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Abstract. Well-structured transition systems (WSTS) became a well-known tool in the study
of concurrency systems for proving decidability of properties based on coverability and
boundedness. Each year brings new formalisms proven to be WSTS systems. Despite the
large body of theoretical work on the WSTS theory, there has been a notable gap of empirical
research of well-structured transition systems. In this paper, the tool for behavioural analysis
of such systems is presented. We suggest the extension of SETL language to describe WSTS
systems (WSTSL). It makes the description of new formalisms very close to the formal
definition. Therefore, it is easy to introduce and modify new formalisms as well as conduct
analysis of the behavioural properties without much programming efforts. It is highly
convenient when a new formalism is still under active development. Two most studied
algorithms for analysis of well-structured transition systems behavior (backward reachability
and the Finite Reachability Tree analyses) have been implemented; and, their performance
was measured through the runs on such models as Petri Nets and Lossy Channel Systems.
The developed tool can be useful for incorporating and testing analysis methods to
formalisms that occur to be well-structuredness transition systems.
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1. Introduction

Formal verification provides researchers and developers with approaches that are
widely-used for proving that a program satisfies a formal specification of its
behavior. These methods are highly demanded in the software and hardware
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engineering, as they provide appropriate level of systems reliability; which, in most
cases, cannot be ensured by simulation.

One of the most common technique of formal verification is model checking or
property checking. It involves algorithmic methods that are applied to check
satisfiability of a logic formula used for the representation of the specification and
the model of a system. The main advantage of model checking is considered to be
the fact that it enables almost completely automatic process of verification. Model
checking proved to be effective in practice for analysis of finite-state systems [1];
however, in case of systems with infinite state space the situation is more
complicated because exhaustive search, which is usually used by verification tools,
cannot be applied directly.

In order to deal with infinite-state systems Finkel proposed the idea of well-
structured transition systems (WSTS) in 1987 [2]. “These are transition systems
where the existence of a well-quasi-ordering over the infinite set of states ensures
the termination of several algorithmic methods. [3]” The suggested model has
provided researchers with an abstract generalization of several models (e.g. Petri
nets, lossy channel systems and timed automata). Therefore, the results obtained
from the analysis of such a generalized model can be also applied to these specific
models.

The WSTS analysis can be used to solve, for instance, covering, termination,
inevitability and boundedness problems. However, the application of the WSTS
analysis is hampered by the necessity of implementing algorithms and data
structures to support the analysis for each new formalism. In this work, the tool that
can be used for analysis of WSTS is presented. We introduce the WSTSL language
- modification of SETL language [13,14] — set-theoretical programming language.
The language provides the user with opportunity to define the structure of analyzed
system as close to the original formal definition as possible. After definition of the
formalism, it is immediately possible to run backward reachability method [4] or the
Finite Reachability Tree [5] on it. It is convenient for computer science researcher
to postpone the implementation phase after what-if experiments.

The rest of the paper is organized as follows. The second section describes WSTS’s
basic terms and underlying concepts. The third section provides the description of
two used algorithms (the backward reachability method and the Finite Reachability
Tree). The forth section presents the architecture of the developed analysis tool. The
fifth section shows how the developed tool is used for the analysis of Petri nets and
provides performance analysis results. The sixth section summarizes and provides
possible applications of the study for the future research.

2. Well-Structured Transition Systems

The definition of well-structured transition systems (WSTS) was proposed by
Finkel in [2]. It is based on the two main concepts: transition systems (TS) and well-
quasi-orderings between the states of these systems.
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Transition system (TS) is one of the most widely-used models for formal
description of the behavior of different systems. A transition system is defined by a
structure TS = (S, -, ...) where S = {s, t, ... } is a set of states, and - S X § is any
set of transactions [3]. TS can be also supplemented by other structures such as
initial states, labels for transitions, durations or causal independence relations [3];
however, for the consideration of the concept of WSTS using of set of states along
with set of transactions is sufficient.

A binary relation < on a set X is called preorder or quasi-ordering (qo) if it is
reflexive and transitive. So for any a, b, c S X we have:

1) a < a (reflexivity);

2) ifa<bandb < cthena < c (transitivity).

