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Abstract. Software verification is a type of activity focused on software quality control and
detection of errors in software. Static verification is verification without the execution of
software source code. Special software — tools for static verification — often work with
program'’s source code. One of the tools that can be used for static verification is a tool called
CPAchecker. The problem of the current memory model used by the tool is that if a function
returning a pointer to program's memory lacks a body, arbitrary assumptions can be made
about this function return value in the process of verification. Although possible, the
assumptions are often also practically very improbable. Their usage may lead to a false alarm.
In this paper we give an overview of the approach capable of resolving this issue and its
formal specification in terms of path formulas based on the uninterpreted functions used by
the tool for memory modeling. We also present results of benchmarking the corresponding
implementation against existing memory model.
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1. Introduction

Software verification is a type of activity focused on software quality control and
detection of errors in software [1]. Static verification is a verification without the
execution of software source code.
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Special software — tools for static verification — often work with program’s source
code. Depending on the tools used for static verification it is possible to conduct
analysis of the source code to search for errors in program’s behavior.

One of the tools that can be used for static verification is a tool called CPAchecker.
It takes program’s source code as an input, creates a CFA (control-flow automaton)
and uses it to run the analysis. One of the analyses the instrument is capable of is a
reachability analysis. In this paper we consider reachability properties that can be
expressed as checking if the call to an error function is reachable. Its strong side is
that the CPA (configurable program analysis) [2] concept allows to use a
composition of several analyses for program verification. The tandem of Value
Analysis and Predicate Analysis produces good results in terms of verification
precision / verification time ratio.

2. Definitions and notations

We will call a model of program’s memory or just a memory model a strategy of
organization and representation of program’s memory. By region we will refer to
the set of lvalues with the following restriction: if two lvalues are taken from two
different regions they necessarily reference disjoint memory locations [3]. For
example, different regions may be safely assigned to the Ivalues referring distinct
structure fields under the following conditions:

o the fields do not occur as an argument to the address taking operator (&);

o the fields do not become targets of some pointers by the usage of pointer
type conversion or address arithmetic.
The situation when a program’s error state is reachable due to the imprecisions of
abstraction employed in the analysis is called a false alarm.

3. CPAchecker’s memory model

Existing memory model employed by Predicate Analysis of the CPAchecker tool
uses uninterpreted functions. Each of those functions has only a name and a number
of arguments. If f (x) is an uninterpreted function, a and b are any of its arguments
for which a = b is true then f (a) = f (b)[4]. Uninterpreted functions in the
CPAchecker tool are used to establish a correspondence between a memory location
and the value stored at this memory location. Depending on the type of the
expression different uninterpreted functions should be used.

Existing memory model of the CPAchecker tool uses typed regions. This means that
all Ivalues of the same type exist in the same region. However, a large number of
Ivalues of the same type is present in any big enough program written in the C
programming language. This leads to the addition of a big number of logical
constraints for each event of a pointer’s memory update. The constraints express
checks for potential equality of the updated Ivalue to each memory location in the
region. Those checks allow to determine precisely what memory should also be
updated but noticeably increase the length of path formulas.
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The problem of the current memory model used by the tool is that if a function
returning a pointer to program’s memory lacks a body, arbitrary assumptions can be
made about its return value in the process of verification. In other words, it is
considered possible for this pointer to point at any Ivalue in the region. Although
possible, this situation is also practically very improbable. In those cases it is hard to
determine if a path leading to an error label really does or doesn’t exist. One of the
approaches capable of resolving this issue suggests the introduction of smaller
regions that divide a bigger typed region.

4. B&B memory model

4.1 Memory model overview

B&B memory model was proposed by Richard Bornat and had been based on the
work of Rod Burstall [5], [6]. It is used in Frama-C verification tool in Jessie plugin
which is capable of performing verification of the C programs. In its foundation are
assumptions that can introduce regions of smaller sizes instead of having very big
one for a type. These assumptions state that if struct data type fields never occur as
arguments to the address taking operator (&) in program’s source code then those
fields can be placed to separate regions. Otherwise they must belong to the same
region as the normal pointers of the same type.

