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Abstract. This paper introduces a technique for scalable functional verification of cache
coherence protocols that is based on the verification method, which was previously developed
by the author. Scalability means that verification efforts do not depend on the model size (that
is, the number of processors in the system under verification). The article presents an
approach to the development of formal Promela models of cache coherence protocols and
shows examples taken from the Elbrus-4C protocol model. The resulting formal models
consist of language constructs that directly reflect the way protocol designers describe their
developments. The paper describes the development of the tool, which is written in the C++
language with the Boost.Spirit library as parser generator. The tool automatically performs
the syntactical transformations of Promela models. These transformations are part of the
verification method. The procedure for refinement of the transformed models is presented.
The refinement procedure is supposed to be used to eliminate spurious error messages.
Finally, the overall verification technique is described. The technique has been successfully
applied to verification of the MOSI protocol implemented in the Elbrus computer systems.
Experimental results show that computer memory requirements for parameterized verification
are negligible and the amount of manual work needed is acceptable.
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1. Introduction

Shared memory multiprocessors constitute one of the most common classes of high-
performance computer systems. In particular, multicore microprocessors, which
combine several processors (cores) on a chip, are widely used [1]. The number of
cores is constantly increasing. The presence of cache memories that are local to each
core determines the need for ensuring coherent memory state. To satisfy the need,
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microprocessor developers design and implement in hardware cache coherence
protocols [2].

Cache coherence mechanisms are extremely complex. Therefore, both the design
and their implementation are error-prone. Being especially critical, protocol bugs
should be revealed before implementing the hardware. The widely recognized
method for protocol verification is model checking [3]. It is fully automated, but
suffers from a principal drawback — it is not scalable due to the state space
explosion problem. Verification of a cache coherence protocol for five or more
processors is impossible (at least, highly problematic) with the traditional methods
[4].

To overcome the problem and develop scalable verification technologies,
researchers focus mostly on verification of parameterized designs [3]. Previous
articles of the author [5-8] presented a method for parameterized verification of
cache coherence protocols. The author successfully applied the method to
verification of the cache coherence protocol of the Elbrus-4C computing system.
This paper presents an approach to the development of formal Promela models that
can be analyzed by the verification method, describes the development of the tool
that performs transformations of Promela models according to the method and
presents the overall verification technique.

The paper is structured as follows. Section 2 takes a brief look at related work and
provide the necessary links. Section 3 considers the question development of
Promela models of cache coherence protocols. In Section 4, we describe how to
perform parameterized verification of the Promela models in a semi-automatic way.
We examine the development of the tool that automates parts of the verification
method used. We present a technique for cache coherence protocols verification.
Section 5 provides experimental results on using the technique for verifying the
Elbrus-4C protocol. Section 6 summarizes the work and defines further research
directions.

2. Related Work

This work extends the previous works [5-8] by dealing with the question of
practical application of the method for parameterized verification of cache
coherence protocols presented in those works.

Article [5] presents a review of related work and gives the motivation for
development of a new method. The developed method is based upon works [9-13]
that present a method of compositional model checking, which is based on
syntactical transformations of models written in the Mure language and
counterexample-guided abstraction refinement.

The method [5-8] is used in the context of the following verification process:

1) Development of formal models of cache coherence protocols.

2) Parameterized verification by means of the method.
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3. Development of Formal Models

It is highly desirable to have a modeling language that allows us to conveniently
describe cache coherence protocols. To choose or develop such a language, we need
to define a mathematical model of cache coherence protocols.

In accordance with the microprocessor system model that is used in work [2] for
representation and analysis of cache coherence protocols, | chose to model cache
coherence protocols as a set of communicating finite-state machines.

An element of this set may be either a cache controller or the system commutator.
Let us define these notions. Each memory device of the microprocessor is operated
by a coherence controller, which is a finite-state machine. Coherence controllers are
coordinated by a special device — the system commutator — that is also a finite-state
machine. A set of these machines constitutes a distributed system, in which the
machines communicate by message passing in order to maintain cache coherence.
Each coherence controller connected with cache memory logically implements a set
of independent and identical finite-state machines, one for each cache line. These
machines are called cache controllers. Due to the independence and identity of
cache controllers, it is customary to reflect only one cache line in the models of
cache coherence protocols.

