Stochastic Methods for Analysis of Complex
Hardware-Software Systems

! A.A. Karnov <karnov@ispras.ru>
23.V. Zelenov <zelenov@ispras.ru>
! Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia.
2 Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

Abstract. In this paper we consider Markov analysis of models of complex software and
hardware systems. A Markov analysis tool can be used during verification processes of
models of avionics systems. In the introduction we enumerate main advantages and
disadvantages of Markov analysis. For example, with Markov analysis, unlike other
approaches, such as fault tree analysis and dependency diagram analysis, it is possible to
analyze models of systems that are able to recovery. The main drawback of this approach is
an exponential growth of models size with number of components in analyzed system. It
makes Markov analysis barely used in practice. The other important problem is to develop a
new algorithm for translating a model of a system to a model suitable for Markov analysis
(Markov chain), since the existing solutions have significant limitations on the architecture of
analyzed systems. Next we give a brief description of the context — AADL modeling
language with Error Model Annex library, MASIW framework, and also give an explanation
of Markov analysis method. In a main section we suggest an algorithm for translating a
system model into a Markov chain, partially solving the problem of exponential growth of
Markov chain. Then follows a description of further steps, and some heuristics that allow to
extremely reduce running time of the algorithm. In this paper we also consider other Markov
analysis tools and their features. As a result, we suggest a Markov analysis tool that can be
effectively use in practice.

Keywords: Markov analysis; system safety assessment; fault modeling; complex software-
hardware system.

DOI: 10.15514/ISPRAS-2016-29(4)-12

For citation: Karnov A.A., Zelenov S.V. Stochastic Methods for Analysis of Complex
Hardware-Software Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 191-
202. DOI: 10.15514/ISPRAS-2016-29(4)-12

191



Karnov A.A., Zelenov S.V. Stochastic Methods for Analysis of Complex Hardware-Software Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 191-202.

1. Introduction

In this paper we consider a task related to verification of models of software and
hardware systems. Such systems can be, for example, control systems for airplanes,
ships, medical equipment, etc. The price of error in these systems is very high, but
they are too complicated for “manually” analysis. Therefore such systems are
modeled before implementation. On the stages of design, development, and
verification of the models, it is necessary to constantly investigate system safety.

At present, three main methods of system safety assessment [1] are widely used:
fault tree analysis, dependency diagram analysis, and Markov analysis. Each
method has its own advantages and disadvantages. In this paper, Markov analysis is
considered.

Markov analysis works with a Markov chain [2] — a stochastic process, which can
be represented as a directed graph with weighted edges. Vertices of Markov chain
represent different states, and edges are labeled by probabilities of a transition
between states. The main drawback of Markov analysis is a size of Markov chains,
which increases exponentially with number of components in the system. In
addition, it is necessary to develop an algorithm, that takes system model and
translate it to the Markov chain. These problems make Markov analysis not so
popular as the other methods, and number of tools that use Markov analysis for
complex systems is relatively small. However, such approach has its advantages:
Markov analysis allows to look at the entire system, to consider not only causes and
probabilities of certain single failure, but also investigate how various failures affect
the system in the aggregate. Also Markov analysis, unlike the other approaches,
allows to analyze self-recovering systems, since return to operational state is natural
for Markov chains.

Thus, the task of development the Markov analysis tool of complex hardware-
software systems is quite important and relevant.

2. Context

2.1 AADL and Error Model Annex

Architecture Analysis & Design Language (AADL) [3] is a language, that widely
used for describing models of real-time hardware and software systems. Its features
include description of both hardware (so-called execution platform) and software
components of an analyzed system, and various connections between them. The
models, described in AADL, may be used for documentation, for various kinds of
analysis and for code generation.