Definition 1. A well-quasi-ordering (wqo) is a go in which for every infinite
sequence of elements xg,x;,x;,x3,... ©X there exist such indices i < j that
x; < x; [3,6]. According to [7], there are a range of equal definitions of wqo;
however, the definition given above is generally used in papers on WSTS.
Definition 2. A well-structured transition system (WSTS) is a transition system
TS = (§,—-,<) equipped with a go << S x S between states such that the two
following conditions hold:
1) well-quasi-ordering: < is a wqo, and

2) compatibility: < is (upward) compatible with —, i.e. for all s; <t; and
transition s; — s, there exists such a sequence of transitions t; - t, that
s, < t, [3].

Succ(s) denotes the set {s' € S| s — s’} of immediate successors of s. Likewise,
Pred(s) denotes the set {s’ € S | s" — s} of immediate predecessors.

An upward-closed set is any set I € X such that y > x and x € [ entail y € I. A
basis of an upward-closed I is a set I” such that I =U,»Tx, where
Tx =% {yly=x}.

3. Algorithms

3.1 Backward Reachability Method

Backward reachability method proposed by Abulla et al. in [4] is intended to solve
the covering problem which is to decide, given two states s and t, whether starting
from s it is possible to reach a state t' > t. This is essentially one of set-saturation
methods termination of which relies on the lemma that says that any increasing
sequence of upward-closed sets (I, € I; € I, < ---) eventually stabilizes (i.e. there
issuchak e Nthat [, = I, ;1 = Iy4o = -++) [3].
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Assume there is some WSTS TS = (S, -, <) and some upward-closed set of states
I € S. Backward reachability method on the each j-th step generates the set of states
from which I can be reached by a sequence at most j transitions [4].

More strict generalization was suggested by Finkel and Schnoebelen in [3], where it
involves computing Pred*(I) as the limit of the sequence I, € I; < --- where
I, =%f Iand I,,., =% I, U Pred(l,).

Definition 3. A WSTS has effective pred-basis if there exists an algorithm
accepting any state s € S and returning pb(s), a finite basis of T Pred (T s).

The covering problem is decidable for WSTS if it has effective pred-basis and
decidable <. The proof of this statement is given in [3]. Essentially, it is said that if
there is a sequence K, K; ... with K, =€/ [? (finite basis of 1), K,,; =% K, U
pb(K,,) and m is the first index such that T K,, =T K41, then TU K; = Pred*(I).
By decidability of <, it is possible to check whether s € T Pred*(T t).

3.2 Finite Reachability Tree

The Finite Reachability Tree belongs to tree-saturation methods which represent
methods that consider all possible computations inside a finite tree-like structure
[3]. It is also called the forward analysis method, in contrast to the backward
analysis. Essentially, it is based on the ideas proposed by Karp and Miller in [5].
Assume there is some WSTS TS = (§,—,<). For any state s € S, the Finite
Reachability Tree is such a finite directed graph (tree) that:

1) nodes of the tree are labeled by states of S;

2) nodes are either dead or live;

3) the root node is a live node n,, labeled by s (written n; : s);

4) dead nodes have no child nodes;

5) alive node n : t has one child n’ : t’ for each successor t" € Succ(t);

6) if along the path from the root n, : s to some node n’: t’ there exists a node
n:t(n #n')suchthatt <t’, we say that n subsumes n’, and then n' is a
dead node [3, 6].

The Finite Reachability Tree is effectively computable if S has (1) a decidable <,
and (2) Succ mapping is computable [3]. All paths in the finite reachability tree are
finite as any infinite path would include a covering node [6].

This algorithm can be applied to termination, inevitability, and boundedness
problems (see [3] for details).

4. Proposed Architecture

The general structure of the architecture of the developed tool is illustrated in Fig. 1.
It consists of two main parts: Well-Structured Transition Systems Language
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(WSTSL) and WSTS Analyzer. Also there are four input parameters that are set by
the user through WSTSL.

well-quasi-
ordering

WSTS Analyzer

h J

Fig. 1. Architecture of the developed tool

WSTSL is a programming language used in the developed system as the front-end
which provides user with a means of describing input parameters. Therefore, the
following data types are included: integers, tuples, maps and sets. To run the
appropriate algorithm the user has to use either backwardanalysis() or
forwardanalysis() command. As it is depicted in Fig.1 the parser for WSTSL is built
with Another Tool for Language Recognition (ANTLR), which generates it from a
formal language description called a grammar [8]. The parser’s sources are
generated in Java, since ANTLR itself is written in Java and provides more parsing
capabilities for some cases in comparison with other supported target languages
(C#, JavaScript, Python2, Python3, Swift, Go).

