
175

Tool for Behavioral Analysis of Well-
Structured Transition Systems

L.W. Dworzanski <leo@mathtech.ru>

V.E. Mikhaylov <vlamikhaylov@gmail.com>

Department of Software Engineering,

National Research University Higher School of Economics,

Myasnitskaya st., 20, Moscow, 101000, Russia

Abstract. Well-structured transition systems (WSTS) became a well-known tool in the study

of concurrency systems for proving decidability of properties based on coverability and

boundedness. Each year brings new formalisms proven to be WSTS systems. Despite the

large body of theoretical work on the WSTS theory, there has been a notable gap of empirical

research of well-structured transition systems. In this paper, the tool for behavioural analysis

of such systems is presented. We suggest the extension of SETL language to describe WSTS

systems (WSTSL). It makes the description of new formalisms very close to the formal

definition. Therefore, it is easy to introduce and modify new formalisms as well as conduct

analysis of the behavioural properties without much programming efforts. It is highly

convenient when a new formalism is still under active development. Two most studied

algorithms for analysis of well-structured transition systems behavior (backward reachability

and the Finite Reachability Tree analyses) have been implemented; and, their performance

was measured through the runs on such models as Petri Nets and Lossy Channel Systems.

The developed tool can be useful for incorporating and testing analysis methods to
formalisms that occur to be well-structuredness transition systems.

Keywords: formal verification; infinite systems; well structured transition systems;
Petri nets

DOI: 10.15514/ISPRAS-2017-29(4)-11

For citation: Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-

Structured Transition Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp.

175-190. DOI: 10.15514/ISPRAS-2017-29(4)-11

1. Introduction

Formal verification provides researchers and developers with approaches that are

widely-used for proving that a program satisfies a formal specification of its

behavior. These methods are highly demanded in the software and hardware

Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP

RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

176

engineering, as they provide appropriate level of systems reliability; which, in most

cases, cannot be ensured by simulation.

One of the most common technique of formal verification is model checking or

property checking. It involves algorithmic methods that are applied to check

satisfiability of a logic formula used for the representation of the specification and

the model of a system. The main advantage of model checking is considered to be

the fact that it enables almost completely automatic process of verification. Model

checking proved to be effective in practice for analysis of finite-state systems [1];

however, in case of systems with infinite state space the situation is more

complicated because exhaustive search, which is usually used by verification tools,

cannot be applied directly.

In order to deal with infinite-state systems Finkel proposed the idea of well-

structured transition systems (WSTS) in 1987 [2]. “These are transition systems

where the existence of a well-quasi-ordering over the infinite set of states ensures

the termination of several algorithmic methods. [3]” The suggested model has

provided researchers with an abstract generalization of several models (e.g. Petri

nets, lossy channel systems and timed automata). Therefore, the results obtained

from the analysis of such a generalized model can be also applied to these specific

models.

The WSTS analysis can be used to solve, for instance, covering, termination,

inevitability and boundedness problems. However, the application of the WSTS

analysis is hampered by the necessity of implementing algorithms and data

structures to support the analysis for each new formalism. In this work, the tool that

can be used for analysis of WSTS is presented. We introduce the WSTSL language

- modification of SETL language [13,14] – set-theoretical programming language.

The language provides the user with opportunity to define the structure of analyzed

system as close to the original formal definition as possible. After definition of the

formalism, it is immediately possible to run backward reachability method [4] or the

Finite Reachability Tree [5] on it. It is convenient for computer science researcher

to postpone the implementation phase after what-if experiments.

The rest of the paper is organized as follows. The second section describes WSTS’s

basic terms and underlying concepts. The third section provides the description of

two used algorithms (the backward reachability method and the Finite Reachability

Tree). The forth section presents the architecture of the developed analysis tool. The

fifth section shows how the developed tool is used for the analysis of Petri nets and

provides performance analysis results. The sixth section summarizes and provides

possible applications of the study for the future research.

2. Well-Structured Transition Systems

The definition of well-structured transition systems (WSTS) was proposed by

Finkel in [2]. It is based on the two main concepts: transition systems (TS) and well-

quasi-orderings between the states of these systems.

