does not describe
such diagrams, and it does not forbid them either. In our paper, we propose a new
approach to UML-modeling, which includes mining a so-called hybrid diagram that
comprises elements of UML sequence and UML activity diagrams.

To illustrate the proposed approach, consider the following example.

1.1. Motivating example

We consider an event log (Table 1) produced by an online banking information system
with service-oriented architecture. The log contains a number of traces corresponding
to individual instances of a business process maintained by the information system.
Our goal is to obtain a UML model that represents some behavioral aspects of the
system from different perspectives [9].

Each row of Table I represents a single event. Columns represent attributes of the
log. Events are grouped in cases (by CaselD attribute); then, cases are represented in
the log by traces. Events are ordered by Timestamp attribute. Different components

157

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

of SOA are represented by other attributes such as Domain, Service/Process and
Operation. Domains contain services and processes while the latter consist of
operations [10].

Table 1. Log fragment L1. Banking SOA-system

CaselD | Domain Service/Process Operation Action | Payload Timestamp
user=a,
. . today=23.07.2015, 17:32:15
23 Account | Operations GetLastOperations REQ client=Maria, 135
manager=Julia
23 Account | CardInfo GetCardID REQ user=a, num=0 ;;632:15
23 Account | CardInfo GetCardInfo REQ num=0 ;;632:15
date=07/16,
name=MARIA 17:32:15
23 Account | CardInfo GetCardInfo RES GRISHINA. 267
id=15674839
_ 17:32:15
23 Account | CardInfo GetCardID RES res=15674839 297
23 Card Operations GetOperations REQ days=30 ;%32:15
23 Utils Calendar GetDate REQ days=30 %;32:15
23 Utils Calendar GetDate RES | res=23.06.2015 ez
. . res={BP Billing 17:32:15
23 Card Operations GetOperations RES Transfer} 513
. op=BP Billing 17:32:15
23 Card OperationData GetPlaceAndDate REQ Transfer 559
. op=BP Billing 17:32:15
23 Card OperationData GetPlace REQ Transfer 563
. res=RUS 17:32:15
23 Card OperationData GetPlace RES SBERBANK 571
ONLAIN PLATEZH
. op=BP Billing 17:32:15
23 Card OperationData GetDate REQ Transfer 575
. _ 17:32:15
23 Card OperationData GetDate RES res=20.07.2015 589
res=RUS
. SBERBANK 17:32:15
23 Card OperationData GetPlaceAndDate RES ONLAIN PLATEZH. 601
date=20.07.2015
_) _ 17:32:15
23 Account | Operations GetLastOperations RES res=succ 822
user=a,
. . today=23.07.2015, 17:40:18
25 Account | Operations GetLastOperations REQ client= Maxim, 345
manager=Julia
25 Account | CardInfo GetCardID REQ user=a 13;340:18
25 Account | CardInfo GetCard REQ num=0 121240:18
25 Account | CardInfo GetCard RES res=no cards 12240:18
25 Account | CardInfo GetCardID RES res=error 12540:18
. . _ 17:40:18
25 Account | Operations GetLastOperations RES res=no bounded cards 523

158

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

By applying a method [9] to the example log, we obtain a UML sequence diagram
as depicted in Figure 1 representing the overall process. The diagram contains all
possible details (excluding operation parameters) of the behavior of the system as it
is represented in the event log. Along with regular messages which connect two
different lifelines (depicted as vertical dash lines), the diagram also contains a
number of self-calls represented as labeled loop arrows, e.g. GetCardInfo,
GetCard. These self-calls are not important for studying the model from a more
abstract perspective. In contrast, they are important when modeling the process of
the individual service or another SOA component.

0 3) I) ‘cm Opemﬂon!‘

I
|
O GetlsstOperstions |

Utils::Calendar ‘ ‘Cald::()pelatmrmh‘

GetCargID

GetCardinfo

[P
__ leeCerdinio
GetCard

T T T e
_ _,GetCard

GetCardID
| _ SetCardD ——

alt GetOperations
T

GetDate

! GeiDate
GetOperatons ~ [[~TTTTTTTT7
[(S———————— === (i

GetPlaceAndDate

GetFlace

T
|
: -7

: _ _ | GetPlacs
|

' GetDate

|

|

T s
_ __GeiDate

E}<G eflastOperations

|

G<G siLastOpertions |
v

T

I3
I
|
|
|
|
|
|
|
|
}
O R A

Fig. 1. Usual UML sequence diagram mined from event log L1.

Thus, we propose to hide these calls on the general model with giving a reference to
another diagram. Note, that the hidden calls are restricted by one lifeline only. So,
using UML sequence diagram here loses its meaning, since only one agent is
involved. Therefore, it is convenient to model such behavior by using UML activity
diagrams, another type of UML diagram. Figures 2, 3 and 4 illustrate this idea and
represent a hybrid UML diagram combining the best features of two different model
types.

A distinctive feature of SOA, which is considered, is that processes call other
processes and services while services do not call other participants. To demonstrate
this feature, it is important to show the interaction between one selected service and

159

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

its direct services-neighbors which the service communicates with. A UML
communication diagram suits this purpose. = Example diagrams for
Card::Operations and Card::OperationData processes from example event
log are depicted in Figures 5 and 6 respectively. We can see that these processes are
called by other processes and call both different services and themselves.