WSTS Analyzer represents that part of the system which is responsible for the
processing of the input transition system, which it gets from the WSTSL parser, and
the application of the algorithm selected by the user. WSTS Analyzer is
implemented in Java, as it allows running it in all platforms that support Java, and,
most importantly, naturally interacts with parser’s Java classes generated by
ANTLR.

As it was noted above, the input that is provided by the user includes four main
parts. Firstly, a general structure (WSTS structure) of the analyzed transition system
should be described (e.g. Petri nets or lossy channel systems in general). Secondly, a
well-quasi-ordering should be specified. Then, a structure of a specific transition
system (WSTS instance) that corresponds to the general structure is provided.
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Finally, the desired analysis algorithm with appropriate parameters (query) is
specified. Essentially, all these parts are described in a single input program written
in WSTSL. Afterwards, the WSTS Analyzer runs the selected algorithm on the
specified system and generates report which format depends on the choice of the
algorithm.

5. Experiment

5.1 Petri Net

The applicability of the proposed approach could be demonstrated by an example
with common well-structured transition system called Petri net. The classical
definition of this model is the following.

Definition 4. A Petri net (P/T-net) is a 4-tuple (P, T, F, W) where
e P and T are disjoint finite sets of places and transitions, respectively;
e FC (PXT)U(T X P)isasetofarcs;

e W :F — N\ {0}-an arc multiplicity function, that is, a function which
assigns every arc a positive integer called an arc multiplicity or weight.

o A marking of a Petri net (P, T, F, W) is a multiset over P, i.e. a mapping
M : P - N. By M(N) we denote the set of all markings of the P/T-net N.

e \We say that a transition ¢ in the P/T-net N = (P, T, F,W) is active in
marking M if foreveryp € {p | (p,t) € F}:
M(p) = W(p,t). An active transition may fire, resulting in a marking M’,
suchas forallp € P:M'(p) = M(p) — W(p,t)

ifpel{p|(pt) €F}, M'(p)=Mp)-W(p,t)+W(tp)

ifp €{p|(t,p) € F)and M'(p) = M(p) otherwise.
For simplicity’s sake, we consider here the Petri net which arcs can only have
multiplicity 1.
For the experiment the Petri net illustrated in Fig. 2 will be considered.

P4
P2
T1 T2
P1
Fig. 2. Instance of the Petri net for consideration in the experiment
180



JlBopsinckuit JI.B., Muxaiinos B.E. TIporpaMma 1oBe/ieH4€CKOro aHaIi3a BIOJIHE CTPYKTYPHUPOBAHHBIX CHCTEM
niepexonoB. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 175-190.

First of all, the general structure of the Petri net model described above should be
defined by means of WSTL (Fig. 3).

Lype P : set of int;

type T : set of int;

type PT(Pl:P, T1:T) : set of [from Pl,from T1];
type TP(P1:T, P1:P) : set of [from T1l,from P1l];
type M(P1:P) : map <from P1l,int>;

type PN(P1:P, T1:T,
pTl:PT, TPl:TP) : [P1,T1,PT1,TP1l]:;

Fig. 3. General structure of Petri net in WSTSL

Secondly, we describe the specific Petri net instance in WSTSL (Fig. 4). PT1 and
TP1 represent the arcs from places to transitions and vice versa, respectively. In
tuples, defining arcs, the corresponding transition goes first for the convenience in
description of Succ and Pred function as it will be seen below.
var P1:P = {("P1","P2","P3","P4"};
var T1:T = {"T1","T2"};
var PT1:PT(P1,T1) = {["T1","P1"],["T2","P2"],
[I|T2l|' HP3||] };
var TP1:TP(T1,P1) = {["T1","P2"],["T1","P3"],
("T2","P1m"y, ["T2","PA"]};

Fig. 4. Description of the specific Petri net instance in WSTSL

Then, a well-quasi-ordering should be described (Fig. 5). As it is shown in [3], the
inclusion ordering (M € M'when M(p) < M'(p) for every place) is a wqo and it is
known as Dickson’s lemma [9]. Operator forall iterator | test generates a boolean
value true if the condition test is met for each step in iterator and a boolean value
false otherwise.

func wqgo (PN1:PN, sl:M, s2:M)
return forall p in PN[0] | sl[p] <= s2[pl;
end func;