Дворянский Л.В., Михайлов В.Е. Программа поведенческого анализа вполне структурированных систем

переходов. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 175-190.

177

Transition system (TS) is one of the most widely-used models for formal

description of the behavior of different systems. A transition system is defined by a

structure 𝑇𝑆 = (𝑆, →, …) where 𝑆 = {𝑠, 𝑡, … } is a set of states, and →⊆ 𝑆 × 𝑆 is any

set of transactions [3]. 𝑇𝑆 can be also supplemented by other structures such as

initial states, labels for transitions, durations or causal independence relations [3];

however, for the consideration of the concept of WSTS using of set of states along

with set of transactions is sufficient.

A binary relation ≤ on a set 𝑋 is called preorder or quasi-ordering (qo) if it is

reflexive and transitive. So for any 𝑎, 𝑏, 𝑐 ⊆ 𝑋 we have:

1) 𝑎 ≤ 𝑎 (reflexivity);

2) 𝑖𝑓 𝑎 ≤ 𝑏 𝑎𝑛𝑑 𝑏 ≤ 𝑐 𝑡ℎ𝑒𝑛 𝑎 ≤ 𝑐 (transitivity).

Definition 1. A well-quasi-ordering (wqo) is a qo in which for every infinite

sequence of elements 𝑥0, 𝑥1, 𝑥2, 𝑥3, … ⊆ 𝑋 there exist such indices 𝑖 < 𝑗 that

𝑥𝑖 ≤ 𝑥𝑗 [3, 6]. According to [7], there are a range of equal definitions of wqo;

however, the definition given above is generally used in papers on WSTS.

Definition 2. A well-structured transition system (WSTS) is a transition system

T𝑆 = (𝑆, →, ≤) equipped with a qo ≤⊆ 𝑆 × 𝑆 between states such that the two

following conditions hold:

1) well-quasi-ordering: ≤ is a wqo, and

2) compatibility: ≤ is (upward) compatible with →, i.e. for all 𝑠1 ≤ 𝑡1 and

transition 𝑠1 → 𝑠2, there exists such a sequence of transitions 𝑡1 →∗ 𝑡2 that

𝑠2 ≤ 𝑡2 [3].

𝑆𝑢𝑐𝑐(𝑠) denotes the set {𝑠′ ∈ 𝑆 | 𝑠 → 𝑠′} of immediate successors of 𝑠. Likewise,

𝑃𝑟𝑒𝑑(𝑠) denotes the set {𝑠′ ∈ 𝑆 | 𝑠′ → 𝑠} of immediate predecessors.

An upward-closed set is any set 𝐼 ⊆ 𝑋 such that 𝑦 ≥ 𝑥 and 𝑥 ∈ 𝐼 entail 𝑦 ∈ 𝐼. A

basis of an upward-closed 𝐼 is a set 𝐼𝑏 such that 𝐼 =∪𝑥∈𝐼𝑏↑ 𝑥, where

↑ 𝑥 =𝑑𝑒𝑓 {𝑦 | 𝑦 ≥ 𝑥}.

3. Algorithms

3.1 Backward Reachability Method

Backward reachability method proposed by Abulla et al. in [4] is intended to solve

the covering problem which is to decide, given two states 𝑠 and 𝑡, whether starting

from 𝑠 it is possible to reach a state 𝑡′ ≥ 𝑡. This is essentially one of set-saturation

methods termination of which relies on the lemma that says that any increasing

sequence of upward-closed sets (𝐼0 ⊆ 𝐼1 ⊆ 𝐼2 ⊆ ⋯) eventually stabilizes (i.e. there

is such a 𝑘 ∈ 𝑁 that 𝐼𝑘 = 𝐼𝑘+1 = 𝐼𝑘+2 = ⋯) [3].

Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP

RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

178

Assume there is some WSTS 𝑇𝑆 = (𝑆, →, ≤) and some upward-closed set of states

𝐼 ⊆ 𝑆. Backward reachability method on the each j-th step generates the set of states

from which 𝐼 can be reached by a sequence at most 𝑗 transitions [4].