The states of cache controllers are divided into two classes: Stable states and
transient states. Stable states of cache controllers are often the subset of the common
set Modified, Owned, Exclusive, Shared, Invalid [2]. Transitions between these
states are not atomic and occur through transient states. Transient states are specific
to each microprocessor and their presence is one of the factors that determine high
verification complexity.

Conditions that define correctness of cache coherence protocols are formulated as
statements about stable states, for example: “Cache line can never be in Modified
state in two caches simultaneously” [5]. Such statements belong to the class of
invariant properties [14].

Usage of a set of communicating finite-state machines as the model of cache
coherence protocols and invariant properties for specification defined the choice of
the Promela language for modeling cache coherence protocols:

e In contrast to other languages (for example, Mur¢g and NuSMV), Promela
provides process types and the means of synchronous and asynchronous
interprocess communication (channels).

e Promela provides convenient specification language, which is Linear
Temporal Logic (LTL).

e Spin - the system that implements Promela - provides different
verification algorithms and optimizations, and is a modern and constantly
developing tool.

The question of development of formal models of cache coherence protocols is
insufficiently covered in the literature. Here, | present an approach to the
construction of such models. According to the approach, a formal model of a cache
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coherence protocol of a system with n cores consists of n Promela processes for
cache controllers and one Promela process for the system commutator.

For the considered cache coherence protocols, the following property holds: Only
one initial request may be in process at a given point in time. System commutator
performs a sequence of steps during the request processing, for example, the
reception of the initial request and its analysis, sending of snoop- and other requests
according to the results of the analysis, reception of the answers to these requests.
Initial requests correspond to the memory access instructions that the processor core
is executing. Reception of messages from other devices can only occur at particular
steps. Thus, it is convenient to represent the system commutator as a Promela
process whose body simply consists of operators that follow each other (Fig. 1).

proctype system_commutator() {

again:

<receive initial request>

<analyze the initial request>

<send coherent requests>

<receive answers to coherent requests or the
request completion message>

<finalize the request processing>

goto again }

Fig. 1. Structure of the System Commutator Process.

Cache controllers operate differently. On the one hand, we still may identify a
number of steps, for example, sending an initial request, changing state from stable
to transient, receiving snoop-requests. On the other hand, the relative order of these
steps is often unspecified, and the same messages from other devices may be
processed in different states of a cache controller. Thus, it is convenient to represent
processes of this kind as infinite do-cycles consisting of the guarded commands
(Fig. 2).

proctype cache_controller() {

do

.. <send initial request from main states>
:: <receive and process snoop-requests>
:: <receive answers to coherent requests>
:: <send the completion message>

od }

Fig. 2. Structure of Cache Controller Processes.
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See papers [5, 6, 8] for more details on how to organize processes and their
communication.

For example, modeling of a situation in which cache controller sends an initial
request and the system commutator receives it, may be performed as follows:

mtype cache[N] = I; // states of cache line
proctype cache controller (byte i) {

do
atomic {cache[i] == 1 —>
// send initial request and change state
if :: ini req chan ! R, 1i; cache[i] = WR;
ini req chan ! RI, i; cache[i] = WRI;
fi }
od }

proctype system commutator (byte i) {

message_t message;

again:

// receive initial request

atomic {ini req chan ? message;
curr command = message.opcode;
curr client = message.requester;

}

if :: atomic {

// send snoop-request as a response

// to the initial request

curr command == ->

coh req chan[0] ! snR, curr client;

}

// receive acknowledgement

final ack chan ? message;

goto again; }
As another example, reception of a snoop-request by cache controller and
generation of the response can be modeled as follows:
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proctype cache controller (byte i) {
do

atomic {nempty(coh req chan[i]) ->
// receive snoop-request
coh req chan[i] ? message;
if ...
// analyze state...
cache[i] == WI O
// ... and the snoop-request type
&& message.opcode == snl —->
// send corresponding answer
coh ans chan ! ack, i;
cache[i] = WRI;
fi }
... od
}
Developers of cache coherence protocols describe and reason about their protocols
in terms of message passing, and, as these examples show, their reasoning can be
directly expressed in Promela. Moreover, the proposed organization of Promela
processes allows verification engineers to perform quick changes that are needed to
reflect the modifications of the cache coherence protocol under verification that
occur in the course of its development.