Error Model Annex [4] is an extension of AADL, that allows to simulate
appearance and propagation of errors in the system. For each component, a modeller
can add a description of component’s behavior states, for example, operational and
failed. Transitions between system states are triggered by randomly occured error
events and internal errors propagated from other components. An error propagation

192



Kaphnos A.A., 3enenos C.B. CroxacTHueckue MeTO/Ibl aHaJIM3a KOMIUIEKCHBIX TPOrPAMMHO-AINapaTHBIX CHCTEM.
Tpyowt UCII PAH, Tom 29, Bbim. 4, 2017 r., ctp. 191-202.

condition may depend on certain behavior state of the component, some error
events, or error propagated from environment. Each propagated error has its own
type, that allows to control what is exactly happened in the system. Also transitions
between states can be defined implicitly — a state of some component may be a
composite state of its subcomponents.

AADL and Error Model Annex together describe not only an architecture, but also
error behavior of systems. It becomes possible to evaluate such properties of models
as safety, reliability, the availability of its various states and ability to recover from
them.

2.2 MASIW

MASIW [5] is an open-source framework for designing and analyzing of integrated
modular avionics systems, that use AADL as a modelling language.

The project designed as plugins for Eclipse IDE, includes a variety of tools for
working with AADL and Error Model Annex models. There is a big number of
different analysis tools, for example, a fault tree analysis tool, but there is no
Markov analysis tool.

2.3 Markov analysis

Any model subjected to Markov analysis must be represented as a Markov chain. A
Markov chain can be represented in the form of a directed graph with vertices
containing system states, and edges labeled with intensities of transitions between
corresponding states. A Markov chain has the property of Markov process — a
probability of a transition to any state depends only on a current state and a moment
in time, and previous transitions are unimportant (can be characterized as
memorylessness).
Markov models can be divided into models with discrete and continuous time, as
well as time-homogeneous (also called stationary) and time-inhomogeneous. In
time-homogeneous Markov chains, the intensities of transitions are constant, while
in time-inhomogeneous Markov chains they depend on time. In time-homogeneous
Markov chains, transitions occur according to the binomial (or fixed) distribution
for discrete-time chains, and according to the Poisson distribution for continuous-
time chains.
To determine the behavior of an analyzing system, it is necessary to specify a
system of differential equations. The equations follow from the Markov chain. For
all Markov processes (and a Markov chain, in particular) we have the Kolmogorov-
Chapman equation [6]:

PE*AD(S;/8;) = Bie=1 PO (S /SHPO(Si/S1) 1)
This equation means that probability of a transition from state S;to state S;for some
time t + dtis equal to a sum of probabilities of passes into the target state S;through
all of intermediate states S.

193



Karnov A.A., Zelenov S.V. Stochastic Methods for Analysis of Complex Hardware-Software Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 191-202.

Consider a time-homogeneous chain with an intensity of the transition between
states S;and Syequal to A(S;/S;). Then for continuous-time Markov chains, the
Kolmogorov-Chapman equation implies a system of differential equations
aPOG/S) _ _ g ® n ®
= = Xk=1 AS/SOPY(S;/S) + Lie=1 ASk/SOP(S;/Sk) - (2)

dt
And for discrete-time chains, a system of difference equations

P+ (s;/51)-PO(s;/5)
= P = = YR A/ SIOPO(S;/80) + Tieed Ak /SHPD(S;/5))
@)
Denote by S;a certain initial state of the system, and consider equations (2)-(3) in
case when S; = S;. Denote by P;(t)the function P()(S,/S;). Then, the previous

equations takes the following form:
ari(t) _

- = ~ Zk=1 A(Si/Si)Pi(t) + X1 A(Skc/S)Pi (1) 4)
PUCBOZPIO — — 33 ACS/SOPE) + Sikr AGSk/S)P() 5)

In addition, initial conditions appear:
P,(0)=1,P(0)=0,i=-2,n (6)

Thus, we obtain the Cauchy problem [7]. The solution of this problem is a set of
probabilistic functions of being a system in a definite state. This is the result of
Markov analysis.

In this paper, we consider only the analysis of time-homogeneous Markov chains
and models, as the most common ones. However, all results can be applied to time-
inhomogeneous models, with the only difference being that intensities of Markov
chain transitions depend on time, and they need to be stored as formulas, not as
numbers.

3. Problem

The goal of this work is a development and implementation of a Markov analysis
tool for complex hardware-software systems models within the MASIW framework.
The tool takes input of some system model and a set of time points. At the output,
the analyzer provides the probabilities of being the system in each of its possible
states at moments of time, defined by user.