More strict generalization was suggested by Finkel and Schnoebelen in [3], where it

involves computing 𝑃𝑟𝑒𝑑∗(𝐼) as the limit of the sequence 𝐼0 ⊆ 𝐼1 ⊆ ⋯ where

𝐼0 =𝑑𝑒𝑓 𝐼 and 𝐼𝑛+1 =𝑑𝑒𝑓 𝐼𝑛 ∪ 𝑃𝑟𝑒𝑑(𝐼𝑛).

Definition 3. A WSTS has effective pred-basis if there exists an algorithm

accepting any state 𝑠 ∈ 𝑆 and returning 𝑝𝑏(𝑠), a finite basis of ↑ 𝑃𝑟𝑒𝑑(↑ 𝑠).

The covering problem is decidable for WSTS if it has effective pred-basis and

decidable ≤. The proof of this statement is given in [3]. Essentially, it is said that if

there is a sequence 𝐾0, 𝐾1 … with 𝐾0 =𝑑𝑒𝑓 𝐼𝑏 (finite basis of I), 𝐾𝑛+1 =𝑑𝑒𝑓 𝐾𝑛 ∪
𝑝𝑏(𝐾𝑛) and 𝑚 is the first index such that ↑ 𝐾𝑚 = ↑ 𝐾𝑚+1, then ↑∪ 𝐾𝑖 = 𝑃𝑟𝑒𝑑∗(𝐼).

By decidability of ≤, it is possible to check whether 𝑠 ∈ ↑ 𝑃𝑟𝑒𝑑∗(↑ 𝑡).

3.2 Finite Reachability Tree

The Finite Reachability Tree belongs to tree-saturation methods which represent

methods that consider all possible computations inside a finite tree-like structure

[3]. It is also called the forward analysis method, in contrast to the backward

analysis. Essentially, it is based on the ideas proposed by Karp and Miller in [5].

Assume there is some WSTS 𝑇𝑆 = (𝑆, →, ≤). For any state 𝑠 ∈ 𝑆, the Finite

Reachability Tree is such a finite directed graph (tree) that:

1) nodes of the tree are labeled by states of 𝑆;

2) nodes are either dead or live;

3) the root node is a live node 𝑛0, labeled by 𝑠 (written 𝑛0 ∶ 𝑠);

4) dead nodes have no child nodes;

5) a live node 𝑛 ∶ 𝑡 has one child 𝑛′ ∶ 𝑡′ for each successor 𝑡′ ∈ 𝑆𝑢𝑐𝑐(𝑡);

6) if along the path from the root 𝑛0 : 𝑠 to some node 𝑛′ : 𝑡′ there exists a node

𝑛 ∶ 𝑡 (𝑛 ≠ 𝑛′) such that 𝑡 ≤ 𝑡′, we say that 𝑛 subsumes 𝑛′, and then 𝑛′ is a

dead node [3, 6].

The Finite Reachability Tree is effectively computable if 𝑆 has (1) a decidable ≤,

and (2) 𝑆𝑢𝑐𝑐 mapping is computable [3]. All paths in the finite reachability tree are

finite as any infinite path would include a covering node [6].

This algorithm can be applied to termination, inevitability, and boundedness

problems (see [3] for details).

4. Proposed Architecture

The general structure of the architecture of the developed tool is illustrated in Fig. 1.

It consists of two main parts: Well-Structured Transition Systems Language

Дворянский Л.В., Михайлов В.Е. Программа поведенческого анализа вполне структурированных систем

переходов. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 175-190.

179

(WSTSL) and WSTS Analyzer. Also there are four input parameters that are set by

the user through WSTSL.

Fig. 1. Architecture of the developed tool

WSTSL is a programming language used in the developed system as the front-end

which provides user with a means of describing input parameters. Therefore, the

following data types are included: integers, tuples, maps and sets. To run the

appropriate algorithm the user has to use either backwardanalysis() or

forwardanalysis() command. As it is depicted in Fig.1 the parser for WSTSL is built

with Another Tool for Language Recognition (ANTLR), which generates it from a

formal language description called a grammar [8]. The parser’s sources are

generated in Java, since ANTLR itself is written in Java and provides more parsing

capabilities for some cases in comparison with other supported target languages

(C#, JavaScript, Python2, Python3, Swift, Go).

