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Abstract. Well-structured transition systems (WSTS) became a well-known tool in the study 

of concurrency systems for proving decidability of properties based on coverability and 

boundedness. Each year brings new formalisms proven to be WSTS systems. Despite the 

large body of theoretical work on the WSTS theory, there has been a notable gap of empirical 

research of well-structured transition systems. In this paper, the tool for behavioural analysis 

of such systems is presented. We suggest the extension of SETL language to describe WSTS 

systems (WSTSL). It makes the description of new formalisms very close to the formal 

definition. Therefore, it is easy to introduce and modify new formalisms as well as conduct 

analysis of the behavioural properties without much programming efforts. It is highly 

convenient when a new formalism is still under active development. Two most studied 

algorithms for analysis of well-structured transition systems behavior (backward reachability 

and the Finite Reachability Tree analyses) have been implemented; and, their performance 

was measured through the runs on such models as Petri Nets and Lossy Channel Systems. 

The developed tool can be useful for incorporating and testing analysis methods to 
formalisms that occur to be well-structuredness transition systems. 
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1. Introduction  

Formal verification provides researchers and developers with approaches that are 

widely-used for proving that a program satisfies a formal specification of its 

behavior. These methods are highly demanded in the software and hardware 
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engineering, as they provide appropriate level of systems reliability; which, in most 

cases, cannot be ensured by simulation. 

One of the most common technique of formal verification is model checking or 

property checking. It involves algorithmic methods that are applied to check 

satisfiability of a logic formula used for the representation of the specification and 

the model of a system. The main advantage of model checking is considered to be 

the fact that it enables almost completely automatic process of verification. Model 

checking proved to be effective in practice for analysis of finite-state systems [1]; 

however, in case of systems with infinite state space the situation is more 

complicated because exhaustive search, which is usually used by verification tools, 

cannot be applied directly. 

In order to deal with infinite-state systems Finkel proposed the idea of well-

structured transition systems (WSTS) in 1987 [2]. “These are transition systems 

where the existence of a well-quasi-ordering over the infinite set of states ensures 

the termination of several algorithmic methods. [3]” The suggested model has 

provided researchers with an abstract generalization of several models (e.g. Petri 

nets, lossy channel systems and timed automata). Therefore, the results obtained 

from the analysis of such a generalized model can be also applied to these specific 

models. 

The WSTS analysis can be used to solve, for instance, covering, termination, 

inevitability and boundedness problems. However, the application of the WSTS 

analysis is hampered by the necessity of implementing algorithms and data 

structures to support the analysis for each new formalism. In this work, the tool that 

can be used for analysis of WSTS is presented. We introduce the WSTSL language 

- modification of SETL language [13,14] – set-theoretical programming language. 

The language provides the user with opportunity to define the structure of analyzed 

system as close to the original formal definition as possible. After definition of the 

formalism, it is immediately possible to run backward reachability method [4] or the 

Finite Reachability Tree [5] on it. It is convenient for computer science researcher 

to postpone the implementation phase after what-if experiments. 

The rest of the paper is organized as follows. The second section describes WSTS’s 

basic terms and underlying concepts. The third section provides the description of 

two used algorithms (the backward reachability method and the Finite Reachability 

Tree). The forth section presents the architecture of the developed analysis tool. The 

fifth section shows how the developed tool is used for the analysis of Petri nets and 

provides performance analysis results. The sixth section summarizes and provides 

possible applications of the study for the future research. 

2. Well-Structured Transition Systems 

The definition of well-structured transition systems (WSTS) was proposed by 

Finkel in [2]. It is based on the two main concepts: transition systems (TS) and well-

quasi-orderings between the states of these systems. 
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Transition system (TS) is one of the most widely-used models for formal 

description of the behavior of different systems. A transition system is defined by a 

structure 𝑇𝑆 = (𝑆, →, … ) where 𝑆 = {𝑠, 𝑡, … } is a set of states, and →⊆ 𝑆 × 𝑆 is any 

set of transactions [3]. 𝑇𝑆 can be also supplemented by other structures such as 

initial states, labels for transitions, durations or causal independence relations [3]; 

however, for the consideration of the concept of WSTS using of set of states along 

with set of transactions is sufficient. 