This memory model has some flaws. It does not take into account that the struct
fields can be accessed through address arithmetic and pointer conversions. It also
needs mentioning that some overhead costs are required for region support. Taking
into account the pros and cons of the model it is possible to say that the B&B
memory model looks promising.

4.2 Formal specification
For ease of specification we will assume the following:

e variables can only be of struct s * types;

e struct s fields can only be of int type;

e struct s has n fields: struct s { int f1, 2, ..., fn; };
Program’s memory location can be represented by an Ivalue expression like pointer
dereference. To model changes to the program’s state when assignments to lvalues
arise the CPAchecker tool uses uninterpreted functions [4].
We assume absence of pointer arithmetic and restrict pointer dereferences to the
applications of the arrow operator (p — f;), where p is a pointer to the struct type
and f; is one of the struct fields).
Let Y be a set of uninterpreted functions. It consists of the uninterpreted function G
that is used for accessing a memory location in global region, a finite number of
uninterpreted functions F;, where each function F; represents the state of the

memory region corresponding to Ivalues of the form b — f;,i = 1,n and the
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uninterpreted function undef ptr with zero arity that models the usage of the
program’s functions returning an unknown pointer.

Let B(e) be an uninterpreted function used for global memory location modeling

and B;(e), i = 1,n — a finite set of uninterpreted functions used for memory
location modeling in regions corresponding to F; uninterpreted functions. For
address representation it is suggested to use expressions like a, where a is a
variable. The axioms of the memory model (positivity of addresses and their non-
intersection within one region) can be represented as follows:

e a>0;

e B(a) =k, where k is a unique number for each such variable.
The tool uses SSA representation to model the varying state of program variables
and memory regions. In this representation usage of a name splits into usages of its
versions. Each time an assignment happens to a program variable or a memory
region represented by the corresponding variable or uninterpreted function in the
path formula, the version number (index) of that variable or an uninterpreted
function increases.
Let Index : Y — N be a mapping of a set of uninterpreted functions Y to a numerical
set of their indices.
Let 4//oc: Y — Addrs be a mapping of a set of uninterpreted functions Y to the set
of subsets of memory locations Addr: Addrs = 24497,
We will use a supplementary function mem_upd:

mem_upd(p, f,m'm)=__ A ((p=a)V(fi(a)= fin(a))

a€Alloc(f)
that defines a check for address equality for all of the Ivalues in the same region as
pointer p (locations in the Alloc(f) region are modeled by the uninterpreted function
f, m = Index(f) is a current version of fand m "= m + 1 is a new version).
We define w(s, f;) as a constant offset of a field f; from the base address of struct
type variable s. Because we assume that there is only one structure type struct s in
our programs, w(s, f;) can be made just w(f;).
In B&B memory model implemented on top of CPAchecker’s existing memory
model the operator of a strongest post-condition is defined as SP(op(¢)) = ¢ A
I'(op), where ¢ is a symbolic abstract state and constraints I'(op) are defined by
table 1.

4.3 Example

The following program will be considered correct if we use either of the memory
models. T constraints in terms of B&B memory model for the program are shown in
table 2. Path formula can be made as a conjunction of all formulas in T" column of
the table 2. It is unsat in terms of either of the memory models. This means that the
tool cannot go by this path (i.e. won’t consider it as a potential error trace
candidate).
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struct s { int f1, f2; };

struct s * pl;
struct s * p2;
pl = alloc();
p2 = alloc();
pl -> f1 = 6;
p2 -> f2 = 5;

assume(pl -> fl == p2 -> f2);