WSTS Analyzer represents that part of the system which is responsible for the

processing of the input transition system, which it gets from the WSTSL parser, and

the application of the algorithm selected by the user. WSTS Analyzer is

implemented in Java, as it allows running it in all platforms that support Java, and,

most importantly, naturally interacts with parser’s Java classes generated by

ANTLR.

As it was noted above, the input that is provided by the user includes four main

parts. Firstly, a general structure (WSTS structure) of the analyzed transition system

should be described (e.g. Petri nets or lossy channel systems in general). Secondly, a

well-quasi-ordering should be specified. Then, a structure of a specific transition

system (WSTS instance) that corresponds to the general structure is provided.

Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP

RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

180

Finally, the desired analysis algorithm with appropriate parameters (query) is

specified. Essentially, all these parts are described in a single input program written

in WSTSL. Afterwards, the WSTS Analyzer runs the selected algorithm on the

specified system and generates report which format depends on the choice of the

algorithm.

5. Experiment

5.1 Petri Net

The applicability of the proposed approach could be demonstrated by an example

with common well-structured transition system called Petri net. The classical

definition of this model is the following.

Definition 4. A Petri net (P/T-net) is a 4-tuple (𝑃, 𝑇, 𝐹, 𝑊) where

 𝑃 and 𝑇 are disjoint finite sets of places and transitions, respectively;

 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is a set of arcs;

 𝑊 ∶ 𝐹 → ℕ \ {0} – an arc multiplicity function, that is, a function which

assigns every arc a positive integer called an arc multiplicity or weight.

 A marking of a Petri net (𝑃, 𝑇, 𝐹, 𝑊) is a multiset over 𝑃, i.e. a mapping

𝑀 ∶ 𝑃 → ℕ. By 𝑀(𝑁) we denote the set of all markings of the P/T-net 𝑁.

 We say that a transition 𝑡 in the P/T-net 𝑁 = (𝑃, 𝑇, 𝐹, 𝑊) is active in

marking 𝑀 if for every 𝑝 ∈ {𝑝 | (𝑝, 𝑡) ∈ 𝐹}:
𝑀(𝑝) ≥ 𝑊(𝑝, 𝑡). An active transition may fire, resulting in a marking 𝑀′,
such as for all 𝑝 ∈ 𝑃: 𝑀′(𝑝) = 𝑀(𝑝) − 𝑊(𝑝, 𝑡)

if 𝑝 ∈ {𝑝 | (𝑝, 𝑡) ∈ 𝐹}, 𝑀′(𝑝) = 𝑀(𝑝) − 𝑊(𝑝, 𝑡) + 𝑊(𝑡, 𝑝)

if 𝑝 ∈ {𝑝 | (𝑡, 𝑝) ∈ 𝐹) and 𝑀′(𝑝) = 𝑀(𝑝) otherwise.

For simplicity’s sake, we consider here the Petri net which arcs can only have

multiplicity 1.

For the experiment the Petri net illustrated in Fig. 2 will be considered.

Fig. 2. Instance of the Petri net for consideration in the experiment

Дворянский Л.В., Михайлов В.Е. Программа поведенческого анализа вполне структурированных систем

переходов. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 175-190.

181

First of all, the general structure of the Petri net model described above should be

defined by means of WSTL (Fig. 3).

Fig. 3. General structure of Petri net in WSTSL

Secondly, we describe the specific Petri net instance in WSTSL (Fig. 4). PT1 and

TP1 represent the arcs from places to transitions and vice versa, respectively. In

tuples, defining arcs, the corresponding transition goes first for the convenience in

description of Succ and Pred function as it will be seen below.

Fig. 4. Description of the specific Petri net instance in WSTSL

Then, a well-quasi-ordering should be described (Fig. 5). As it is shown in [3], the

inclusion ordering (𝑀 ⊆ 𝑀′when 𝑀(𝑝) ≤ 𝑀′(𝑝) for every place) is a wqo and it is

known as Dickson’s lemma [9]. Operator forall iterator | test generates a boolean

value true if the condition test is met for each step in iterator and a boolean value

false otherwise.