A binary relation ≤ on a set 𝑋 is called preorder or quasi-ordering (qo) if it is 

reflexive and transitive. So for any 𝑎, 𝑏, 𝑐 ⊆ 𝑋 we have: 

1) 𝑎 ≤ 𝑎 (reflexivity); 

2) 𝑖𝑓 𝑎 ≤ 𝑏 𝑎𝑛𝑑 𝑏 ≤ 𝑐 𝑡ℎ𝑒𝑛 𝑎 ≤ 𝑐 (transitivity).  

Definition 1.  A well-quasi-ordering (wqo) is a qo in which for every infinite 

sequence of elements 𝑥0, 𝑥1, 𝑥2, 𝑥3, … ⊆ 𝑋 there exist such indices 𝑖 < 𝑗 that 

𝑥𝑖 ≤ 𝑥𝑗  [3, 6]. According to [7], there are a range of equal definitions of wqo; 

however, the definition given above is generally used in papers on WSTS.    

Definition 2. A well-structured transition system (WSTS) is a transition system 

T𝑆 = (𝑆, →, ≤) equipped with a qo ≤⊆ 𝑆 × 𝑆 between states such that the two 

following conditions hold: 

1) well-quasi-ordering: ≤ is a wqo, and 

2) compatibility: ≤ is (upward) compatible with →, i.e. for all 𝑠1 ≤ 𝑡1 and 

transition 𝑠1 → 𝑠2, there exists such a sequence of transitions 𝑡1 →∗ 𝑡2 that 

𝑠2 ≤  𝑡2 [3].  

𝑆𝑢𝑐𝑐(𝑠) denotes the set {𝑠′ ∈ 𝑆 | 𝑠 → 𝑠′} of immediate successors of 𝑠. Likewise, 

𝑃𝑟𝑒𝑑(𝑠) denotes the set {𝑠′ ∈ 𝑆 | 𝑠′ → 𝑠} of immediate predecessors.  

An upward-closed set is any set 𝐼 ⊆ 𝑋 such that 𝑦 ≥ 𝑥 and 𝑥 ∈ 𝐼 entail 𝑦 ∈ 𝐼. A 

basis of an upward-closed 𝐼 is a set 𝐼𝑏 such that 𝐼 =∪𝑥∈𝐼𝑏↑ 𝑥, where 

↑ 𝑥 =𝑑𝑒𝑓 {𝑦 | 𝑦 ≥ 𝑥}. 

3. Algorithms 

3.1 Backward Reachability Method 

Backward reachability method proposed by Abulla et al. in [4] is intended to solve 

the covering problem which is to decide, given two states 𝑠 and 𝑡, whether starting 

from 𝑠 it is possible to reach a state 𝑡′ ≥ 𝑡. This is essentially one of set-saturation 

methods termination of which relies on the lemma that says that any increasing 

sequence of upward-closed sets (𝐼0 ⊆ 𝐼1 ⊆ 𝐼2 ⊆ ⋯) eventually stabilizes (i.e. there 

is such a 𝑘 ∈ 𝑁 that 𝐼𝑘 = 𝐼𝑘+1 = 𝐼𝑘+2 = ⋯ ) [3]. 
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Assume there is some WSTS 𝑇𝑆 = (𝑆, →, ≤) and some upward-closed set of states 

𝐼 ⊆ 𝑆. Backward reachability method on the each j-th step generates the set of states 

from which 𝐼 can be reached by a sequence at most 𝑗 transitions [4].  

More strict generalization was suggested by Finkel and Schnoebelen in [3], where it 

involves computing  𝑃𝑟𝑒𝑑∗(𝐼) as the limit of the sequence 𝐼0 ⊆ 𝐼1 ⊆ ⋯ where 

𝐼0 =𝑑𝑒𝑓 𝐼 and 𝐼𝑛+1 =𝑑𝑒𝑓 𝐼𝑛 ∪ 𝑃𝑟𝑒𝑑(𝐼𝑛).  

Definition 3. A WSTS has effective pred-basis if there exists an algorithm 

accepting any state 𝑠 ∈ 𝑆 and returning 𝑝𝑏(𝑠), a finite basis of ↑ 𝑃𝑟𝑒𝑑(↑ 𝑠). 