4. Parameterized Verification of Cache Coherence Protocols

The method for parameterized verification of cache coherence protocols presented
in works [5, 6, 8] consists of two stages:
1. Performing the syntactical transformations of Promela models.

2. Refining the obtained model in accordance with the proposed procedure.

Model transformations have the following effect:

1. Reduction of the number of processes from n+1 (n cache controller
processes and one system commutator process) to 4: two fully functioning
cache controller processes, one abstract cache controller process that
models the environment of the two processes, and the system commutator
process. This transformation is possible due to the symmetry inherent in
models of cache coherent protocols (all cache controller processes are
identical and interchangeable, they do not have behaviors that depend on a
particular process index value) and because the specification of cache
coherence protocols only contains properties that regard the state of cache
line in two caches.

2. Syntactical transformations of Promela operators constituting the model.
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These transformations preserve invariant properties. This means that if such a
property is true for the reduced model, then it is true for the initial model. A
mathematical proof of the corresponding theorem is presented in articles [5, 6, 8].

4.1 Performing the Syntactical Transformations

The syntactical transformations presented in [5, 6, 8] may be performed manually.
However, manual model modification is a very tedious, laborious and error-prone
process. Moreover, some of the errors made may go undetected, as they will only
lead to incorrect state space reduction and not to counterexamples. Therefore, it is
highly desirable to perform the transformations automatically. To achieve that, |
have developed a dedicated tool. With this tool, the verification engineer simply
provides their Promela model as input to the tool, and the tool generates the
transformed Promela model.

To automate the syntactical transformations, | have used a widespread approach to
this kind of problems, according to which a tool builds the abstract syntax tree that
represents the syntactical structure of the source code and then performs the
transformations upon the tree traversal (Fig. 3).

Promela translator and model
transformations subsystem

Internal Modified
Concrete . |—__: >| internal
representation .

Promela model epresentatio representation

Fig. 3. Scheme of Automated Model Transformation.

Abstract syntax trees are usually constructed by parsers. There are two ways of
parser implementation: manual and by means of a parser generator tool (for
example, Bison, ANTLR, Boost.Spirit). Due to the unnecessary complexity of the
first approach, I have chosen the second one.

The Boost.Spirit library was chosen as the parser generator, because:

e Boost.Spirit promotes modern usage of the C++ language that allows us to
work with abstractions, which are suitable for a given domain, without
performance loss.

e Boost.Spirit eliminates the need for additional tools like Bison or ANTLR:
The only tools needed are a C++ compiler and the Boost library.

e The grammars that Boost.Spirit accepts are attributed, which results in a
very convenient way of abstract syntax tree generation.

237



Burenkov V.S. A Technique for Parameterized Verification of Cache Coherence Protocols. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 231-246.

e  Boost.Spirit contains a number of built-in parsers.

e The generated parsers are very efficient [15].

The mechanism of synthesized and inherited attributes allows us to simplify the task
of abstract syntax tree generation by dividing it into two sequentially performed
subtasks:

1. Development of the grammar, testing and debugging of the grammar.
During this step, we only need to focus on the question of whether the
grammar can correctly determine the syntactical correctness of a Promela
model.

2. Development of data structures for the nodes of the abstract syntax tree and
definition of the types of attributes of the grammar rules. The attribute
mechanism allows Boost.Spirit to generate abstract syntax trees
automatically, without any need for the addition of node construction
operators to the grammar.

Usage of the abstract syntax tree generated by Boost.Spirit as an intermediate
representation of Promela models allowed us to divide the task of performing the
syntactical transformations automatically into three subtasks:
1. Development of Promela grammar in the C++ language by means of
Boost.Spirit.

2. Development of data structures for abstract syntax tree representation.

3. Development of algorithms for abstract syntax tree traversal and abstract
model generation.

Promela grammar is presented in [16]. Its implementation in C++ using Boost.Spirit
looks similarly to that description. However, as Boost.Spirit generates recursive
descent parsers, | have eliminated left recursion from the grammar.