Fig. 5. Well-quasi-ordering function described as inclusion ordering in WSTSL

As it has been mentioned above in the Algorithms section, Backward Reachability

Method requires effective algorithm for computation of pred-basis. The algorithm

to compute it for Petri Net was suggested in [4]. How it is described in WSTSL is

shown in Fig. 6.

Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP

RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

182

Fig. 6. Description of the pred-basis and pred functions in WSTSL

To solve the covering problem the initial state and the state which coverability it is

required to check should be specified. Afterwards, backwardanalysis function

should be invoked with appropriate arguments (Fig. 7).

Fig. 7. Description of the initial marking and the marking which coverability it is required to

check with Backward Reachability Method invocation

The tool provides the user with the output that contains sequence of sets 𝐾𝑖, where

𝐾0 = {𝑚𝑐}, 𝐾𝑛+1 = 𝑝𝑏(𝐾𝑛), their union ∪𝑖∈ℕ 𝐾𝑖 and its minimal elements (basis).

Finally, it is reported whether the analyzed state (marking) 𝑚𝑐 is covered or not

(Fig. 8).

Дворянский Л.В., Михайлов В.Е. Программа поведенческого анализа вполне структурированных систем

переходов. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 175-190.

183

Fig. 8. Report of the tool for the backward analysis invocation

As it has been mentioned above in the Algorithms section, Finite Reachability Tree

requires effective algorithm for computation of Succ. How it is described in WSTSL

is shown in Fig. 9.

To construct Finite Reachability Tree only the initial state should be specified.

Afterwards, forwardanalysis function should be invoked with appropriate

arguments (Fig. 10).

Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP

RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

184

Fig. 9. Description of the Succ function in WSTSL

Fig. 10. Description of the initial marking and the Finite Reachability Tree construction

invocation

The tool provides the user with the image which illustrates constructed Finite

Reachability Tree (Fig. 11). Nodes are labeled with their states. Dead nodes are red.

The node labeled with {P1=1, P2=0, P3=2, P4=2} state is dead since {P1=1, P2=0,

P3=2, P4=2} ≥{P1=1, P2=0, P3=2, P4=1} (the latter state is represented by the root

which subsumes the dead node labeled by the former state).

Fig. 11. Constructed finite reachability tree

Дворянский Л.В., Михайлов В.Е. Программа поведенческого анализа вполне структурированных систем

переходов. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 175-190.

185

5.2. Lossy Channel Systems

Another model that we considered was Lossy channel system (LCS) which is a

subclass of FIFO-channel systems.

Definition 5. FIFO-channel system is a 6-tuple (𝑆, 𝑠0, 𝐴, 𝐶, 𝑀, 𝛿) where

 𝑆 is a finite set of control states;

 𝑠0 ∈ 𝑆 is the initial control state;

 𝐴 is a finite set of actions;

 C is a finite set of channels;

 𝑀 is a finite set of messages (𝑀∗ is a set of finite strings composed of

elements from 𝑀);

 𝛿 is a finite set of transitions, each of which is represented by one of the

following tuples (𝑠1, 𝑐! 𝑚, 𝑠2), (𝑠1, 𝑐? 𝑚, 𝑠2), (𝑠1, 𝑎, 𝑠2), where 𝑠1, 𝑠2 ∈ 𝑆,

𝑐 ∈ 𝐶, 𝑚 ∈ 𝑀 and 𝑎 ∈ 𝐴 (see below).

Transition (𝑠1, 𝑐! 𝑚, 𝑠2) changes the control state from 𝑠1 to 𝑠2, adding the

message 𝑚 to the end of the channel 𝑐. Operation 𝑐! 𝑚 is also known as a send

action.

Transition (𝑠1, 𝑐? 𝑚, 𝑠2) changes the control state from 𝑠1 to 𝑠2, removing the

message 𝑚 from the beginning of the channel 𝑐. If the channel 𝑐 is empty or its first

element is not 𝑚, then this transition cannot occur. Operation 𝑐? 𝑚 is also known as

a receive action.