The covering problem is decidable for WSTS if it has effective pred-basis and 

decidable ≤. The proof of this statement is given in [3]. Essentially, it is said that if 

there is a sequence 𝐾0, 𝐾1 … with 𝐾0 =𝑑𝑒𝑓 𝐼𝑏 (finite basis of I),  𝐾𝑛+1 =𝑑𝑒𝑓 𝐾𝑛 ∪
𝑝𝑏(𝐾𝑛) and 𝑚 is the first index such that ↑ 𝐾𝑚 = ↑ 𝐾𝑚+1, then ↑∪ 𝐾𝑖 = 𝑃𝑟𝑒𝑑∗(𝐼). 

By decidability of ≤, it is possible to check whether 𝑠 ∈ ↑ 𝑃𝑟𝑒𝑑∗(↑ 𝑡). 

3.2 Finite Reachability Tree 

The Finite Reachability Tree belongs to tree-saturation methods which represent 

methods that consider all possible computations inside a finite tree-like structure 

[3]. It is also called the forward analysis method, in contrast to the backward 

analysis. Essentially, it is based on the ideas proposed by Karp and Miller in [5].   

Assume there is some WSTS 𝑇𝑆 = (𝑆, →, ≤). For any state 𝑠 ∈ 𝑆, the Finite 

Reachability Tree is such a finite directed graph (tree) that: 

1) nodes of the tree are labeled by states of 𝑆; 

2) nodes are either dead or live; 

3) the root node is a live node 𝑛0, labeled by 𝑠 (written 𝑛0 ∶ 𝑠); 

4) dead nodes have no child nodes; 

5) a live node 𝑛 ∶ 𝑡 has one child 𝑛′ ∶ 𝑡′ for each successor 𝑡′ ∈ 𝑆𝑢𝑐𝑐(𝑡); 

6) if along the path from the root 𝑛0 : 𝑠 to some node 𝑛′ : 𝑡′ there exists a node 

𝑛 ∶ 𝑡 (𝑛 ≠ 𝑛′) such that 𝑡 ≤ 𝑡′, we say that 𝑛 subsumes 𝑛′, and then 𝑛′ is a 

dead node [3, 6].     

The Finite Reachability Tree is effectively computable if 𝑆 has (1) a decidable ≤, 

and (2) 𝑆𝑢𝑐𝑐 mapping is computable [3]. All paths in the finite reachability tree are 

finite as any infinite path would include a covering node [6].  

This algorithm can be applied to termination, inevitability, and boundedness 

problems (see [3] for details). 

4. Proposed Architecture 

The general structure of the architecture of the developed tool is illustrated in Fig. 1. 

It consists of two main parts: Well-Structured Transition Systems Language 
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(WSTSL) and WSTS Analyzer. Also there are four input parameters that are set by 

the user through WSTSL. 

 

Fig. 1. Architecture of the developed tool 

WSTSL is a programming language used in the developed system as the front-end 

which provides user with a means of describing input parameters. Therefore, the 

following data types are included: integers, tuples, maps and sets. To run the 

appropriate algorithm the user has to use either backwardanalysis() or 

forwardanalysis() command. As it is depicted in Fig.1 the parser for WSTSL is built 

with Another Tool for Language Recognition (ANTLR), which generates it from a 

formal language description called a grammar [8]. The parser’s sources are 

generated in Java, since ANTLR itself is written in Java and provides more parsing 

capabilities for some cases in comparison with other supported target languages 

(C#, JavaScript, Python2, Python3, Swift, Go). 

WSTS Analyzer represents that part of the system which is responsible for the 

processing of the input transition system, which it gets from the WSTSL parser, and 

the application of the algorithm selected by the user. WSTS Analyzer is 

implemented in Java, as it allows running it in all platforms that support Java, and, 

most importantly, naturally interacts with parser’s Java classes generated by 

ANTLR. 

As it was noted above, the input that is provided by the user includes four main 

parts. Firstly, a general structure (WSTS structure) of the analyzed transition system 

should be described (e.g. Petri nets or lossy channel systems in general). Secondly, a 

well-quasi-ordering should be specified. Then, a structure of a specific transition 

system (WSTS instance) that corresponds to the general structure is provided. 
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Finally, the desired analysis algorithm with appropriate parameters (query) is 

specified. Essentially, all these parts are described in a single input program written 

in WSTSL. Afterwards, the WSTS Analyzer runs the selected algorithm on the 

specified system and generates report which format depends on the choice of the 

algorithm. 