Table 1. I" constraints creation rules

Operation Index Alloc Base | constraints
(op) address
index
k!
\Variable No changes 4’ - new k' - p=A'ANA’>0ABA’) =k
allocation on \variable, new
stack 4lloc’(G) = [index
struct s * p; 4’ U
Alloc(G)
Heap variable|l’ - new index forld’, A; - new k', k;{ - |Gy(p) =A"AA">0AB(4")
allocation G, variables, [new |=k’
p=alloc() [I=Index(G), |Alloc’(G)=[indices,|x mem_upd(p,G,I,l")
fndex’ = Index \ A U /{IloiC((E) =LA (G )+ (f))
{G-}u{G-1%} flﬂoc (F) = A} A Aj> OA BL(A}) =k} )
i
L
Alloc(FY),i =
1,n
p=undef_ptr()l - new index for|No changes [No G,/ (p) = undef _ptr, A
G, changesimem_upd(p,G,1,I")

| = Index(G),

m' - new index
for undef_ptr,

m =
Index(undef_ptr),
Index’ = Index \
({G - 1}u
{undef_ptr

—m})u
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{G - l'}u
{undef_ptr —»
m'}

p— fi=e m'- new index [No changes [No Frl;l,((;l(p) + w(f)) =T(e)
for F*, m= changes|,, mem_upd (G,(p) +
Index(F"), w(f,), F,m',m), where
ndex' | = Index(G) and I'(e) can be
= Index \ computed using the following
{F" -»m}u rules:
{Fi > m'} I'(const) : const;
F(®2 - f): K (G@®2) +
w(f;)), where k=Index(F’), |
= Index(G);
['(e; 0p ez), 0p € {*+7, *=,
Gy
['(e;) op I'(ey).
assume(p)  [No changes No changes |No ['(p) for predicate p can be
changesjcomputed as following:

I["(const) : const;

['(S) : G,(S), where | =
Index(G);

[(s = fi) : En(Gi(s) + w(f)),
Wwhere

m = Index(F?), | = Index(G);
['(p1 ==p2) : [(p1) == [(p2);
['(p1 <p2) : I(p1) <T(p2);
[(pl <=p2) : [(p1) < T'(p2);
[(p1 | p2): T(p1) v I(p2);
[(pl && p2) : T(pl) A T(p2);
I(!p) 1 ~I'(p).
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Table 2. Example build of path formula for the correct program

Path Index |Alloc k' [T
instruction
structs * pl; {G-1, |Alloc(G)={4,} 1 |pl=A,AA>0AB(4,)=1
F1—1,
F2 >1}
struct s * p2; {G-1, |Alloc(G)={4,, A,} 2 |p2=4,ANA,>0AB(4,)=2
F1 —>1,
F? -1}
pl=alloc(); KG-2, [Alloc(G)={A;, A, A3}|3,4,5(G,(pl) = A3 A A3>0 A B(43)
F' -1, | Alloc(FY) = {4,} =3
F? -1} Alloc(F?) = {4} A (Gz(PL)+w(f1)) = As N A,
>0 AB(4,) =4
A (G2 (P)*+w(f2)) = As A As >
0 AB(4s) =5
p2 = alloc(); H{G-3, |Alloc(G)={4,, 4,, 6,7,8| G3(p2) = Ag A Ag> 0 A B(Ag)
F1 -1, [45,4.} =6
F* —1}H Alloc(F?) = {A4, 47} A (G3(P2)*+w(fy) = A7 A A,
Alloc(F?) = {A5,Ag} >0AB(4;) =7
A (G3(p2)*+w(f2)) = Ag A Ag >
0 AB(4g) =8
pl->fl=6; HG-3, |Alloc(G)={A4,, 4,, 8 |Fi(Gs(pl)+w(fy)) =6
F' -2, [A3,Aq} A mem_upd(Gs (p1)+w(f),
F2 -1} Alloc(F?) = {A,, A,} F12,1)
Alloc(F?) = {As,Ag}
p2-f2=5; HG-3, |Alloc(G)={4,, 4,, 8 |F2(G5(p2)+w(fy)) =6
F' -2, [A3,A¢} A mem_upd(Gs(p2)+w(f,),
F2 -2} Alloc(F1) = {A,, A,} F221)
Alloc(F?) = {As,Ag}
{G-3, [Alloc(G)={4,, 42, 8 [F2(Gs(pL)+w(f)) =
assume(pl->fLF! -2, 143,46} F7 (G3(p2)+w(f2))
==p2-f2) [F? =2} Alloc(F?) = {A,, A;}

Alloc(F?) = {As,Ag}

Why the conjunction is unsat?