Transition (𝑠1, 𝑐? 𝑚, 𝑠2) changes the control state from 𝑠1 to 𝑠2 and does not change

the state of the channels.

Considering LCS it is also assumed that some message in some channel can be lost

at any moment. To model this behavior one more operation 𝜏(𝑐, 𝑚) is introduced.

Transition (𝑠1, 𝜏(𝑐, 𝑚) , 𝑠2) removes the message 𝑚 from the channel 𝑐, and does

not change the control state.

For LCS = (𝑆, 𝑠0, 𝐴, 𝐶, 𝑀, 𝛿) the ordering ≤ is defined on the set of global states
{(𝑠, 𝑤)| 𝑠 ∈ 𝑆, 𝑤: 𝐶 → 𝑀∗} as follows:

(𝑠, 𝑤) ≤ (𝑠′, 𝑤′) ⟺ 𝑠 = 𝑠′ ∧ 𝑤(𝑐) ≪ 𝑤′(𝑐) ∀𝑐 ∈ 𝐶.

The ordering ≪ is a subword ordering: 𝑢 ≪ 𝑣 iff 𝑢 can be obtained by erasing

letters from 𝑣. It is shown in [6] that this ordering is a wqo.

The concrete model that we considered was Alternating Bit Protocol (ABP). It is

represented by Sender and Receiver which communicate via two FIFO-channels 𝑐𝑀

and 𝑐𝐴. Sender sends messages to Receiver via 𝑐𝑀, while Receiver sends

acknowledgements via 𝑐𝐴. Both channels can lose messages. Messages and

acknowledgements contain one-bit sequence number 0 or 1. Sender continuously

sends the same message with the same sequence number, until it receives an

acknowledgement from Receiver with the same sequence number. Then, Sender

changes (flips) the sequence number and proceeds with sending the next message.

Receiver starts by waiting the message with the sequence number 0 (actually, it can

Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP

RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

186

initially send acknowledgments with the sequence number 1). When it receives such

a message it starts sending acknowledgements with the same sequence number,

until it receives the message with the flipped sequence number and so on. The

described model is illustrated in terms of Lossy Channel System in Fig. 12.

Fig. 12. Alternating Bit Protocol modelled as a Lossy Channel System

5.3 Performance

To measure the performance of the implemented Finite Reachability Tree algorithm

we applied it to the four different models, which include a model shown in Fig. 2

(Example 1) and the Petri Net models simulating the dining philosophers problem

[10] for a number of philosophers equal to 5, 6 and 7. We executed the experiment

on the following machine: Intel Core i7, 2.22 GHz, 16 GB RAM running OS X El

Capitan (v. 10.11.6). System.nanoTime() method was invoked immediately before

of the beginning of construction of a FRT and immediately after the end of

construction, then the difference was calculated to measure run time for one run. In

Table 1 in the Run time column average results for 20 runs are given in seconds. As

well, sizes of the constructed FRTs are given. It can be seen that both run time and

size of FRT grow exponentially for the philosophers problem.

Table 1. Performance of the tool during Philosophers problem solving

 Run time (s) Size of FRT

Example 1 0.03596 3

Phil5 0.08587 241

Phil6 1.87815 25711

Phil7 5221.64756 88062003

Дворянский Л.В., Михайлов В.Е. Программа поведенческого анализа вполне структурированных систем

переходов. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 175-190.

187

6. Summary

This paper addresses a lack of practical results in studies of well-structured

transition systems. In order to fill this gap, there was presented one of the possible

ways for development of the system capable to analyze WSTS with two common

algorithms: backward reachability method and the Finite Reachability Tree. Well-

Structured Transition Systems Language is introduced as a means of describing the

user’s input, which consists of the description of transition system’s structure in

general and specific instance’s relations and values.

The tool can be used by researchers to investigate the efficiency of the implemented

algorithms. It is expected that it is appropriate for conducting experiments on small

and mediumsized WSTS. The technology eases the efforts required to check the

potential of the WSTS analysis algorithms for practical applications and to make

what-if experiments on newly developed formalisms.