We developed a tool that builds hybrid diagrams of UML sequence and activity
diagrams automatically. Moreover, the tool is able to build a UML communication
diagram for a selected SOA component.

‘ ‘Operati ‘ ‘ -ﬂlﬂ‘ﬂﬁ'\‘ Card::0) ‘ Utils::Calendar ‘ ‘Cald::opelahorﬂm‘
T T T T T
| | | | |
[:] GetlastOperations l : : : :
1 1 1 1
SetC i i i i
GetCard|D - | | |
| | |
| | |
ref | | |
Account-Cardinfo : : :
| | |
| | |
setc | | |
{____C_E‘:E_'d‘_p _____ | | |
L | | |
alt GetOperations - i i
: GetDate ! :
1 1
: GetDate :
GetOperations !
4 e 1 I
l 1 1
! GetPlaceAndDate ! !
| | | o]
| | |
I I I =
1 1 1
| | | y
| | | Card-OperstionDsts
| | |
| | |
1 | 1
e — |, CetPlacsndbete |]
[CetitOperations | | | | L
U 1 | | |
___________________ L el
i i [i i
D<EEILES\OpEIslian5 | : : : :
| | | |
1 1 1 1

Fig. 2. UML sequence diagram with hidden self calls. High-level diagram of a hybrid UML
diagram.

act Account::Cardinfo .~

GetCard

GetCardID
GetCardinfo

Fig. 3. UML activity diagram with an activity inside Account::CardInfo service.

160

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

act Card::OperationData /
H GetPlaceAndDate H GetPlace H GetDate l—';'(:)
end

start

Fig. 4. UML activity diagram with an activity inside Card::OperationData service.

1.2. Related work

Reverse engineering of behavioral UML diagrams is not a new area. There are a
number of works [11], [12], [13], [14], about building the UML diagrams based on
static source code analysis. Besides, there are some CASE tools [15], [16], [17],
[18], which can be used for reverse engineering of sequence and activity UML
diagrams. There is also a plug-in [19] for NetBeans development environment that
is able to build different types of behavioral models from Java source code.
However, all of the methods and tools mentioned above use static program analysis
(getting models from source code without execution) for their work. As it was
considered earlier, source code and all of its versions are not always available for
analysis. Hence, these tools and methods are useless in this case. Furthermore, none
of these tools is able to infer models from the code written in most popular
languages used for developing SOA information systems. Moreover, SOA
architectures are often developed with various programming languages. For
example, some modules can be written in C#, whereas others can be developed in
Java; they can interact with LAMP service, so a single CASE tool cannot produce
models for that system. Mining diagrams from event logs solves this problem.

sd Card::Operations -

Account: Card::Operations Utils::Calendar
Operations

Fig. 5. UML communication diagram for Card::Operations service.

5 :I Card: Operatlnn Data

Fig. 6. UML communication diagram for Card::OperationData service.

In [20], [21], [22], approaches to building models based on execution traces are
proposed. One related work [20] analyzes a single trace using meta-models of an
event log trace and a UML sequence diagram (UML SD). The trace includes
information not only about invocation of methods but also about loops and

161

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

conditions, which makes easier recognition of fragments such as iteration,
alternatives and options. However, logs of information systems do not usually
include this information, so it is necessary to modify the source code to apply this
approach.

There is a description of the mining UML sequence diagrams method based on
several execution traces in [22]. The authors propose to use a labeled transition
system (LTS) as an intermediate model to present one trace and an algorithm to
merge LTSs built by several traces. After that, the LTS is transformed into a UML
sequence diagram. Moreover, LTS can be used to build a Petri net that can then be
converted into a UML activity diagram [23]. This conversion possibility can be used
to apply different process mining algorithms for receiving a UML activity diagram.
The approach to mining hierarchical UML sequence diagrams is proposed in [9]
(see Section I11-D).

In [24], the authors describe a framework which allows not only behavioral but also
static UML diagrams to be built. Their framework generates execution traces by
itself from Java source code. After that, the framework is able to build UML activity
diagrams from traces, but it requires source code for its work.

Process mining proposes to use three abstraction levels for mining models for web
services interaction [25]: workflow, interaction and operation. At the operation
level, only one service is considered in order to look at its internal behavior and
functionality. At the interaction level, they consider not only one selected service
but also its direct callers and callees. Finally, the overall services interaction is
covered at the workflow level. We apply all of these levels to service-oriented
architecture in the paper.

Furthermore, research on service mining was described in [26]. The author builds
different Petri nets for different services (considered at the operation level) and then
combines them by places. Thus, he builds a generalized model which refers to the
workflow level.

The rest of the paper is organized as follows. Section Il gives definitions. Section IlI
introduces our approach to mining hybrid UML models. Section IV contains a
description of tool implementation. Section V concludes the paper and gives
directions for further research.

2. Preliminaries

P(X) is the powerset over some set X; A is a set of all possible string labels.
Definition 1. (Event log) Let e = (a4, a,, ..., a,) be an event, where a; is an i-th
attribute and n is a number of them. E is a set of events. ¢ =< ey, e,, ..., e, > is an
event trace where e, e,, ..., e, is an ordered set of events. Log = P(E) is an event
log which is a powerset of traces.