1) In the existing memory model memory allocated for pointers p1 and p2 cannot
intersect because it was allocated using the known alloc() function (the
corresponding path formula is not given).
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2) Inthe given I constraints for this path (using the B&B model) the following
contradicting elements are present:

o F;(Gs(p1) + w(f1)) = F£(Gs(p2) + 0(f2));

o F(G:(pD) + w(f1) =5;

o F}(Gs(p2) + w(f2)) =6.
Let’s take a look at the example program below. In the program’s source code there
are calls to the function undef_ptr() that returns an unknown pointer. The pointer p2
is initialized using this function. IT" constraints in terms of B&B memory model for

the program are shown in table 3. Path formula can be made as conjunction of all
formulas in T column of the table 3.

void * undef ptr();
struct s { int f1, f2; };
struct s * pl;

struct s * p2;

pl = alloc();
p2 = undef ptr();
pl -> fl = 6;
p2 -> f2 = 5;

assume(pl -> fl == p2 -> f2);

In B&B memory model p1 — f1 and p2 — f2 exist in the separate memory
regions. In I' constraints for this path the same contradicting elements as for the
previous example are present. Thus, the update of one of them wouldn’t affect the
other one. Because of that the result of verification would be that the error state is
unreachable (path formula is still unsat).

However, in the existing memory model fields f1 and f2 of struct s exist in the
same memory region and it uses only one uninterpreted function for them (see table
2 in [4]). Memory for their base pointers pl and p2 was allocated using known
alloc() function and function undef_ptr() returning unknown pointer respectively. It
cannot be confirmed that an update to a field f2 of the p2 wouldn’t affect the access
to the f1 struct field of pl. In the formula the location for field f2 of the p2 is
(G3(p2) + w(f2)) which is undef_ptr; + w(f2). Locations (G;(p1) + w(f1))
and (Gs(p2) + w(f2)) exist in the same region and may be equal. Thus the formula
is satisfiable. It means that the result of verification with existing memory model
will be a reachable path to the program’s error state.

Usually such situations in practice are false alarms because different fields of
different structures do not normally intersect. Thus, the assumptions related to this
behavior in the existing memory model aren’t really incorrect but they are quite
improbable in practice. Usage of the B&B memory model will be able to reduce the
number of false alarms caused by these assumptions (continued in section 6).
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Table 3. Example build of path formula for the program with unknown memory function

Path instruction [Index Alloc k' |T
structs * pl; KG-1, Alloc(G) ={A1} 1 |pl=A4;AA;>0AB(4y)
F1 -1, =1
F? -1,
undef_ptr—1}
structs * p2; [{G-1, Alloc(G) ={A4,, A5} | 2 [p2=4,AA,>0AB(4,)
F1 -1, =2
F? -1,
undef_ptr—1}
pl=alloc(); {G-2, Alloc(G) ={A4,, 4,, |3.4,5|G,(pl) =A3 ANA3;>0A
F1 -1, A5} B(43) =3
2 -1, Alloc(F?) = {A,} A (G (PL)*+w(fy)) = 4,
undef_ptr—1} Alloc(F?) = {As} NA, >0AB(A,) =4
A (Go(PL)*w(f3)) = As A
A; > 0AB(45) =5
p2=undef_ptr();{G—-3, Alloc(G) ={4,, A,, | 5 |G3(p2) =undef_ptr,
F1 -1, A3} A mem_upd(p2,G,3,2)
F? -1, Alloc(Ft) = {A,}
undef_ptr—2}| Alloc(F?) = {45}
plofl=6; HG-3, Alloc(G) ={4;, 4,, | 5 |F}(G3(pl)+w(f)) =6
F1 —>2, A3} N
F? -1, Alloc(F1) = {A,} mem_upd(Gs(pl)+w(fL),
undef_ptr—2}f Alloc(F?) = {45} F1,2,1)
p2-f2=5; K{G-3, Alloc(G) ={A,, A4,, | 5 |F2(G;(p2)+w(f,)) =6
Fl —>2, A3} A
F? -2, Alloc(F') = {A,} mem_upd(Gs(p2)+w(fy),
undef_ptr—2}f Alloc(F?) = {45} F2,2,1)
assume(pl-fl {G-3, Alloc(G) ={A, 4,, | 5 |F}(Gs(pl)+w(f))) =
==p2-f2) |F' -2, A} F7 (G5 (p2)+w(f2))
F? -2, Alloc(F1) = {A,}
undef_ptr—2} Alloc(F?) = {As}