The main problem is to create a Markov chain on the basis of the original model.
First, we need an algorithm that creates a correct Markov chain corresponding to the
input data. Secondly, the result chain should be of acceptable size, so that the
program can work for acceptable time in limited memory.

After a construction of a Markov chain, further action reduces to solving a Cauchy
problem with a system of linear differential equations. An analytical solution of the
Cauchy problem is too complicated, resource-intensive, and result is difficult to
comprehend, so we use numerical methods.

194



Kaphnos A.A., 3enenos C.B. CroxacTHueckue MeTO/Ibl aHaJIM3a KOMIUIEKCHBIX TPOrPAMMHO-AINapaTHBIX CHCTEM.
Tpyowt UCII PAH, Tom 29, Bbim. 4, 2017 r., ctp. 191-202.

4. Solution

4.1 Markov chain

The primary task is to translate an AADL model into a Markov chain. In particular,
it is necessary to find out what to regard as a chain node and what generates
transitions between system states.

Obviously, the node must contain the state of the system, which is a combination of
the states of all system components (the states of the components are described in
the model as behavior states). However, if we take as a node any of all possible
combinations, then the number of nodes will be no less than 2™, where nis the
number of system components. Real systems often contain more than 20
components, that, on the one hand, are few, but on the other hand, results in size of
such Markov chain outside available memory.

We suggest the following solution of this problem. Let us exclude from the chain all
unreachable states of the system, which, as practice shows, are the vast majority.
First, some states of the system are unreachable by definition of ananalyzing model.
For example, the state of some component may completely depend on the states of
its subcomponents. Accordingly, the component can not be in a failed state, while
all its subcomponents are in operational states. Second, the failure of some
components entails an almost immediate failure of others — for example, a
breakdown of a processor entails a failure of all processes running on it. Thus, the
state in which the processor is broken, but the processes on it are still working,
though reachable in theory, at the very moment of the failure, but instantly replaced
by another state.

Thus, we suggest the following approach. We assume that speed of error
propagation between components is extremely small in comparison with time of
system operation (which, in practice, is the case — for a unit of time measurement
usually takes hour and even a day). Let us define a stable state of the sistem as a
state, that does not change until new error events occur in the system and its
components. We consider as nodes of designed Markov chain only the stable states
of the system. The sets of arising events generate transitions between nodes of the
chain.

For the sake of saving memory, we insert only reachable states to the Markov chain,
and build it dynamically, from the initial state of the system, which is a combination
of the initial states of the components. In each new node it is necessary to analyze
transitions from the current state of the system. The state can change for some event
or combination of events. So, we perform complete search for all possible sets of
events — either of them can initiate a new transition. The probability of occurrence
of each set of events is easily calculated, since each event contains information
about its probability distribution. This is a multiplication product of probabilities of
occurrence or negation of occurrence of each of the events, since all events are

195



Karnov A.A., Zelenov S.V. Stochastic Methods for Analysis of Complex Hardware-Software Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 191-202.

independent. The total probability of all sets of events, according to the law of total
probability, should be equal to 1.
The algorithm is completed when all nodes of Markov chain are analyzed, starting
from the node corresponding to the initial state of the system.
markovChain.addNode(initialStateNode)
gueue.add(initialStateNode)
while not queue.isEmpty() do
analyzeNode(queue.head())
gueue.add(newNodes)
end while
The analysis of each node of Markov chain looks like this: all possible sets of error
events are searched, for each of them we calculate a stable state of the system into
which the given set leads, and then a new transition (and, if necessary, a new node)
is added to the chain.
for each errorEventSet in possibleSets do
state = currentNode.getState()
repeat
watchedStates.add(state)
state = calculateState(state, errorEventSet)
until watchedStates.contains(state)
node = markovChain.addNode(state)
markovChain.addTransition(
currentNode, node, errorEventSet.getProbability())
watchedStates.clear()
end for
In the above algorithm, the state of the system is considered stable if we have
already reached it before. This correctly handles the case when the state of the
system has not changed — we have reached the same state as in the previous step.
However, in theory, in a self-recovering systems, cycling may occur if an event with
a failure and an event with component recovery occur simultaneously. With this
condition, the loop stops, but this situation is not handled correctly. One of the main
opportunities for further improvement of the algorithm is to improve the condition
for achieving a stable state of the system.