Fig. 5. Well-quasi-ordering function described as inclusion ordering in WSTSL

As it has been mentioned above in the Algorithms section, Backward Reachability
Method requires effective algorithm for computation of pred-basis. The algorithm
to compute it for Petri Net was suggested in [4]. How it is described in WSTSL is
shown in Fig. 6.
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func pred(PN1:PN, K:set of M)
var P1:P = PN1[0O];
var T1:T = PN1[1];
var PT1:PT(P1,T1) = PN1[2];
var TP1:TP(T1,P1) = PN1[3]:
var predecessors: set of M(P1l) = { };

for s in K
for t in T
if forall tp in TP1[t] | s[tp[1l]] - 1 >= 0 then

sl = s;
for pt in PT1[t]
sl[pt[1l]] = sl[pt[1l]] + 1;

end for;
for tp in TP1[t]

slitp[1]] = slltp[1]] - 1;
end for;
predecessors = predecessors with sl;
end if;
end for;

end for;
return predecessors;
end func;

func pb (PN1:PN, K:set of M)
return min (pred(PN1, TI), wdgo)
end func;

Fig. 6. Description of the pred-basis and pred functions in WSTSL

To solve the covering problem the initial state and the state which coverability it is
required to check should be specified. Afterwards, backwardanalysis function
should be invoked with appropriate arguments (Fig. 7).

var mO:M(P1)

{<"P1",1>,<"P2",0>,
<"p3",2>,<"P4",1>};
var mc:M(P1l) = {<"P1",1>,<"pP2",1>,
<"pP3",1>,<"P4A", 2>} ;

backwardanalysis (PN1,wgo,pb,m0,mc) ;

Fig. 7. Description of the initial marking and the marking which coverability it is required to
check with Backward Reachability Method invocation

The tool provides the user with the output that contains sequence of sets K;, where
Ky = {m.}, Kn41 = pb(K,), their union U,y K; and its minimal elements (basis).
Finally, it is reported whether the analyzed state (marking) m, is covered or not
(Fig. 8).
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KO:
K1:

K2:
K3:

K4:
K5:

[{P1=1,P2=1,P3=1,P4=2}]
[{P1=0,P2=2,P3=2, P4=1},
{P1=2,P2=0,P3=0,P4=2}]
[{P1=1,P2=1,P3=1,P4=1}]
[{P1=0,P2=2,P3=2, P4=0},
{P1=2, P2=0, P3=0, P4=11}]
[{P1=1,P2=1,P3=1,P4=0}]
[{P1=2,P2=0,P3=0,P4=0}]

Union: [{P1=0,P2=2,P3=2,P4=0},

{P1=0,P2=2,P3=2,P4=1},
{P1=1, P2=1, P3=1, P4=0},
{P1=1, P2=1,P3=1,P4=1},
{P1=1, P2=1, P3=1, P4=2},
{P1=2, P2=0, P3=0, P4=0},
{P1=2,P2=0,P3=0,P4=1},
{P1=2, P2=0, P3=0, P4=2}]

min (Union) :

[{P1=0,P2=2,P3=2,P4=0},
{P1=1,P2=1, P3=1, P4=0},
{P1=2,P2=0, P3=0, P4=0}]

The state {P1=1,P2=1,P3=1,P4=2} is not covered

Fig. 8. Report of the tool for the backward analysis invocation

As it has been mentioned above in the Algorithms section, Finite Reachability Tree
requires effective algorithm for computation of Succ. How it is described in WSTSL

is shown in Fig. 9.

To construct Finite Reachability Tree only the initial state should be specified.
Afterwards, forwardanalysis function should be
arguments (Fig. 10).

invoked with appropriate

183



Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

func succ (PN1:PN, s:M)
var Pl:P = PN1[O0];
var T1:T = PN1[1]:

var PT1:PT(P1l,T1l) = PN1[2];
var TP1:TP(T1,P1l) = PN1[3];
var successors : set of M(Pl) = { };
for t in T
if forall pt in PT1[t] | s[pt[l]] - 1 >= 0 then
sl = s;
for pt in PT1[t]
sl[pt[1]] = sl[pt[1]] - 1;

end for;
for tp in TP1[t]

sl[tp[l]] = sl[tp[l]] + 1;
end for;
successors = successors with sl;
end if;
end for;
return successors;
end func;

Fig. 9. Description of the Succ function in WSTSL

var mO:M(P1) = {<"P1",1>,<"P2",0>,
<"PAM, 2>, <"P4",1>};

forwardanalysis (PN1,wgo, succ,m0) ;

Fig. 10. Description of the initial marking and the Finite Reachability Tree construction
invocation

The tool provides the user with the image which illustrates constructed Finite
Reachability Tree (Fig. 11). Nodes are labeled with their states. Dead nodes are red.
The node labeled with {P1=1, P2=0, P3=2, P4=2} state is dead since {P1=1, P2=0,
P3=2, P4=2} >{P1=1, P2=0, P3=2, P4=1} (the latter state is represented by the root
which subsumes the dead node labeled by the former state).