5. Implementation notes

The creation of memory regions is an automated process. In CPAchecker
verification tool CFA (control-flow automaton) is used as an inner representation of
the program. It is sufficient to go through it and find in it all of the struct field
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accesses. This allows to distinguish those fields that don’t have their address taken
somewhere in the program.

In the implementation we do not take into consideration the possibility of field
accesses through pointer arithmetic and through the usage of pointer conversions
because of the high improbability of such field accesses in program’s source code.

6. Experiments

To determine the efficiency of B&B memory model implementation in comparison
to existing memory model of the CPAchecker tool a number of launches were
performed on the predefined sets of Linux kernel modules. To use the implemented
memory model one must have:

e  CPAchecker verification tool with revision number 23271 or higher from
the branch trunk;
e option cpa.predicate.useMemoryRegions should be set to ’true’.

e The following experiments were made using the revision trunk:23271 of
the tool.

6.1 False alarm set

The review of error traces obtained during the verification of Linux kernel 3.14
allowed to determine situations when reachability of error state was present due to
updates to same-typed pointers’ memory. This set consists of those 26 kernel
modules that caused false alarms due to the updates to pointer’s memory. The goal
of this experiment was to find out what effect the usage of B&B memory model will
have on the tools precision. Tables 4 and 5 hold information about changes of the
tool’s verdicts.

Table 4. B&B applicability

B&B could help B&B could not help
B&B helped 10 0
B&B did not help 0 16
Table 5. Verdict changes
False alarm — Safe False alarm — Unsafe False alarm — False alarm*
3 5 2

* - different error trace and cause of Unsafe
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6.2 Linux 4.2-rc1 kernel modules

A set of Linux kernel drives (version 4.2-rc1) was selected to study the efficiency of
B&B memory model implementation in comparison to the existing memory model
of the CPAchecker tool.
The launch was performed for rule that checks correctness of functions working
with usb_get * and usb put * functions of usb-system. Launch results can be
found in tables 6, 7.
Launch configuration:

e time limit — 15 minutes;

e memory limit— 15 Gb;

e number of CPU cores — 4;
The differences in the regions the models have led to the difference in program’s
paths that are covered by the tool. This explains Unsafe — Unknown, Unknown —
Safe and Unknown — Unsafe transitions, where Safe means that program’s error
state is unreachable, Unsafe — error state is reachable, Unknown — timeout or
runtime error. This experiment’s results show that the improvement to the tool’s
precision is present while the verification speed remains competitive.

Table 6. Linux 4.2-rc1 statistics

Existing model B&B
Verification time 35.8 hours 35.3 hours
Safe 4245 4241
Unsafe 69 68
Unknown 161 166
Table 7. Transitions
Existing model \ B&B model |[Safe Unsafe Unknown
Safe 4240 0 5
Unsafe 0 67 2
Unknown 1 1 159

6.3 SV-COMP’17 DeviceDrivers64

This set contains files from the DeviceDrivers64 set of the international competition
on software verification SV-COMP’17. It consists of 2795 modules of different
Linux kernel versions. Launch results can be found in tables 8, 9, 10.

Launch configuration:

e time limit — 15 minutes;
e memory limit — 15 Gb;
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e number of CPU cores — 4;
Several of the transitions from the incorrect results can be explained by the
difference in models’ choice of pointer’s may-aliases. The same modules were
present in the earlier mentioned False alarm set. Several transitions to Unknown can
be explained by the additional overhead costs required for B&B usage to the
verification tasks on the verge of timeout.