4.2 Calculation of new states

In the previous paragraph, a general algorithm for constructing a chain was
described, omitting the details of calculating new states of the system. To find out
exactly how the system has changed, it is enough to go through all its components,
and see what transitions between states are triggered for a given set of events and
the current state of the system. The triggered transition is immediately applied to the
system, and the algorithm step is completed.

196



Kaphnos A.A., 3enenos C.B. CroxacTHueckue MeTO/Ibl aHaJIM3a KOMIUIEKCHBIX TPOrPAMMHO-AINapaTHBIX CHCTEM.
Tpyowt UCII PAH, Tom 29, Bbim. 4, 2017 r., ctp. 191-202.

for each componentState in systemState do
for each compositeState in comp.getCompositeStates() do
if checkStateExpression(compositeState.getExpression())
then
systemState.applyTransition(compositeState)
return
end if
end for
for each transition in comp.getTransitions() do
if transition.getSource() == compState
and checkErrorCondition(transition.getCondition())
then
systemState.applyTransition(transition)
return
end if
end for
end for
The checkStateExpression and checkErrorCondition functions check whether the
transition condition is met. Such conditions can be interpreted as a logical formula,
where variables corresponding to components behavior states, error events, and
propagated errors, have value of true or false, depending on whether the system is in
this state, whether an error event has occurred or whether an error of the specified
type has propagated.
As soon as some component of the system changes its state, it means that we obtain
a new state of the system, and the step of the algorithm is completed. If none of the
transitions is triggered, then the system state has not changed, which is noticed by
the algorithm described in the previous section.

4.3 Construction and solution of the Cauchy problem

After construction of a Markov chain, the final stage of the Markov analysis of the
system is to construct a system of equations and solve the Cauchy problem. As
mentioned earlier, each node of the Markov chain generates a differential equation
(4) (or similar difference equation (5)). To save memory, it is not necessary to store
the system of equations — the equation for any node can be easily constructed
dynamically, passing through all transitions entering into this node and outgoing
from it.

The resulting Cauchy problem can be solved by a numerical method from the
Runge-Kutta [8] family of methods. In the analyzer, two methods are implemented:
the Euler method, for discrete-time Markov chains, and the fourth-order Runge-
Kutta method, for continuous-time Markov chains. The type of the chain is
determined in advance, according to probability distributions of error events. An

197



Karnov A.A., Zelenov S.V. Stochastic Methods for Analysis of Complex Hardware-Software Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 191-202.

algorithm for calculating the variation of the function P;(t)on each time interval
delta t, taking into account the dynamic construction of the equation (Euler’s
method):

for each node in markovChain.getNodes() do
i = indexOf(node)
res=0
for each transition in node.getInTransitions() do
k = indexOff(transition.getNode())
res += transition.getProbability() * pPrev[k]
end for
for each transition in node.getOurTransitions() do
res -= transition.getProbability() * pPrev[i]
end for
pCur[i] = pPrev[i] + delta t * res
end for
Also, the value of the vector of probability functions P (t) is saved at every time

point defined by user. As soon as values at each necessary time point are calculated,
the algorithm is completed.

4.4 Getting Analysis Results

Since number of system states in Markov chain can be very large, the result of
analysis in the form of probabilities of being the system in each of them is
practically impossible for reading. Considering that each system has its root
component, we group all system states according to the states of the root
component.
In this case, all the probability functions within the same group are summed up:
for each node in chainNodes do
i = indexOf(node)
state = node.getSystemState().get(rootComp)
analysisResult.get(state) += p[i]
end for
After this, for each state of the root component, the probability of being the system
in a this state at given time points is obtained. This is the desired result of the
Markov analysis of the system.