P1=1 P2=0 P1=0 P2=1 P1=1 P2=0
P3=2 p4=1 P3=3 P4=1 P3=2 P4=2

Fig. 11. Constructed finite reachability tree
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5.2. Lossy Channel Systems

Another model that we considered was Lossy channel system (LCS) which is a
subclass of FIFO-channel systems.

Definition 5. FIFO-channel system is a 6-tuple (S, sy, 4, C, M, §) where
e Sisa finite set of control states;

So € S is the initial control state;
e A isa finite set of actions;
e Cisa finite set of channels;

e M is afinite set of messages (M~ is a set of finite strings composed of
elements from M);

e ¢ isafinite set of transitions, each of which is represented by one of the
following tuples (s, c!m, s;), (s1,c?m,s,), (51, a,s;), where s;,s, € S,
c€eC,m € Mand a € A (see below).

Transition (s;,c!m,s,) changes the control state from s; to s,, adding the
message m to the end of the channel c. Operation c!m is also known as a send
action.
Transition (s;,c?m,s,) changes the control state from s; to s,, removing the
message m from the beginning of the channel c. If the channel ¢ is empty or its first
element is not m, then this transition cannot occur. Operation c? m is also known as
a receive action.
Transition (s;,c?m, s,) changes the control state from s, to s, and does not change
the state of the channels.
Considering LCS it is also assumed that some message in some channel can be lost
at any moment. To model this behavior one more operation 7(c, m) is introduced.
Transition (s;,7(c,m),s,) removes the message m from the channel ¢, and does
not change the control state.
For LCS = (S,50,4,C,M,5) the ordering < is defined on the set of global states
{(s,w)]| s € S,w:C - M*} as follows:
s,w) < (' w)yes=s"Aw(c) Kw'(c)Vc eC.
The ordering « is a subword ordering: u « v iff u can be obtained by erasing
letters from v. It is shown in [6] that this ordering is a wgo.
The concrete model that we considered was Alternating Bit Protocol (ABP). It is
represented by Sender and Receiver which communicate via two FIFO-channels ¢,
and c,. Sender sends messages to Receiver via c,, while Receiver sends
acknowledgements via c,. Both channels can lose messages. Messages and
acknowledgements contain one-bit sequence number 0 or 1. Sender continuously
sends the same message with the same sequence number, until it receives an
acknowledgement from Receiver with the same sequence number. Then, Sender
changes (flips) the sequence number and proceeds with sending the next message.
Receiver starts by waiting the message with the sequence number 0 (actually, it can
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initially send acknowledgments with the sequence number 1). When it receives such
a message it starts sending acknowledgements with the same sequence number,
until it receives the message with the flipped sequence number and so on. The
described model is illustrated in terms of Lossy Channel System in Fig. 12.

Cu'0 Ca?1 Cw?d Call

Sender Receiver

Fig. 12. Alternating Bit Protocol modelled as a Lossy Channel System

5.3 Performance

To measure the performance of the implemented Finite Reachability Tree algorithm
we applied it to the four different models, which include a model shown in Fig. 2
(Example 1) and the Petri Net models simulating the dining philosophers problem
[10] for a number of philosophers equal to 5, 6 and 7. We executed the experiment
on the following machine: Intel Core i7, 2.22 GHz, 16 GB RAM running OS X El
Capitan (v. 10.11.6). System.nanoTime() method was invoked immediately before
of the beginning of construction of a FRT and immediately after the end of
construction, then the difference was calculated to measure run time for one run. In
Table 1 in the Run time column average results for 20 runs are given in seconds. As
well, sizes of the constructed FRTs are given. It can be seen that both run time and
size of FRT grow exponentially for the philosophers problem.

Table 1. Performance of the tool during Philosophers problem solving

Run time (s) | Size of FRT
Example 1 0.03596 3
Phil5 0.08587 241
Phil6 1.87815 25711
Phil7 5221.64756 | 88062003
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6. Summary

This paper addresses a lack of practical results in studies of well-structured
transition systems. In order to fill this gap, there was presented one of the possible
ways for development of the system capable to analyze WSTS with two common
algorithms: backward reachability method and the Finite Reachability Tree. Well-
Structured Transition Systems Language is introduced as a means of describing the
user’s input, which consists of the description of transition system’s structure in
general and specific instance’s relations and values.