Definition 2. (UML Sequence Diagram) A UML sequence diagram is a tuple
Usp = (L, T,A,P,M,Ref,F), where:

162

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

e Tisaset of moments of discrete time, which determine a partial order over
diagram components.

o Lisasetof named lifelines. L = {l = (4, t)|1 € A, t €T}

e Als a set of activations mapped onto lifelines. a € A:a = (1, t, t.), where
lelty,t, €T t,<t,

e P c Aisasetof message parameters.

e Refisa set of interaction use (ref fragments) which group lifelines and hide
them interaction. ref € Ref : ref = (L',A),where L' c L,A € A
e M is a set of messages. m € M:m = (a,,t,A,a,, type), where a;,a, €
AURef,t €T,A€ P, type € {call,return}.a; = (I, t11,t12), Az =
(lz' l21' l22): tll < t21’t11 < t12't21 < t22
e F is a set of combined fragments of the diagram. F = {(frag, M")|M' <
M, frag € {alt, loop, opt, par}}
Figure 1 represents an example of UML sequence diagram. A lifeline is represented
as a vertical dashed line with its name at the top. An activation is represented as a
rectangle on a lifeline, which takes and emits messages (represented as arrows).
Message can be call and return and they contain text parameters. Messages inside
one fragment are ordered by time. Fragments contain a number of messages and can
contain other combined fragments. They are able to show alternatives, loops,
parallelisms and other control structures. Another type of fragment, ref fragments,
refer to other diagrams. Such diagrams can be both UML sequence diagrams and
UML activity ones.
Definition 3. (UML Activity Diagram) A UML activity diagram is a tuple Uy, =
(N,E,NT), where:
e NTis asetof node types. NT = {control,object, executable}
e Nisasetofnodes.n € N:n = (4, type), where 1 € A, type € NT
e Eisasetofedges. e € E:e = (n,n,), where ny,n, € N
Figure 3 represents an example of a UML activity diagram for Account: :CardInfo
service. Different node types have different meanings. Control nodes represent
different behavioral elements such as start, fork and decision. Object nodes
represent data (input and output) of an action. Executable nodes represent steps
(actions) of the modeling activity. There are three named executable nodes and four
control nodes (start, end, decision and merge) in Figure 3. Different control nodes
can impose limitations. For instance, start nodes cannot have incoming edges, end
nodes cannot have outgoing edges, decision and fork nodes can have only one
incoming edge but several outgoing ones; the opposite is true for merge and join.
Uy, is a set of all possible UML activity diagrams Uyp.
Definition 4. (Hybrid UML Diagram) A hybrid UML diagram is a tuple Uyp =
(Usp, AD,), where:
o Usp=(LT,A P, M Ref,F)isaUML sequence diagram.

163

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

e AD c Uy,
e f:Ref - AD is a function which maps ref fragments from a UML
sequence diagram onto corresponding activity diagram.
Figures 2, 3 and 4 illustrate an example of a hybrid UML diagram. Figure 2 is a
UML sequence diagram and represents a high-level diagram. It refers to UML
activity diagrams (Figures 3 and 4) using ref fragments.
Definition 5. (UML Communication Diagram) A UML communication diagram
isatuple Ucp = (Lep, Mcp), Where:
e LopcA is a set of named lifelines which represent interaction
participants.
e M.y is a set of messages. mep € Mep:mep = (13,15, 4), where 1,1, €
Lep, A € A.
Figures 5 and 6 provide examples of UML communication diagrams for two
different services.
U, is a set of all possible UML communication diagrams Up-
Definition 6. (Hybrid UML Model) A hybrid UML model is a tuple Ucp =
(Uyp, CD), where:
e Uyp isahybrid UML diagram.
e CDcUgp.
Figures 2, 3, 4, 5 and 6 represent a hybrid UML model built for example event log
L1

3. Mining Hybrid UML Models

The authors in [25] propose definitions of three levels of abstraction: operation,
interaction and workflow. The levels are used for consideration of web service
interaction. It motivated us to use different types of UML diagrams which
demonstrate features of these levels. In the following sections, we consider which
UML diagrams suit each abstraction level and why.

3.1. Operation and workflow abstraction levels

Operation level of abstraction shows what is happening inside one isolated service.
Activities outside the service are not considered at the operation level; the only
process participants are services. Using a UML sequence diagram leads to a large
number of self-calls and “snowball models”. 1t makes the diagram less readable and
less understandable. A UML activity diagram suits this purpose since it allows us to
demonstrate the complex relationships between operations inside a single
participant. Figure 3 shows an example of a UML activity diagram for service
Card: :OperationData.

A business process, provided by services, is represented at a workflow abstraction
level. There are a lot of participants, so it is useful to use a UML sequence diagram

164

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

for this level. The diagram is suitable to present not only a sequence of business
process actions but also participants of this process and their interaction. An
example for event log L1 is depicted in Figure 1.

To bind different abstraction levels, it is necessary to connect them. Our proposal is
to use hybrid UML diagrams to represent and connect operation and workflow
abstraction levels together. A UML sequence diagram is used to represent a
business process at a workflow abstraction level. The diagram contains special
objects, ref fragments, which make a connection to corresponding UML activity
diagram. Every such activity diagram models the behavior of a single service. An
example of considered hybrid diagram is presented in Figures 2, 3 and 4.