4.5 Algorithm acceleration

Despite a partial solution of the problem of exponential growth of Markov chain
size, the running time of full version of the algorithm still grows exponentially —
due to a thorough search of all possible combinations of error events. Thus, we use
some heuristics in the final program, accelerating the algorithm.

198



Kaphnos A.A., 3enenos C.B. CroxacTHueckue MeTO/Ibl aHaJIM3a KOMIUIEKCHBIX TPOrPAMMHO-AINapaTHBIX CHCTEM.
Tpyowt UCII PAH, Tom 29, Bbim. 4, 2017 r., ctp. 191-202.

First, we limit the search of combinations of events. Since the probability of
occurrence of one event is usually extremely small, the situation in which several
events occur simultaneously is practically impossible. Therefore, a very small
numerical parameter, limiting the probability of the combination of events under
consideration, was added to the program. If the probability of occurrence of the set
of events is less than this parameter, then the effect of the set of events on the
system is not considered. This solution significantly reduced the running time of the
program, without much loss of accuracy of the result.

The second solution relates to system’s ability to self-recovery. In practice, there are
few examples of self-recovering systems, and, in most cases, even a short-term
failure of the system itself means fatal consequences. Accordingly, if the analyzed
system has come to failed state, its further changes are not interesting to us — no
matter what else can fail in the already failed system. Therefore, we introduce a set
of states of the root component, that are considered as «absolutely» failed. If some
node of Markov chain has failed state of the root component, then we do not
analyze transitions from it. If analyzed system is not self-recovering, the result of
the program remains the same, but is obtained in much shorter time.

Both modifications of the program are optional, as they may change final result in
some cases, but their application reduces the operating time by several orders of
magnitude. For example, a complete analysis of a system containing 24 components
revealed 919 states of the Markov chain and took 1 hour. Limiting the frequency of
the events considered by the number 10~3%gave a significant gain — the same set of
states of the Markov chain and the same result of the analysis were obtained in 7
minutes. Since the system under test was not self-recovering system, the analysis
with the stop-on-failed option was correct, and got the same result in 10 seconds.
Setting relevant parameters allows to significantly accelerate work of the analyzer.
One of the further options for improving the tool can be automatic detection and
selection of optimizing parameters.

5. Related works

Markov analysis of AADL and Error Model Annex models is usually applied to
systems consisting of only one component. Such algorithms doesnt consider error
propagation mechanism and composite states, and limited by root component.

The tool from OSATE [9] framework, created for export AADL model into Markov
chain model for PRISM [10] toolset, which provide further steps of Markov
analysis, supports only the first nesting level of the component hierarchyand does
not support different types of propagated errors. In addition, there were some
problems associated with the syntactic correctness of the final PRISM model.

6. Conclusion

In this paper we present a new Markov analysis tool, and in particular, an algorithm
for translating AADL and Error Model Annex models into Markov chains. In

199



Karnov A.A., Zelenov S.V. Stochastic Methods for Analysis of Complex Hardware-Software Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 191-202.

addition, there were added some improvement for accelerating the algorithm, which
make it possible to effectively use the tool in practice.

The presented tool can be further improved in various ways: adding support for
time-inhomogeneous Markov chains, accelerating the work of the algorithm,
changing some details of algorithm.

References

[1]. “SAE ARP4761 Guidelines and Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipment,” Warrendale, USA, Dec. 1996.

[2]. A. N. Shiryaev, Probability (2Nd Ed.). Secaucus, NJ, USA: Springer Verlag New York,
Inc., 1995.

[3]. P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL: An Introduction to
the SAE Architecture Analysis & Design Language, 1st ed. Addison-Wesley
Professional, 2012.

[4]. P. Feiler, “SAE AADL error model annex: An overview,” Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep., 2014. [Online].
Available: https://wiki.sei.cmu.edu/aadl/images/1/13/ErrorModelOverview-Sept222011-
phf.pdf

[5]. “MASIW framework,” https://forge.ispras.ru/projects/masiw-0ss/.

[6]. S. Kuznetsov, “Mathematical models of processes and systems of technical exploitation
of avionics as Markov and semi-Markov processes,” Civil Aviation High Technologies
[Nauchnyi Vestnik MGTU GA], no. 213, pp. 28-33, 2015 (in Russian).