5. Experiment 

5.1 Petri Net 

The applicability of the proposed approach could be demonstrated by an example 

with common well-structured transition system called Petri net. The classical 

definition of this model is the following. 

Definition 4. A Petri net (P/T-net) is a 4-tuple (𝑃, 𝑇, 𝐹, 𝑊) where 

 𝑃 and 𝑇 are disjoint finite sets of places and transitions, respectively; 

 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is a set of arcs; 

 𝑊 ∶ 𝐹 → ℕ \ {0} – an arc multiplicity function, that is, a function which 

assigns every arc a positive integer called an arc multiplicity or weight. 

 A marking of a Petri net (𝑃, 𝑇, 𝐹, 𝑊) is a multiset over 𝑃, i.e. a mapping 

𝑀 ∶ 𝑃 →  ℕ. By 𝑀(𝑁) we denote the set of all markings of the P/T-net 𝑁. 

 We say that a transition 𝑡 in the P/T-net 𝑁 = (𝑃, 𝑇, 𝐹, 𝑊) is active in 

marking 𝑀 if for every 𝑝 ∈ {𝑝 | (𝑝, 𝑡) ∈ 𝐹}: 
𝑀(𝑝) ≥ 𝑊(𝑝, 𝑡). An active transition may fire, resulting in a marking 𝑀′, 
such as for all 𝑝 ∈ 𝑃: 𝑀′(𝑝) = 𝑀(𝑝) − 𝑊(𝑝, 𝑡)  

if 𝑝 ∈ {𝑝 | (𝑝, 𝑡) ∈ 𝐹}, 𝑀′(𝑝) = 𝑀(𝑝) − 𝑊(𝑝, 𝑡) + 𝑊(𝑡, 𝑝)  

if 𝑝 ∈ {𝑝 | (𝑡, 𝑝) ∈ 𝐹) and 𝑀′(𝑝) = 𝑀(𝑝) otherwise.  

For simplicity’s sake, we consider here the Petri net which arcs can only have 

multiplicity 1.  

For the experiment the Petri net illustrated in Fig. 2 will be considered. 

 

Fig. 2. Instance of the Petri net for consideration in the experiment 
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First of all, the general structure of the Petri net model described above should be 

defined by means of WSTL (Fig. 3).  

 

Fig. 3. General structure of Petri net in WSTSL 

Secondly, we describe the specific Petri net instance in WSTSL (Fig. 4). PT1 and 

TP1 represent the arcs from places to transitions and vice versa, respectively. In 

tuples, defining arcs, the corresponding transition goes first for the convenience in 

description of Succ and Pred function as it will be seen below. 

 

Fig. 4. Description of the specific Petri net instance in WSTSL 

Then, a well-quasi-ordering should be described (Fig. 5). As it is shown in [3], the 

inclusion ordering (𝑀 ⊆ 𝑀′when 𝑀(𝑝) ≤ 𝑀′(𝑝) for every place) is a wqo and it is 

known as Dickson’s lemma [9]. Operator forall iterator | test generates a boolean 

value true if the condition test is met for each step in iterator and a boolean value 

false otherwise. 

 

Fig. 5. Well-quasi-ordering function described as inclusion ordering in WSTSL 

As it has been mentioned above in the Algorithms section, Backward Reachability 

Method requires effective algorithm for computation of pred-basis. The algorithm 

to compute it for Petri Net was suggested in [4]. How it is described in WSTSL is 

shown in Fig. 6. 
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Fig. 6. Description of the pred-basis and pred functions in WSTSL 

To solve the covering problem the initial state and the state which coverability it is 

required to check should be specified. Afterwards, backwardanalysis function 

should be invoked with appropriate arguments (Fig. 7). 

 

Fig. 7. Description of the initial marking and the marking which coverability it is required to 

check with Backward Reachability Method invocation  

The tool provides the user with the output that contains sequence of sets 𝐾𝑖, where 

𝐾0 = {𝑚𝑐},  𝐾𝑛+1 = 𝑝𝑏(𝐾𝑛), their union ∪𝑖∈ℕ 𝐾𝑖  and its minimal elements (basis). 