Data structures for the nodes of abstract syntax tree are developed according to the
information that we want the nodes to represent and attribute propagation rules
defined in Boost.Spirit’s documentation. In the developed tool, data structures that
correspond to the synthesized attributes of the Promela grammar rules, contain
information about nonterminals that are part of the rules. This is a very
straightforward and convenient way of implementation of these data structures. For
example, the following rule that describes the nonterminal “module” of the Promela
grammar
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gi::rule<Iter, module (), Skipper> module;
module =
proctype
| init
| 1tl
| utype
| mtype
| decl 1st
(A
has a synthesized attribute of type module, which is implemented as follows:
using module = boost::variant<
proctype,
init,
1t1,
utype,
mtype,
decl 1st
>;
All the other nonterminals mentioned in this example have synthesized attributes of
types implemented in a similar way.
The abstract syntax tree, which is generated automatically by Boost.Spirit based on
the grammar and the attribute mechanism, consists of nodes of different types.
Traversal of such tree is performed uniformly by means of visitors, as advocated by
the Boost.Spirit documentation.
The syntactical transformations are performed during the abstract syntax tree
traversal. | classified the transformations, most of which turned out to be in one of
the three categories (transformations of assignments, transformations of
expressions, transformations of communication actions), and precisely described
them. To automatically carry them out, | have developed a number of abstract
syntax tree modification algorithms and implemented them as part of the visitation
mechanism. Printing out the modified syntax tree gives us the abstract Promela
model.
For example, when generating the code for the abstract process, the following piece
of Promela code
proctype cache controller (byte 1) {

do
(cache[i] == M MAU || cache[i] == M MAU I)
&& (message.opcode == wb ready) ->
final ack chan ! data, 1i;
cache[i] = I

is transformed into
proctype cache controller abs(byte i) {
do

true ->
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final ack chan ! data, 1i;
This example demonstrates the transformations of expressions and the assignment
operator.

4.2 Abstraction Refinement

Execution of each type of initial requests consists of a particular sequence of events

presented in the cache coherence protocol documentation. Considerations about the

ordering of the events inspired the following refinement procedure:

1. For each type of initial requests define (according to the documentation) a
partially ordered set (4, <) of events (< is a strict partial order):

Va,,a, € A:a, < a,, if action a; occurs earlier than action a,.
2. While there are false counterexamples:

2.1. Find action a that lead to the appearance of the counterexample. Find set
A that contains action a: a € A. In set A find action b such that b < a.

2.2. Introduce a logical variable aux, with the initial value false. In the
model, replace b with the atomic sequence b; aux;, := true.

3. By means of the logical AND, add aux, to the guard of the command that
contains action a. Replace a with the atomic sequence a; aux, = false.

For example, for one type of initial requests defined for the Elbrus-4C
microprocessor, the set (4,<) is as follows. Here, cc; denotes the ith cache
controller.

{a, = processing of the previous request from process cc;,1 <i<n is
finished,

a,; = requester cc; sends an initial request,

a, = system_commutator receives the initial request,

az = system_commutator sends snoop-requeststo all cc;,1 < j <n,j # i,

a, = cc; receives a snoop-request, 1 < j < n,j # i,

as = cc; sends an answer to the snoop-request to the requester,

ae = the requester receives the coherent answer from cc;,

a, = the requester sends the operation completion message to
system_commutator,

ag = system_commutator receives the operation completion message}.
The relation < is defined as follows: Vi,j =0,..,|A|-1:i<j = a; < a;. We
identify the auxiliary variables with the elements of the set A.
Refinement of the abstract model of the Elbrus-4C cache coherence protocol
required us to introduce two auxiliary variables, because there were two spurious
counterexamples. Let us examine the introduction of the first variable.
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The analysis of the first counterexample showed that the abstract process had sent
the operation completion message to system_commutator before
system_commutator received a coherent answer. Examination of the set A allows
us to conclude that action a, happening at the wrong time led to the
counterexample. According to the refinement procedure, in the set A we find action
ae and introduce an auxiliary variable ack received with the initial value false.
Then we replace the operator that corresponds to a, with the atomic sequence
consisting of this operator and the operator that assigns true t0 ack received.
After this, we add ack received to the guard of the command of the abstract
process that contains a, and replace the operator that corresponds to a, with the
atomic sequence consisting of this operator and the operator that assigns false to
ack_received. Thus, we guarantee that the behavior of the abstract process that
led the false counterexample will no longer be exhibited.