Input : an event log Log;

an attribute name with REQ/RES value Agrp;

a set of attributes for mapping onto lifelines Ay;

a set of attributes for mapping onto message parameters
A

a case ID which defines trace for which it is necessary to
build model caseld,;

a set of regular expressions for merging diagram
components Lrg ;

Output: Uy = (Ugp, CD) — hybrid UML model;

begin

/* Split event log into several
parts */
Logy, Log, < splitEventLog(Log, AL, ArR);
/* Build activity diagrams using
a-algorithm [3] */
AD + buildADsAlpha(Log,);

USD —
buildSD(Logw, AD, Lrg, AL, Am, ARR, caseld);
CD + buildCDs(Logw, AL, ARR);

return Upr;

Algorithm 1. Building a hybrid UML model Uy,

3.2. Interaction abstraction level

This level shows interaction of one selected service or process with its nearest
neighbors. For a given service, its nearest neighbors are caller and callee services. A
UML sequence diagram does not fully suit for representing this level as well as an
activity diagram. In the former case, a UML sequence diagram contains a time
perspective on which no relation can be mapped. Thus, this leads us to have a
“blind” diagram. In the latter case, it does not support multiple participants which is
important for this abstraction level.

We propose to use UML communication diagrams for depicting processes occurring
in SOA system at interaction abstraction level. An example of such a diagram for

165

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP

RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

Card::Operations and Card::OperationData from an event log example is

presented in Figures 5 and 6.

Input : an event log Log;
a set of attributes for mapping onto lifelines Az;
an attribute name with REQ/RES value Agpg;
Output: Log,, — a part of an event log which contains
interaction between different services;
Log, — a set of event logs (parts of initial event log).
Each of them contains events related to an individual
service;
Data: f: K — P(V), where K is a set of keys and
P(V) is a set of value sets;
begin
/* Get lifeline names from an event
log */
K + getLifelineNames(Log,AL);
for o € Log do
o 0
/* stack - stack with nested
events */
stack + 0;
for i + 1 to |o| do
e+ ali];
f(getLifelineName(e, AL)) +
f(getLifelineName(e, AL)) U{e};
if isRequest(e, Agg) = true then
€prev < Stack.peek();

i =0\ getLifelineName(e,AL)! =
getLifelineName(eprey, Ar) then
| o' +d'Ufeh
stack.push(e);

if isRequest(e, Arr) = false then

| stack.pop();

| Logw + Logw U{e'}:
for k € K do

| Log, ¢ Log, U{f(k)};
| return Logy, Logo;

Algorigm 2. Splitting of an event log into
several parts splitEventLog

166

Input : an event log Log; a set of UML activity
diagrams AD which Ugp will be refer to;

a set of regular expressions for merging diagram

components Lgg a set of attributes for mapping onto

lifelines Ay,; a set of attributes for mapping onto
message parameters Aps; an attribute name with

REQ/RES value Agp;

a case ID which defines trace for which it is necessary to

build model caseld;

Output: Usp = (L, T, A, A, M, Ref, F) — UML
sequence diagram referring to UML activity
diagrams;

begin

/* Get lifelines from event log */

L + mapLifelines(Log, AL) ;

if caseld = 0 then

isAlt + true;
caseld +
getCaseIdOfLongestTrace(Log);

else
L isAlt + false;

/* Get trace with case ID which is
equal to caseld x/
o + Log[caseld];

for i + I to |o| do

e+ ali];

while isRequest(e, Arr) = true do

if isAlt = true then

/* Look for differences
between corresponding events
in other traces, add found
events to diagram using
combined fragments */
findFrames(Log,caseld, e, Usp, Ay, Arr);

else
/* Get a message parameter
and add its message to
diagram */
mapMessagel(e, Ay, M, 4, Ref);
t—i+1;

while isRequest(e, Arr) = false do

if isAlt = true then

L findFrames(Log,caseld, e,Usp);

else

\\ mapResponseMessage(e, Ay, M, A, Ref);

t—i+1;
if LRE! = w then
/* Merge components of the diagram
using regular expressions */
| changeDiagramUsingREs(Ugp, Lrg)

| return Usp;

Algorithm 3. Building a UML sequence
diagram buildsD

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

Input : an event log Log;

a current event e;

a UML sequence diagram

Usp = (L, T,A,A,M, Ref, F);

Input : an event log Logy;

a set of attributes for mapping onto lifelines Ar;

an attribute name with REQ/RES value Agp;

Output: CD — a set of UML communication diagrams

N : for each service;
a set of attributes for mapping onto message parameters

A begin
an attribute name with REQ/RES value App; /x Iterate through lifeline nanes

i s e TS — (participants) from an event log */
a case ID which defines trace for which it is necessary to for I € getLifelines(Logy, A7) do

build model caseld, Lop & {1}
Data: T'ree is a tree with interaction operands Mcp + 0,
N for o € Log do
begin for i < 1 to |o| do

equalCases + (;

e+ ofi];
/* Look for corresponding not equal

if il =0\ getLifeline(e,Ar) =1

events in other traces, group case then
IDs with equal events into equalCases I + getLifeline(eprev, AL)}
*/ if i ¢ Lep then
Lop + Lep (')
notEqEvents CD D ;
. L Mep + Mop U{(, LDk

findNotEqEvents(e, Log, caseld, equalCases);
if not EqEvents! = 0\/

il =0\

isLastTrace(e, Log) = true then Q’Ef,l'ifeli“?(ewcyvAL) = then
/+ Look for operand where it is it‘ ?fiﬂ'lfﬁi‘:“e(e’ Ak

necessary to add events */ LCch LenU):

toAdd + findOperand(equalCases, Tree); L Mep — Mop U{(ii e

addMessagesToFragment (e, equalCases, L

toAdd, Tree); lfl igRequest(e,ARR) = true then
Cprev

Ucp « (Lep, Mep, A);
| CD+ CD\ H{Ucph

| return CD;

else
if Tree = () then
‘ Tree + newNode(equalCases);

if isRequest(e, Arg) = true then

| mapMessage(e, Au, M, A, Ref);

else Algorithm 5. Building UML communication
mapResponseMessage(e, Ay, M, 4, Ref); diagrams for each service buildCDs