Table 8. DeviceDrivers64 statistics

Memory models Existing B&B
Total number of files 2795 2795
Correct results 1791 1780
Error state unreachable 1524 1522
Error state reachable 267 258
Incorrect results 7 5
Missed errors 4 4
False alarms 3 1
Unknown 997 1010
Table 9. Time for DeviceDrivers64 set
Memory models Existing B&B
Total time 143.6 hours 143.1 hours
[Time for correct results 14.9 hours 14.1 hours
SMT solver time 10500 sec (2.9 hours) 12400 sec (3.4 hours)
SMT solver time for correct results 660 sec 605 sec

Table 10. Transitions

Existing model \ B&B model |Correct results  |Incorrect results  [Unknown

Correct results 1775 0 16
Incorrect results 2 5 0
Unknown 3 0 994

7. Conclusion

This paper proposes the specification of B&B memory model and its region-based
reasoning in terms of uninterpreted functions. Its implementation on top of existing
memory model of the CPAchecker verification tool provides better verification
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precision while the verification speed remains competitive. The implementation was
included in the official repository of the CPAchecker static verification tool.
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AnHoTanusa. Bepudukamus nporpamMmHOoro obecriedeHMs — BHA  JIEATENBHOCTH,
HAIpaBJICHHBIH Ha KOHTPOJb KadecTBa IPOTPaMMHOTO obecnedeHHs U OOHapyKeHUS
omm6ok B HeM. CraTtudeckast Bepu(HUKAIHSA - 3TO OAUH U3 CIIOCOO0B BepU(PHKAINH, KOTOPHIHA
npon3BOAUTCA 03 BBINONHEHHS HMCXOJHOTO Koja mporpaMmbl. JIms  cTaTH4ecKoi
Bepu(UKALMH HCIOJb3yeTCs CIELHAIbHOE MPOrpaMMHOE O0EeCleYeHHe: WHCTPYMEHTHI
CTAaTUYECKOH BepU(UKAIMK, KOTOpbIE 4acTo paboTalOT C MCXOAHBIM KOAOM HPOTPaMMBbI.
OnHUM W3 TAaKHX HHCTPYMEHTOB SIBISIETCS MHCTPYMeHT mox HasBanmem CPAchecker.
[IpobGiema ero Tekylueil MOIeNH MaMsATH 3aKIIOYaeTCs B TOM, YTO IPH BCTpede (GyHKIMH,
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BO3BpaIlaloNel yKkazaTenb Ha 00JacTh MaMATH, y KOTOPOH OTCYTCTBYET TENO, B IIpoliecce
Bepu(dUKamuM O ee BO3BpAaeéMOM 3HAYEHHH MOTYT OBITh CHENaHBl IPOU3BOJBHBIC
npennosnioxeHus. HecMoTps Ha TO, YTO OHHM TEOPETHUYECKH JOIYCTHUMBI, BEPOSTHOCTh X
BBINOJIHEHNUS HA NPAaKTHKE OYEHb HU3KA. VICIONB30BaHHME STHX HPEAIIONOKEHUH MOXKET
HPHUBECTH K JIOKHOMY INPEAYNPEKICHHIO B Ka4eCTBE pe3yibTaTa Bepuukanuu. B nanHoi
CTaThe MBI JeflacM 0030p Ha OJUH U3 MOJIXO0J0B, OJarogapst KOTOPOMY MOXKHO W30aBUTHCA OT
TakoW mNpoOieMsl, a Takke mnpemiaraeM (OpManbHOE OIMCaHHE AAHHOTO IIOAXOJa B
TepMHHaXx (OpMyn IyTeH, COJepiKalluX HEHHTEpIpeTHpyeMble (YHKIHH, KOTOpHIE
HMHCTPYMEHT HCIHONB3YeT IJISI MOIENUPOBAHMS NMaMSATH IPOrpaMMbl. Takke MBI MPHUBOIAUM
pe3yabTaThl  CPAaBHUTENBHOTO aHanmm3a S(QQEKTHBHOCTH NPEUIOKEHHOW peatn3anyn
OTHOCHTEJIBHO CYIIECTBYIOIICH MOACIH ITaMsTH.
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