4.3 Verification Technique

According to the results obtained by the author in this and the previous works, the

proposed verification technique consists of the following steps (Fig. 4):

1. Development of a concrete Promela model of the cache coherence protocol
under verification. Using the proposed approach to model description,
verification engineer develops Promela processes that model cache controllers
and the system commutator and the necessary infrastructure elements (channel
definitions, process creation). Specific actions performed by the processes
correspond to the cache coherence protocol documentation.

2. Development of the abstract Promela model of the cache coherence protocol
under verification. This step is performed automatically by the developed tool.

3. Verification of the abstract model. This step is the usual verification process of
Promela models using the Spin model checker [17].

4. Analysis of the verification report generated by Spin. If there are no errors, then
the verification process is finished with the conclusion that the cache coherence
protocol is correct. If the report states the presence of an error, then the
verification engineer should analyze the corresponding counterexample. If the
engineer concludes that the counterexample is spurious because the
corresponding sequence of steps is impossible in a real system, then the
engineer refines the model in accordance with the proposed procedure and goes
to step 3. Otherwise, if the counterexample represents an actual error in the
cache coherence protocol, then the error is reported. When the protocol
developers fix the error, the verification engineer incorporates the changes into
the model and starts the verification process again (goes to step 1).

This sequence of steps is repeated until there are no counterexamples.
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abstract model
construction
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Abstract
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Transformed AST

I‘:

False report
counterexample:

Error in the protocol: Refine the @ No errors:
1. Report it to the abstract model Verification

developers Complete
2. Fix the initial model

Human verifier

Fig. 4 Scheme of the Verification Process.

5. Experimental Results

The proposed method was used to verify the MOSI family cache coherence protocol

implemented in the Elbrus-4C computer system. The abstraction refinement step

was completed after the introduction of two auxiliary variables.

Table 1 and Table 2 show resources consumed for checking the property
G{—(cache[1] = M A cache[2] = M)},

respectively, on the original and the refined abstract model. Spin’s optimization

COLLAPSE was used. The experiments were performed on an Intel Xeon E5-2697

machine with a clock rate of 2.6 GHz and 264 Gb of RAM.

Table 1. Required resources — initial model

State space Memory Verification

Number of cores . . .
size consumption time

3 5.1 x10° 328 Mb 15s

4 1.3 x 10° 81 Gb 15h

Table 2. Required resources — abstract model

Number of cores S_tate space Memory _ \_/erlflcatlon
size consumption time

any > 2 2.2 x 10° 108 Mb 6.2s

Tables 1 and 2 show that even for n = 3 there is a gain in state space size and
memory consumption. The needed amount of manual work is acceptable.
Meanwhile, verification of the constructed abstract model means verification of the
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protocol for any n > 3. The task has been reduced to checking of ~10° states,
which consumes ~100 Mb of memory.

6. Conclusion

Many high-performance computers and most multicore microprocessors use shared
memory and utilize complicated caching mechanisms. To ensure that multiple
copies of data are kept up-to-date, cache coherence protocols are employed. Errors
in the protocols and their implementations may cause serious consequences such as
data corruption and system hanging. This explains the urgency of the corresponding
verification methods.
The main problem when verifying cache coherence protocols (and other systems
with a large number of components) by a fully automated method of model
checking is state explosion. The article proposes a technique to overcome the
problem for cache coherence protocols and make verification scalable. The price
paid for scalability is acceptable, because the main ingredient — the verification
method — is highly automated by the developed tool. Part of the method that
requires manual work, namely, model refinement, can be done with a reasonable
amount of effort, as shown by means of the Elbrus-4C protocol verification
example. An approach to describing protocol models in Promela, a widely spread
language in the verification community, is proposed. This approach lets us reflect
the way protocol designers talk about protocols by representing protocols as a set of
communicating finite-state machines.

The technique was successfully applied to the verification of the MOSI family

cache coherence protocols implemented in the Elbrus-4C computer system.

Directions for future research include:

1. Development of methods and tools for verification of cache coherence
protocols that are implemented by multiple levels of cache. The newest
microprocessors (for example, Elbrus-8C, which employs the second- and
third-level caches to implement cache coherence) define the need for such
methods and tools.