Algorithm 4. Looking for differences
between corresponding events in other
traces findFrames

3.3. Building process

Figure 7 represents a workflow diagram of a hybrid mining process. The scheme
contains the following tasks (see Algorithm 1):

e Anevent log is split into several parts. The workflow part of the log refers
to services communication. Such communication is represented on a UML
sequence diagram at workflow level. The operation parts consist of events
referred to activity only inside a specific service.

e A UML sequence diagram is built from a workflow part of an event log
using the method proposed in [9] (see Section I11-D) extended by a number
of necessary ref fragments used for connecting with corresponding activity
diagrams.

167

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

e UML activity diagrams are built from the operation parts of the log
independently using one of the process mining algorithms which produces
a Petri net. For instance, a-algorithm [4] or inductive miner [27] can be
considered here. Then, Petri nets are converted into activity diagrams by a
simple translation routine. This conversion is rather trivial since UML
activity diagrams are initially based on Petri nets [7], [23].

3.4. Mining UML sequence diagrams

To mine a UML sequence diagram we use a method proposed in [9]. There, we
propose an approach to mining UML sequence diagrams with different levels of
abstraction. It consists of three steps. The first step of the approach is mapping event
log attributes onto UML sequence diagram components. There are two functions for
mapping attributes onto lifelines and message parameters. The smaller the SOA
element we choose for mapping onto lifelines, the lower the abstraction level we
receive.

Hybrid UML model

UML CD Miner
UML
communication
diagrams
Workflow)
part Hybrid UML diagram

UML SD Miner
UML
1 sequence
Event log diagram

Petri Net Miner

Operation rt UML
pparts sonve | activity

diagrams

Fig. 7. The workflow diagram of a hybrid mining process.

The second step is set to build a smaller model by applying regular expressions for
merging similar messages and lifelines on a diagram. For example, we have two
messages with the following parameters: GetPlaseAndDate, op=BP Billing
Transfer and GetPlaseAndDate, op=Retail. They differ in op value, thus, these
messages can be combined into one message with the following parameter:
GetPlaseAndDate, op=.*. After the merging, a derived model becomes more
generalized and its size decreases in width and height.

To demonstrate the hierarchy of calls, which is important for SOA, a hierarchical
diagram can be applied. Thus, the third step of our approach contains a way to
present a complex model by using hierarchical UML diagrams. UML standard [7]
allows us to divide the model into some parts and connect them by means of
interaction use (ref fragment) and gates.

168

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

4. Tool Overview

This section presents a brief overview of the software tool implementing the
proposed algorithm.

4.1. Event log

The tool requires an input event log to be presented in definite format. We use
simple CSV text files to represent event logs. An event log should contain a number
of fields that are mapped onto mandatory attributes, namely CaselD, Timestamp and
Activity.

4.2. Tool implementation

The tool is implemented as a Windows application written in C# programming
language. The tool allows users to configure main parameters such as regular
expressions, hierarchy and type of output diagram (regular UML, hierarchical or
hybrid). Regular expressions are applied for merging diagram components. It is
implemented as shown in Figure 8. The GUI allows the user to set the type of
diagram. The perspective of the diagram (a mapping attributes onto diagram
lifelines and messages) is set as it described in [9].

The output of the tool is an XMI-file containing a model and a description of
diagrams. It can be visualized by Sparx Enterprise Architect [15].

L=y UML Models Miner - O

Regular expressions:

GetPlaseAndDate, op=" Add
Diagram type

) Simple Hierarchical Hybrid

Fig. 8. GUI to set a type of the diagram and regular expressions for merging its components.

169

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

5. Conclusion

This paper introduced a new concept of hybrid UML models and proposed a method
of mining them from event logs of SOA information systems using a service mining
approach. Our method can also be applied to other types of UML diagrams. The
paper discussed approaches to mining diagrams at different abstraction levels.

Our method builds models by using only event logs. This is an advantage over some
reverse engineering techniques because the source code is not always available. The
proposed method includes mining hybrid UML diagrams that represent workflow
abstraction level on UML sequence diagrams and operation level on UML activity
diagrams. Moreover, we proposed to build UML communication diagrams to show
interaction abstraction level with regards to the service mining approach.

Generally, control structures in system‘s behavior lead to a presence of a big
number of nested combined fragments within a UML sequence diagram. It makes
the diagram less readable and less understandable. Although UML activity diagrams
have no time perspective in contradistinction to sequence diagrams, the former
show alternatives, loops and parallelism more clearly. Since there are also a lot of
event logs which are not produced by SOA systems, we are going to expand our
approach to mining hybrid UML diagrams from event logs of more broad types of
software architecture in the future.