[7]. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations
(Dover Phoenix Editions). Dover Publications, 2003.

[8]. U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations
and Differential-Algebraic Equations. SIAM: Society for Industrial and Applied
Mathematics, 1998.

[9]. J. Delange, P. Feiler, D. Gluch, and J. Hudak, “AADL fault modeling and analysis
within an ARP4761 safety assessment,” Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-2014-TR-020, 2014. [Online].
Available: http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=311884

[10]. M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of probabilistic
real-time systems,” in Proc. 23rd International Conference on Computer Aided
Verification (CAV’11), ser. LNCS, G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806.
Springer, 2011, pp. 585-591.

200



Kaphnos A.A., 3enenos C.B. CroxacTHueckue MeTO/Ibl aHaJIM3a KOMIUIEKCHBIX TPOrPAMMHO-AINapaTHBIX CHCTEM.
Tpyowt UCII PAH, Tom 29, Bbim. 4, 2017 r., ctp. 191-202.

CtoxacTuuyeckue Metoabl aHanM3a KOMMJIEKCHbIX
nporpaMMHoO-annapaTHbIX CUCTEM

' 4.4. Kapnos <karnov@ispras.ru>
2 C.B. 3enenos <zelenov@ispras.ru>
1 . -
Mockoeckuii 2ocyoapcmeennuiii ynueepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue copwl, 0. 1.
2 Huemumym cucmemnozo npoepammupoganus PAH,
109004, Poccus, . Mockea, yn. A. Coaxcenuysvina, 0. 25

AnHotammsi. B nmaHHON paboTe paccMarpuBaeTcss MapKOBCKHH —aHaNIW3 — Mojelel
KOMIUIEKCHBIX TPOTPaMMHO-AIIAPATHEIX cHCcTeM. IHCTpyMEHT MapKOBCKOTO aHaIN3a MOXKET
ObIT HCIONB30BaH, B YACTHOCTH, IS BepHU(MUKALMKM MOAENEH CHCTeM HHTErpaabHOM
MOZAYJIbHON aBUOHUKH. BO BBEIEHHU MEPEUNCIISIOTCS OCHOBHBIE TOCTOMHCTBA M HEAOCTATKU
MapKOBcKoro ananuza. K npumepy, MapkoBCKull aHanu3, B OTIMYHME OT APYTUX MOJXON0B —
aHanu3a JepeBa HEUCIIPAaBHOCTH M aHAIN3 AJIOTMYECKOIl CXEMBI, MO3BOJISIET aHAIM3HPOBATh
MOJIEIM CUCTEM, CIIOCOOHBIX K BOCCTaHOB/ICHUIO. OCHOBHBIM HEJOCTATKOM JAaHHOTO ITOJX0/a
SIBJISIETCS] SKCIIOHCHIUAIIBHBIN POCT pa3Mepa MoJiesieil B 3aBUCUMOCTH OT YMC/Ia KOMIOHEHTOB
B aHAIM3UPYeMOH cHcTeMe. DTO CYIIECTBEHHO OIPaHHYUBACT BO3MOXKHOCTh IPHMEHEHUS
MapKOBCKOTO aHAIW3a Ha MpakTuke. [Jpyroi BaxxHoi mpo0ieMoi SBIsieTCs cOo31aHHe HOBOTO
ITOPUTMA TPAHCISIIUM HCXOAHOH MOJETM CHUCTeMbl B MOJENb, HPHUTOHYIO IS
MapKOBCKOTO aHanu3a (MapKOBCKYIO LIeTb), TAK KaK CYIIECTBYIONINE PEIICHNUs HAKIaJbIBAIOT
CYLIECTBEHHBIE OIPaHMYEHHs Ha apXUTEKTypy aHanmuzupyemoil cucremsl. Jlanee wuuer
KpaTKoe OIMCaHHe KOHTEKCTa, B KOTOPOM MHCTPYMEHT JOJDKeH paboTaTb — S3BIK
MozemupoBanusi AADL ¢ 6ubnmmotexoit Error Model Annex, nHab6op macTpymMenToB MASIW,
a TakKe OINMCBIBAETCSA CaM METOJ MAapKOBCKOTO aHaiu3a. B OCHOBHOM 4YacTH Ipejnaraercs
ITOPUTM TPAHCIANH MOJAENN CHCTEMBI B MAapKOBCKYIO II€Mb, YAaCTHYHO pPEIIArOIINit
npoOsieMy 3KCHOHEHIMATbHOTO pOCTa MAapKOBCKOW Ilemu. 3aTeM ClieqyeT OIHCaHHe
JaTbHEHWIINX IIaroB, a TakXkKe IPEATIaraloTcsl 3BPUCTHKU, MO3BOJIOMNE 3HAYUTEIHHO
COKpaTHTh BpeMs pabOTBl WTOTOBOH MporpaMMel. B pabore Takxke paccMaTpHBAIOTCS
CYLIECTBYIOIIME MHCTPYMEHThl MAapKOBCKOI'O aHalu3a M UX HeJocTaTku. B kauecTse
pe3ynbTaTa JaHHOW paboTHl MpPEAiaraeTcsi HOBBIH HHCTPYMEHT MapKOBCKOTO aHAIU3a,
KOTOPBII MOXKET OBITh () (EKTUBHO UCIIONH30BaH HA MPAKTHKE.