Finally, it is reported whether the analyzed state (marking) 𝑚𝑐 is covered or not 

(Fig. 8). 
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Fig. 8. Report of the tool for the backward analysis invocation 

As it has been mentioned above in the Algorithms section, Finite Reachability Tree 

requires effective algorithm for computation of Succ. How it is described in WSTSL 

is shown in Fig. 9. 

To construct Finite Reachability Tree only the initial state should be specified. 

Afterwards, forwardanalysis function should be invoked with appropriate 

arguments (Fig. 10). 
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Fig. 9. Description of the Succ function  in WSTSL  

 

Fig. 10. Description of the initial marking and the Finite Reachability Tree construction 

invocation 

The tool provides the user with the image which illustrates constructed Finite 

Reachability Tree (Fig. 11). Nodes are labeled with their states. Dead nodes are red. 

The node labeled with {P1=1, P2=0, P3=2, P4=2} state is dead since {P1=1, P2=0, 

P3=2, P4=2} ≥{P1=1, P2=0, P3=2, P4=1} (the latter state is represented by the root 

which subsumes the dead node labeled by the former state). 

  

Fig. 11. Constructed finite reachability tree 
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5.2. Lossy Channel Systems 

Another model that we considered was Lossy channel system (LCS) which is a 

subclass of FIFO-channel systems.  

Definition 5.  FIFO-channel system is a 6-tuple (𝑆, 𝑠0, 𝐴, 𝐶, 𝑀, 𝛿) where   

 𝑆 is a finite set of control states; 

 𝑠0 ∈ 𝑆 is the initial control state; 

 𝐴 is a finite set of actions; 

 C is a finite set of channels; 

 𝑀 is a finite set of messages (𝑀∗ is a set of finite strings composed of 

elements from 𝑀);  

 𝛿 is a finite set of transitions, each of which is represented by one of the 

following tuples (𝑠1, 𝑐! 𝑚, 𝑠2), (𝑠1, 𝑐? 𝑚, 𝑠2), (𝑠1, 𝑎, 𝑠2), where 𝑠1, 𝑠2 ∈ 𝑆, 

𝑐 ∈ 𝐶, 𝑚 ∈ 𝑀 and 𝑎 ∈ 𝐴 (see below).    

Transition (𝑠1, 𝑐! 𝑚, 𝑠2) changes the control state from 𝑠1 to 𝑠2, adding the 

message 𝑚 to the end of the channel 𝑐. Operation 𝑐! 𝑚 is also known as a send 

action. 

Transition (𝑠1, 𝑐? 𝑚, 𝑠2) changes the control state from 𝑠1 to 𝑠2, removing the 

message 𝑚 from the beginning of the channel 𝑐. If the channel 𝑐 is empty or its first 

element is not 𝑚, then this transition cannot occur. Operation 𝑐? 𝑚 is also known as 

a receive action. 

Transition (𝑠1, 𝑐? 𝑚, 𝑠2) changes the control state from 𝑠1 to 𝑠2 and does not change 

the state of the channels.  

Considering LCS it is also assumed that some message in some channel can be lost 

at any moment. To model this behavior one more operation 𝜏(𝑐, 𝑚) is introduced. 

Transition (𝑠1, 𝜏(𝑐, 𝑚) , 𝑠2) removes the message 𝑚 from the channel 𝑐, and does 

not change the control state. 

For LCS = (𝑆, 𝑠0, 𝐴, 𝐶, 𝑀, 𝛿)  the ordering ≤ is defined on the set of global states 
{(𝑠, 𝑤)| 𝑠 ∈ 𝑆, 𝑤: 𝐶 → 𝑀∗} as follows: 

(𝑠, 𝑤) ≤ (𝑠′, 𝑤′) ⟺ 𝑠 = 𝑠′ ∧ 𝑤(𝑐) ≪ 𝑤′(𝑐) ∀𝑐 ∈ 𝐶. 

The ordering ≪ is a subword ordering: 𝑢 ≪ 𝑣 iff 𝑢 can be obtained by erasing 

letters from 𝑣. It is shown in [6] that this ordering is a wqo. 

The concrete model that we considered was Alternating Bit Protocol (ABP). It is 

represented by Sender and Receiver which communicate via two FIFO-channels 𝑐𝑀 

and 𝑐𝐴. Sender sends messages to Receiver via 𝑐𝑀, while Receiver sends 

acknowledgements via 𝑐𝐴. Both channels can lose messages. Messages and 

acknowledgements contain one-bit sequence number 0 or 1. Sender continuously 

sends the same message with the same sequence number, until it receives an 

acknowledgement from Receiver with the same sequence number. Then, Sender 

changes (flips) the sequence number and proceeds with sending the next message. 