Acknowledgement

This work is supported by the Basic Research Program at the National Research
University Higher School of Economics.

References

[1]. W. M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer Publishing Company, Incorporated, 1st edition, 2011.

[2]. V. Rubin, C. W. Ginther, W. M. P. van der Aalst, E. Kindler, B. F. van Dongen, and W.
Schéfer. Process Mining Framework for Software Processes, pages 169— 181. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

[3]. A. K. A. de Medeiros, B. F. van Dongen, W. M. P. van der Aalst, and A. J. M. M.
Weijters. Process mining: Extending the a-algorithm to mine short loops. In Eindhoven
University of Technology, Eindhoven, 2004.

[4]. W. M. P. van der Aalst, A. J. M. M. Weijter, and L. Maruster. Workflow Mining:
Discovering process models from event logs. IEEE Transactions on Knowledge and
Data Engineering, 16:2004, 2003.

[5]. F. Friedrich, J. Mendling, and F. Puhlmann. Process Model Generation from Natural
Language Text, pages 482-496. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[6]. C. W. Gunther and W. M. P. van der Aalst. Fuzzy Mining — Adaptive Process
Simplification Based on Multiperspective Metrics, pages 328-343. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.

170

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

[7]

[8].
[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].
[18].
[19].
[20].

[21].

[22].

[23].

[24].

[25].

. OMG. OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.5,
August 2015.

T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2005.

K. V. Davydova and S. A. Shershakov. Mining Hierarchical UML Sequence Diagrams
from Event Logs of SOA systems while Balancing between Abstracted and Detailed
Models. 28(3):85-102, 2016.

S. A. Shershakov and V. A. Rubin. System runs analysis with process mining. In
Modeling and Analysis of Information Systems, pages 818-833, 2015.

A. Rountev and B. H. Connell. Object Naming Analysis for Reverse-engineered
Sequence Diagrams. In Proceedings of the 27th International Conference on Software
Engineering, ICSE ’05, pages 254-263, New York, NY, USA, 2005. ACM.

A. Rountev, O. Volgin, and M. Reddoch. Static Control-flow Analysis for Reverse
Engineering of UML Sequence Diagrams. SIGSOFT Softw. Eng. Notes, 31(1):96-102,
September 2005.

P. Tonella and A. Potrich. Reverse engineering of the interaction diagrams from C++
code. In International Conference on Software Maintenance, pages 159-168. IEEE
Computer Society, 2003.

E. Korshunova, M. Petkovic, M. G. J. van den Brand, and M. R. Mousavi. CPP2XMI:
Reverse Engineering of UML Class, Sequence, and Activity Diagrams from C++ Source
Code. In WCRE, pages 297-298. IEEE Computer Society, 2006.

Sparx Systems’ Enterprise Architect. http://www.sparxsystems.com.au/products/ea/.
IBM Rational Software Architect. https://www.ibm.com/
developerworks/downloads/r/architect/.

Visual Paradigm. https://www.visual-paradigm.com/ features/.

Altova UModel. http://www.altova.com/umodel.html.

NetBeans UML. http://plugins.netbeans.org/plugin/1801/netbeans-uml.

L. C. Briand, Y. Labiche, and J. Leduc. Toward the Reverse Engineering of UML
Sequence Diagrams for Distributed Java Software. IEEE Trans. Softw. Eng., 32(9):642—
663, September 2006.

R. Delamare, B. Baudry, and Y. Le Traon. Reverse-engineering of UML 2.0 Sequence
Diagrams from Execution Traces. In Proceedings of the workshop on Object-Oriented
Reengineering at ECOOP 06, Nantes, France, July 2006.

T. Ziadi, M. A. A. da Silva, L. M. Hillah, and M. Ziane. A Fully Dynamic Approach to
the Reverse Engineering of UML Sequence Diagrams. In Isabelle Perseil, Karin
Breitman, and Roy Sterritt, editors, ICECCS, pages 107— 116. IEEE Computer Society,
2011.

B. Agarwal. Transformation of UML Activity Diagrams into Petri Nets for Verification
Purposes. 2(3):798-805, 2013.

A. Bergmayr, H. Bruneliere, J. Cabot, J. Garcia, T. Mayerhofer, and M. Wimmer. fREX:
FUML-based Reverse Engineering of Executable Behavior for Software Dynamic
Analysis. In Proceedings of the 8th International Workshop on Modeling in Software
Engineering, MiSE ’16, pages 20-26, New York, NY, USA, 2016. ACM.

S. Dustdar, R. Gombotz, and K. Baina. Web Services Interaction Mining. Tech. Rep.
TUV-1841-2004-16. 2004.

171

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

[26]. W. M. P. van der Aalst. Service Mining: Using Process Mining to Discover, Check, and
Improve Service Behavior. IEEE Transactions on Services Computing, 6(4):525-535,
2013.

[27]. S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Discovering Block-
Structured Process Models from Event Logs Containing Infrequent Behaviour, pages
66-78. Springer International Publishing, Cham, 2014.