The application of the tool is illustrated for the Petri nets and Lossy Channel System

formalisms. Also, there were given results of the experiment on Petri nets modeling

the dining philosophers problem. The performance analysis of the Finite

Reachability Tree applied to this problem demonstrated the expected exponential

growth of execution time; and, it indicates the need for further investigations of

optimizations (e.g. reduction rules) that can be applied to make the algorithm

effectively applicable in practice.

7. Acknowledgements

This work is supported by the Basic Research Program at the National Research

University Higher School of Economics and Russian Foundation for Basic

Research, project No. 16- 01-00546.

References
[1]. J. Burch, E. Clarke, K. McMillan, D. Dill and L. Hwang, "Symbolic model checking:

1020 States and beyond", Information and Computation, vol. 98, no. 2, pp. 142-170,

1992.

[2]. A. Finkel, “Well structured transition systems,” Univ. Paris-Sud, Orsay, France, Res.

Rep. 365, Aug. 1987.

[3]. A. Finkel and P. Schnoebelen, "Well-structured transition systems

everywhere!", Theoretical Computer Science, vol. 256, no. 1-2, pp. 63-92, 2001.

[4]. P. Abdulla, K. Čerāns, B. Jonsson and Y. Tsay, "Algorithmic Analysis of Programs with

Well Quasi-ordered Domains", Information and Computation, vol. 160, no. 1-2, pp. 109-

127, 2000.

[5]. R. Karp and R. Miller, "Parallel program schemata", Journal of Computer and System

Sciences, vol. 3, no. 2, pp. 147-195, 1969.

[6]. E. Kouzmin and V. Sokolov, Well-Structured Labeled Transition Systems, Moscow:

Fizmatlit, 2005.

[7]. J. Kruskal, "The theory of well-quasi-ordering: A frequently discovered concept",

Journal of Combinatorial Theory, Series A, vol. 13, no. 3, pp. 297-305, 1972.

Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP

RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

188

[8]. T. Parr, The definitive ANTLR 4 reference, Raleigh, NC and Dallas, TX: The Pragmatic

Bookshelf, 2013.

[9]. L. Dickson, "Finiteness of the Odd Perfect and Primitive Abundant Numbers with n

Distinct Prime Factors", American Journal of Mathematics, vol. 35, no. 4, pp. 413-422,

1913.

[10]. E. Dijkstra, "Hierarchical ordering of sequential processes", Acta Informatica, vol. 1, no.

2, pp. 115-138, 1971.

[11]. S. Akshay, B. Genest, L. Hélouët, Decidable Classes of Unbounded Petri Nets with

Time and Urgency. In: F. Kordon, D. Moldt (eds) Application and Theory of Petri Nets

and Concurrency. PETRI NETS 2016. Lecture Notes in Computer Science, vol 9698.

Springer, Cham

[12]. L. W. Dworzanski, Consistent Timed Semantics for Nested Petri Nets with Restricted

Urgency, in: Formal Modeling and Analysis of Timed Systems Vol. 9884. Switzerland :

Springer International Publishing, 2016. doi Ch. 1. pp. 3-18.

[13]. J. T. Schwartz, "Set Theory as a Language for Program Specification and

Programming". Courant Institute of Mathematical Sciences, New York University,

1970.

[14]. R. Dewar, "SETL and the Evolution of Programming." In From Linear Operators to

Computational Biology, pp. 39-46. Springer London, 2013.