Receiver starts by waiting the message with the sequence number 0 (actually, it can 
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initially send acknowledgments with the sequence number 1). When it receives such 

a message it starts sending acknowledgements with the same sequence number, 

until it receives the message with the flipped sequence number and so on. The 

described model is illustrated in terms of Lossy Channel System in Fig. 12.        

 

Fig. 12. Alternating Bit Protocol modelled as a Lossy Channel System 

5.3 Performance 

To measure the performance of the implemented Finite Reachability Tree algorithm 

we applied it to the four different models, which include a model shown in Fig. 2 

(Example 1) and the Petri Net models simulating the dining philosophers problem 

[10] for a number of philosophers equal to 5, 6 and 7. We executed the experiment 

on the following machine: Intel Core i7, 2.22 GHz, 16 GB RAM running OS X El 

Capitan (v. 10.11.6). System.nanoTime() method was invoked immediately before 

of the beginning of construction of a FRT and immediately after the end of 

construction, then the difference was calculated to measure run time for one run. In 

Table 1 in the Run time column average results for 20 runs are given in seconds. As 

well, sizes of the constructed FRTs are given. It can be seen that both run time and 

size of FRT grow exponentially for the philosophers problem.  

Table 1. Performance of the tool during Philosophers problem solving 

 Run time (s) Size of FRT 

Example 1 0.03596 3 

Phil5 0.08587 241 

Phil6 1.87815 25711 

Phil7 5221.64756 88062003 
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6. Summary 

This paper addresses a lack of practical results in studies of well-structured 

transition systems. In order to fill this gap, there was presented one of the possible 

ways for development of the system capable to analyze WSTS with two common 

algorithms: backward reachability method and the Finite Reachability Tree. Well-

Structured Transition Systems Language is introduced as a means of describing the 

user’s input, which consists of the description of transition system’s structure in 

general and specific instance’s relations and values. 

The tool can be used by researchers to investigate the efficiency of the implemented 

algorithms. It is expected that it is appropriate for conducting experiments on small 

and mediumsized WSTS. The technology eases the efforts required to check the 

potential of the WSTS analysis algorithms for practical applications and to make 

what-if experiments on newly developed formalisms. 

The application of the tool is illustrated for the Petri nets and Lossy Channel System 

formalisms. Also, there were given results of the experiment on Petri nets modeling 

the dining philosophers problem. The performance analysis of the Finite 

Reachability Tree applied to this problem demonstrated the expected exponential 

growth of execution time; and, it indicates the need for further investigations of 

optimizations (e.g. reduction rules) that can be applied to make the algorithm 

effectively applicable in practice. 
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Инструмент для анализа поведения вполне 
структурированных систем переходов  

Л.В. Дворянский <leo@mathtech.ru> 
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101000, Россия, Москва, ул. Мясницкая, 20 

Аннотация. Вполне структурированные системы переходов являются хорошо 

известным инструментом для доказательства разрешимости свойств покрываемости и 

ограниченности. Каждый год появляются новые формализмы, которые оказываются 

вполне структурированными системами переходов. Несмотря на большой объем 

теоретической работы, существует большая потребность в эмпирических изучении 

вполне структурированных систем переходов. В данной работе представлен 

инструмент для анализа таких систем. Мы предлагаем расширение высокоуровневого 

языка SETL для описания вполне-структурированных систем переходов. Это позволяет 

описывать новые формализмы близко к их формальному определению. Таким образом 

упрощается создание и изменение новых формализмов, а также осуществление анализа 

поведенческих свойств без большого объема программистских усилий. Это удобно, 

когда новый формализм находится в стадии изучения и разработки. Были реализованы 

два самых изученных алгоритма анализа поведения вполне структурированных систем 

переходов (обратный алгоритм и анализ конечных деревьев достижимости). Их 

производительность была измерена на моделях сетей Петри и систем с потерей 

сигналов. Разработанный инструмент может быть полезным при внедрении и 

тестировании методов анализа формализмов, которые оказываются вполне 

структурированными системами переходов. 
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