MeTon aBTOMaTU4YE€CKOro NocTpoeHus rmopuaHbix UML-
Mozaerien Ha OCHOBe XXYypHasrioB COObLITUM CUCTEM C CepBUC-
OPUEHTUPOBAHHOU apXUTEKTYPOW

K.B. Jlasvioosa <kvdavydova@edu.hse.ru>
C.A. Ulepwaros <sshershakov@hse.ru>
Hayuonanvuwiii uccnedosamensckuii ynugepcumem Boicuias wKoaa IKOHOMUKU,
nabopamopus [IOUC ¢axyremema KomnviomepHvix HAYK,
101000, Poccus, . Mocksa, yn. Macrhuykas, 0. 20

AHHOTanmsi. B jaHHOH cTaThe MBI IpeaiaraeM METOJ aBTOMAaTHYECKOTO MOCTPOCHUS Tak
Ha3bIBaeMBIX «ruHOpuaHbIX» UML-Mozmeneif, 4ro oTHocuTcs K 00nacTé W3BICYEHHS U
a”anm3a nporeccos I10. Monenn cTposiTcss Ha OCHOBE TPAcC UCIIOMHEHMS, MPEICTABICHHBIX
B BUJIC)KYPHAJIOB COOBITHI, CUCTEM C CEpPBHC-OpUEHTUPOBaHHOM apxutekTypoit (COA). B To
BpeMs KaK H3BECTHBIE TEXHHUKH OOpaTHOH pa3paboTKM OOBIYHO HCIOJIB3YIOT HMCXOIHBIN
MIPOrpaMMHBIA KOJ, KOTOPBIH YacTO HEMOCTYIEH, Hall MOAXOJ paboTaeT ¢ KypHalaMu
COOBITHH, 3aNUCHIBAEMBIMH OOJNBIIMHCTBOM HH(OPMALMOHHBIX CHCTEM, M HEKOTOPBIMH
9BPUCTUYECKHUMH TapameTpamu. Tak kak otaenbHblid knacc UML-nuarpamm npencrasnsier
TOJBKO OJJHY TIE€PCIIEKTHBY MOJENH CHCTEMBI, MBI TIpeJJlaraéM CHHTE3UPOBaTh KOMOHMHAIINIO
Heckonbkux KiaccoB UML-muarpamm (IoCieoBaTeIbHOCTH M JICSTENBHOCTH), KOTOpbIE
paccMaTpHBarOTCSl COBMECTHO C JUarpaMMaMH KOMMYHHKAIMi. JTO MO3BOJISIET IOBBICUTH
BBIPA3UTENBHYIO CHIIy OTAENBHOM «TuOpuaHON» amarpamMbl. Kaxmelii kimacc aumarpamMm
npescTaBisieT oauH U3 ypoBHel aGerpakiuu (workflow, operation u interaction), kotopsie
OOBIYHO MCHOJIB3YIOTCS IIPH PACCMOTPEHHHM B3anmojeiicTBust Web-cepsucos. TIpeanaraempliii
ITOPUTM COCTOMT W3 HYETHIPEX JTAloB: pa3feNeHHE >KypHala COOBITHH Ha HECKOIBKO
gacreif, mnoctpoerne UML nmmarpamMmm mocienoBaTeNbHOCTH, — JESTENFHOCTH U
KOMMYHHKaImii. MBI Taroke MpeiaraeM HHKaICYIHPOBaTh HEKOTOPHIE HE3HAUYUTEIIbHBIE HITH
HH3KOYPOBHEBbIE HMIUIEMEHTAIIMOHHbIE JeTalu (HampuMmep, BHYTPEHHHE OIepalyun
CEpPBHCOB) B JHarpaMMbl JCATCIBHOCTH W COCIMHATH HX C 0oJiee BBHICOKOYPOBHEBBIMU
JMarpaMMaMH TIOCJICJIOBAaTEFHOCTH C HCIONB30BaHHEM «interaction use» d¢parmeHTos.
YrtoObl pemmTth mpobiaeMy Oospmimx pa3mepoB cuHTesupyembix UML amarpamm
MOCJICZIOBATEILHOCTH, MBI Ipe[yaraeM o0OOLIAIONIyI0 TEXHHKY, OCHOBaHHYIO Ha
pETyISpHBIX BBIpaXKEHMsX. [Ipe/Io’keHHBIH IOAXOJ OINEHEH C HCIOJIb30BaHUEM
pa3pabOTaHHOTO MPOrPaMMHOTO HHCTpyMeHTa B Buiae Windows-mpuioxeHus, HalucaHHOTO
Ha s3bike C#. OtoT mHCTpy™MeHT ctpout UML mMozmenn u coxpanser ux B Bune XML-daiinos.
Takue aiiel COBMECTHMBI C XOpOIIO U3BECTHBIM HHTPYMEHTOM IPOEKTHPOBAHHS
MporpaMMHO# apxuTekTypsl Sparx Enterprise Architect, B koTopom CHHTE3MpOBaHHbIE
MOJIENT MOTYT OBITh BH3YaJIM3UPOBAHbI U OTPEIAKTHPOBAHBL

172

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

KaroueBbie cJI0OBa: XypHal COOBITHIL; M3BJIEUYEHHE M aHATM3 IporeccoB (Process mining);
rubpugaeie UML monmenw; jgmarpamma mocnenoBarenbHoctH UML; nmarpamma
nesrenbHocTH UML; oOpatHas pa3paboTka.