Инструмент для анализа поведения вполне
структурированных систем переходов

Л.В. Дворянский <leo@mathtech.ru>

В.Е. Михайлов <vlamikhaylov@gmail.com>

Национальный исследовательский университет

«Высшая школа экономики»,

101000, Россия, Москва, ул. Мясницкая, 20

Аннотация. Вполне структурированные системы переходов являются хорошо

известным инструментом для доказательства разрешимости свойств покрываемости и

ограниченности. Каждый год появляются новые формализмы, которые оказываются

вполне структурированными системами переходов. Несмотря на большой объем

теоретической работы, существует большая потребность в эмпирических изучении

вполне структурированных систем переходов. В данной работе представлен

инструмент для анализа таких систем. Мы предлагаем расширение высокоуровневого

языка SETL для описания вполне-структурированных систем переходов. Это позволяет

описывать новые формализмы близко к их формальному определению. Таким образом

упрощается создание и изменение новых формализмов, а также осуществление анализа

поведенческих свойств без большого объема программистских усилий. Это удобно,

когда новый формализм находится в стадии изучения и разработки. Были реализованы

два самых изученных алгоритма анализа поведения вполне структурированных систем

переходов (обратный алгоритм и анализ конечных деревьев достижимости). Их

производительность была измерена на моделях сетей Петри и систем с потерей

сигналов. Разработанный инструмент может быть полезным при внедрении и

тестировании методов анализа формализмов, которые оказываются вполне

структурированными системами переходов.

Дворянский Л.В., Михайлов В.Е. Программа поведенческого анализа вполне структурированных систем

переходов. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 175-190.

189

Ключевые слова: формальная верификация; системы с бесконечным числом
состояний; вполне структурированные системы Переходов; сети Петри.

DOI: 10.15514/ISPRAS-2017-29(4)-11

Для цитирования: Дворянский Л.В., Михайлов В.Е. Программа поведенческого

анализа вполне структурированных систем переходов. Труды ИСП РАН, том 29, вып. 4,

2017 г., стр. 175-190 (на английском языке). DOI: 10.15514/ISPRAS-2017-29(4)-11

Список литературы
[1]. J. Burch, E. Clarke, K. McMillan, D. Dill and L. Hwang, "Symbolic model checking:

1020 States and beyond", Information and Computation, vol. 98, no. 2, pp. 142-170,

1992.

[2]. A. Finkel, “Well structured transition systems,” Univ. Paris-Sud, Orsay, France, Res.

Rep. 365, Aug. 1987.

[3]. A. Finkel and P. Schnoebelen, "Well-structured transition systems

everywhere!", Theoretical Computer Science, vol. 256, no. 1-2, pp. 63-92, 2001.

[4]. P. Abdulla, K. Čerāns, B. Jonsson and Y. Tsay, "Algorithmic Analysis of Programs with

Well Quasi-ordered Domains", Information and Computation, vol. 160, no. 1-2, pp. 109-

127, 2000.

[5]. R. Karp and R. Miller, "Parallel program schemata", Journal of Computer and System

Sciences, vol. 3, no. 2, pp. 147-195, 1969.

[6]. E. Kouzmin and V. Sokolov, Well-Structured Labeled Transition Systems, Moscow:

Fizmatlit, 2005.

[7]. J. Kruskal, "The theory of well-quasi-ordering: A frequently discovered concept",

Journal of Combinatorial Theory, Series A, vol. 13, no. 3, pp. 297-305, 1972.

[8]. T. Parr, The definitive ANTLR 4 reference, Raleigh, NC and Dallas, TX: The Pragmatic

Bookshelf, 2013.

[9]. L. Dickson, "Finiteness of the Odd Perfect and Primitive Abundant Numbers with n

Distinct Prime Factors", American Journal of Mathematics, vol. 35, no. 4, pp. 413-422,

1913.

[10]. E. Dijkstra, "Hierarchical ordering of sequential processes", Acta Informatica, vol. 1, no.

2, pp. 115-138, 1971.

[11]. S. Akshay, B. Genest, L. Hélouët, Decidable Classes of Unbounded Petri Nets with

Time and Urgency. In: F. Kordon, D. Moldt (eds) Application and Theory of Petri Nets

and Concurrency. PETRI NETS 2016. Lecture Notes in Computer Science, vol 9698.

Springer, Cham

[12]. L. W. Dworzanski, Consistent Timed Semantics for Nested Petri Nets with Restricted

Urgency, in: Formal Modeling and Analysis of Timed Systems Vol. 9884. Switzerland :

Springer International Publishing, 2016. doi Ch. 1. pp. 3-18.

[13]. J. T. Schwartz, "Set Theory as a Language for Program Specification and

Programming". Courant Institute of Mathematical Sciences, New York University,

1970.

[14]. R. Dewar, "SETL and the Evolution of Programming." In From Linear Operators to

Computational Biology, pp. 39-46. Springer London, 2013.

Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP

RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

190