The tool can be used by researchers to investigate the efficiency of the implemented
algorithms. It is expected that it is appropriate for conducting experiments on small
and mediumsized WSTS. The technology eases the efforts required to check the
potential of the WSTS analysis algorithms for practical applications and to make
what-if experiments on newly developed formalisms.

The application of the tool is illustrated for the Petri nets and Lossy Channel System
formalisms. Also, there were given results of the experiment on Petri nets modeling
the dining philosophers problem. The performance analysis of the Finite
Reachability Tree applied to this problem demonstrated the expected exponential
growth of execution time; and, it indicates the need for further investigations of
optimizations (e.g. reduction rules) that can be applied to make the algorithm
effectively applicable in practice.
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MHCprMEHT AnA aHanu3a noBegeHus BMNoJiHe
CTPYKTYPUpPOBaHHbIX CUCTEM nepexoanonB

JLB. [leopsnckuu <leo@mathtech.ru>
B.E. Muxaiinos <vlamikhaylov@gmail.com>
Hayuonanvnwiti uccnedosamenvckuil ynusepcumem
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101000, Poccus, Mocksa, yr. Macnuyxas, 20

AHHOTauMsl. BIIOJHE CTPYKTypHpOBaHHBIE CHCTEMBI IEPEXOJOB SBISIOTCS XOPOLIO
W3BECTHBIM MHCTPYMEHTOM JUISl JIOKA3aTeNIbCTBA PAa3PEINMOCTH CBOIMCTB MOKPHIBAEMOCTH U
OrpaHnYeHHOCTH. KaXkaplii TOJ] MOSBISAIOTCS HOBBIE ()OPMAJIM3MBI, KOTOPBIE OKa3bIBAIOTCS
BIOJIHE CTPYKTYPUPOBAaHHBIMH CHUCTEeMaMH IepexonoB. HecMmoTpss Ha OGosbmioit o0bem
TEOPETHYECKOil PaboThl, CYIIECTBYeT OOJblIas MOTPEOHOCTh B AMITHMPHYECKHX H3yICHHH
BIIOJIHE CTPYKTYpPUPOBAHHBIX CHCTEM MEpexofoB. B maHHOH paboTe mpeacTaBieH
MHCTPYMEHT JUISl aHaJIM3a TaKUX CHCTEM. MBI MpeuiaraeM paciiipeHHe BICOKOYPOBHEBOTO
s3p1ka SETL a1t onmcaHust BOOJTHE-CTPYKTYPHUPOBAHHBIX CHCTEM IEPEX0A0B. DTO MO3BOJISET
OTIACHIBATH HOBBIE (POPMANU3MBI OJIM3KO K UX (HOpMaIbHOMY olpeeeHuto. TakuM oopazoM
YIpoIIaeTcsi CO3JaHHe U N3MEHEHNE HOBBIX ()OPMAIIM3MOB, a TAKXKE OCYIIECTBICHHUE aHAIH3a
MOBEJICHUECKUX CBOMCTB 6e3 GONbIIOro obobeMa MPOTrPaMMHCTCKHUX YCHIMH. DTO yI0OHO,
KOTJ1a HOBBIH (hOpMaM3M HaXxOIUTCS B CTAJUU U3YUSHHUS U pa3pabOTKH. Bputh peann3oBaHbl
JBa CaMbIX U3YUYCHHBIX aJITOPUTMA aHAJIN3a IMOBEACHUS BIIOJHE CTPYKTYPUPOBAHHBIX CUCTEM
nepexonoB (0OpaTHBIA aNrOpUTM W aHAIW3 KOHEYHBIX JEPEBBEB MOCTHXKHUMOCTH). X
HPOM3BOJUTENBHOCT OblIa M3MepeHa Ha Mojeisx cereid Iletpum M cucreM ¢ morepeit
CUrHAJOB. Pa3pa0oTaHHBIi HHCTPYMEHT MOXET OBbITh MOJIE3HBIM IIPU BHEAPEHUH U
TECTUPOBaHMM METOJOB aHanu3a (OPMAaNU3MOB, KOTOPBIC OKAa3bIBAIOTCS  BIIOJIHE
CTPYKTYPHPOBAHHBIMU CHCTEMaMH MEPEXOJI0B.
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