DOI: 10.15514/ISPRAS-2017-29(4)-10

Jna upuruposanms: J[laBeimoBa K.B., Illepmakos C.A. MeToag aBTOMaTHYECKOIO
noctpoenust rubpuaHeix UML mogmeneli Ha ocHOBe xypHanoB coOwbituii COA-cucrem.
Tpyaet UCIT PAH, tom 29, Bbim. 4, 2017 r., ctp. 155-174 (na auriwmiickom si3bike). DOI:
10.15514/ISPRAS-2017-29(4)-10

Cnucok nutepatypbl

[1]. W. M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer Publishing Company, Incorporated, 1st edition, 2011.

[2]. V. Rubin, C. W. Giinther, W. M. P. van der Aalst, E. Kindler, B. F. van Dongen, and W.
Schéfer. Process Mining Framework for Software Processes, pages 169— 181. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

[3]. A. K. A. de Medeiros, B. F. van Dongen, W. M. P. van der Aalst, and A. J. M. M.
Weijters. Process mining: Extending the a-algorithm to mine short loops. In Eindhoven
University of Technology, Eindhoven, 2004.

[4]. W. M. P. van der Aalst, A. J. M. M. Weijter, and L. Maruster. Workflow Mining:
Discovering process models from event logs. IEEE Transactions on Knowledge and
Data Engineering, 16:2004, 2003.

[5]. F. Friedrich, J. Mendling, and F. Puhlmann. Process Model Generation from Natural
Language Text, pages 482-496. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[6]. C. W. Gunther and W. M. P. van der Aalst. Fuzzy Mining — Adaptive Process
Simplification Based on Multiperspective Metrics, pages 328-343. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.

[7]. OMG. OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.5,
August 2015.

[8]. T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2005.

[9]. K. V. Davydova and S. A. Shershakov. Mining Hierarchical UML Sequence Diagrams
from Event Logs of SOA systems while Balancing between Abstracted and Detailed
Models. 28(3):85-102, 2016.

[10]. S. A. Shershakov and V. A. Rubin. System runs analysis with process mining. In
Modeling and Analysis of Information Systems, pages 818-833, 2015.

[11]. A. Rountev and B. H. Connell. Object Naming Analysis for Reverse-engineered
Sequence Diagrams. In Proceedings of the 27th International Conference on Software
Engineering, ICSE 05, pages 254-263, New York, NY, USA, 2005. ACM.

[12]. A. Rountev, O. Volgin, and M. Reddoch. Static Control-flow Analysis for Reverse
Engineering of UML Sequence Diagrams. SIGSOFT Softw. Eng. Notes, 31(1):96-102,
September 2005.

173

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

[13].
[14].
[15].
[16].

[17].
[18].
[19].
[20].

[21].

[22].

[23].

[24].

[25].

[26].

[27].

174

P. Tonella and A. Potrich. Reverse engineering of the interaction diagrams from C++
code. In International Conference on Software Maintenance, pages 159-168. |EEE
Computer Society, 2003.

E. Korshunova, M. Petkovic, M. G. J. van den Brand, and M. R. Mousavi. CPP2XMI:
Reverse Engineering of UML Class, Sequence, and Activity Diagrams from C++ Source
Code. In WCRE, pages 297-298. IEEE Computer Society, 2006.

Sparx Systems’ Enterprise Architect. http://www.sparxsystems.com.au/products/ea/.
IBM Rational Software Architect. https://www.ibm.com/
developerworks/downloads/r/architect/.

Visual Paradigm. https://www.visual-paradigm.com/ features/.

Altova UModel. http://www.altova.com/umodel.html.

NetBeans UML. http://plugins.netbeans.org/plugin/1801/netbeans-uml.

L. C. Briand, Y. Labiche, and J. Leduc. Toward the Reverse Engineering of UML
Sequence Diagrams for Distributed Java Software. IEEE Trans. Softw. Eng., 32(9):642—
663, September 2006.

R. Delamare, B. Baudry, and Y. Le Traon. Reverse-engineering of UML 2.0 Sequence
Diagrams from Execution Traces. In Proceedings of the workshop on Object-Oriented
Reengineering at ECOOP 06, Nantes, France, July 2006.

T. Ziadi, M. A. A. da Silva, L. M. Hillah, and M. Ziane. A Fully Dynamic Approach to
the Reverse Engineering of UML Sequence Diagrams. In Isabelle Perseil, Karin
Breitman, and Roy Sterritt, editors, ICECCS, pages 107— 116. IEEE Computer Society,
2011.

B. Agarwal. Transformation of UML Activity Diagrams into Petri Nets for Verification
Purposes. 2(3):798-805, 2013.

A. Bergmayr, H. Bruneliere, J. Cabot, J. Garcia, T. Mayerhofer, and M. Wimmer. fREX:
FUML-based Reverse Engineering of Executable Behavior for Software Dynamic
Analysis. In Proceedings of the 8th International Workshop on Modeling in Software
Engineering, MiSE 16, pages 20-26, New York, NY, USA, 2016. ACM.

S. Dustdar, R. Gombotz, and K. Baina. Web Services Interaction Mining. Tech. Rep.
TUV-1841-2004-16. 2004.

W. M. P. van der Aalst. Service Mining: Using Process Mining to Discover, Check, and
Improve Service Behavior. IEEE Transactions on Services Computing, 6(4):525-535,
2013.

S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Discovering Block-
Structured Process Models from Event Logs Containing Infrequent Behaviour, pages
66-78. Springer International Publishing, Cham, 2014.