KnioueBsbie ciioBa: MapKoBCcKuil aHAU3; OI[EHKAa OE30IACHOCTH CHCTEMBI; MOJICITUPOBAHUE
HEHCIPaBHOCTEH; KOMIUIEKCHbIE IPOTPAMMHO-AIIAPATHbIE CUCTEMBI.

DOI: 10.15514/ISPRAS-2016-29(4)-12

Jnsa umtupoBanmsi: KapHoB A.A., 3emenoB C.B. CroxacTmyeckne METOABI aHaIH3a
KOMIUIEKCHBIX NpOTpaMMHO-anmapaTHeix cucteM. Tpynst MCIT PAH, tom 29, Bem. 4, 2017
r., ctp. 191-202. DOI: 10.15514/ISPRAS-2016-29(4)-12

201



Karnov A.A., Zelenov S.V. Stochastic Methods for Analysis of Complex Hardware-Software Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 191-202.

Cnucok nutepaTtypbl

[1]. “SAE ARP4761 Guidelines and Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipment,” Warrendale, USA, Dec. 1996.

[2]. UIupsieB A.H. Beposimnocms. Mocksa: Hayka, 1989.

[3]. P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL: An Introduction to
the SAE Architecture Analysis & Design Language, 1st ed. Addison-Wesley
Professional, 2012.

[4]. P. Feiler, “SAE AADL error model annex: An overview,” Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep., 2014. [Online].
Auvailable: https://wiki.sei.cmu.edu/aadl/images/1/13/ErrorModelOverview-Sept222011-
phf.pdf

[5]. “MASIW framework,” https://forge.ispras.ru/projects/masiw-0ss/.

[6]. Ky3ueroB, C.B. “Maremarnueckne MOJEIH TPOLECCOB M CHCTEM TEXHHYECKOM
SKCIUTyaTallid aBUOHMKU KaK MapKOBCKHE M IIOJIyMapKOBCKHE Mporecchl,” Haydnsiit
Bectuuk MI'TY T'A, 2015, No 213, ctp. 28-33.

[7]. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations
(Dover Phoenix Editions). Dover Publications, 2003.

[8]. U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations
and Differential-Algebraic Equations. SIAM: Society for Industrial and Applied
Mathematics, 1998.

[9]. J. Delange, P. Feiler, D. Gluch, and J. Hudak, “AADL fault modeling and analysis
within an ARP4761 safety assessment,” Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-2014-TR-020, 2014. [Online].
Auvailable: http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=311884

[10]. M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of probabilistic
real-time systems,” in Proc. 23rd International Conference on Computer Aided
Verification (CAV’11), ser. LNCS, G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806.
Springer, 2011, pp. 585-591.

202