2. Development of methods and tools for verification of hardware
implementations of cache coherence protocols. In this direction, | have
developed a tool that generates assembly code based on Promela models of
cache coherence protocols. With this tool, | have found several dozen errors in
the implementation of cache coherence in Elbrus microprocessors. Still, further
research is needed to increase the level of confidence in design correctness.
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MeToaunka napameTpusoBaHHOM Bepudukaumm
NPOTOKONOB KOrepeHTHOCTN NaMATU

B.C. Bypenxos <burenkov_v@mcst.ru>,
AO «MIL[CT», 119334, Poccus, . Mockea, ynr. Basunosa, 24

AHHOTamMsi. B craTee mpencTaBieHa METOIUKA MacITabUpyeMoil (YHKIMOHAIBHOMN
BepU(UKaIUM TPOTOKOJIOB KOTEPEHTHOCTH IIAMATH, KOTOpas OCHOBaHa Ha MeTone
BepH(UKanuy, KOTOPEIH paHee ObLT pa3paboTaH aBTOPOM cTaThbH. MacmraGHpyeMoCTb IpH
BepH(UKanuy 03HaYaeT HE3aBUCHUMOCTE paboT 1o BepH(UKALMK OT pa3Mepa MOJEIH, TO eCTh
OT KOJIMYECTBa IPOIIECCOPOB BepUpUIMpyeMOil cuCTeMEl. B cTaThe mpeuroxkeH IMoaxo K
pa3paboTke (popMaTbHBIX MOJEICH MPOTOKOJIOB KOTEPEHTHOCTH MaMsTH Ha si3bike Promela.
IIpuBeneHs! mpuUMephl OMMCAHUM, B3ATbIE M3 MOJEIM INPOTOKONA KOTEPEHTHOCTU MaMSTH
cucrembl Dnp0pyc-4C. Pesynprupyronme GpopMansHble MOIETH OTPaXKaroT MPelCTaBICHHE
MPOTOKOJIOB KOT€PEHTHOCTH MaMsTH, HCIIOIb3yeMoe pa3paboTunKkaMi TaKUX IIPOTOKOJIOB — B
BUJIC MHOXKECTBA B3aMMOJCHCTBYIONIMX KOHEYHBIX aBTroMaroB. OmmcaHa pa3paboTka
HPOrPaMMHOTO MHCTPYMEHTA, HAIlMCAaHHOTO Ha s3blke C++ ¢ HCIonb30BaHUEM OHOIMOTEKH
Boost.Spirit B kauecTBe TeHepaTropa CHHTAKCHYCCKHX aHanW3aTopoB. IIporpaMMHBIH
HMHCTPYMEHT ITO3BOJISIET aBTOMAaTH3UPOBATh BBIIIOJIHEHHE CHHTAKCHYECKUX HpeoOpa3oBaHMil
Promela-mopeneii. BoinonHeHne JaHHBIX CHHTAKCHYECKUX MPEOOPa3oBaHUIl MPOUCXOIHUT B
COOTBETCTBHH C METOJOM BepHu(uKkanuu. B cTaThe mpeacTaBieHa MpoLexypa yTOTHEHHUS
MOANGUIPOBAHHBIX MOJEJeH, OCHOBaHHAas Ha BBEACHHHM B MOJENb BCIOMOTATENbHBIX
nepeMeHHbIX. Mcrmonp30BaTh 3Ty MHpoLexypy MHpeiiaraercs B TOM Clydae, KOrja HpH
Bepu(UKAIUU BO3HUKAIOT JIOKHBIE COOOMmEHUss 00 omuOKax, AN YCTPaHCHHS TaKUX
cooOmenuid. IIpencraBieHa Meronnka BepH(HKAIMH, KOTOPas COCTOUT M3 CIEIYHOLINX
IaroB: pa3paboTKa HCXOJHON MOJIENH IPOTOKOJIa KOTEPEHTHOCTH MaMSITH Ha si3bike Promela,
aBTOMATH3UPOBAHHOE NPeoOpa3oBaHUE JAHHOW MOJENH COIJIACHO METONy BepH(HUKaINH,
BepubuKanus MoJUGHIMPOBAHHON MOJIEIHN C MOMOIIBI0 HHCTPYMEHTAIBLHOTO cpencTBa Spin,
aHaNMM3 OT4YeTa O BepH(HKALUM, CTCHEPUPOBAHHOTO WHCTPYMEHTOM Spin. M3znoxeHHas
METOJMKa ObIIa YCHENIHO MPUMEHEHa JUIsl BepHU(PHUKAINK IPOTOKOIA KOTEPEHTHOCTH MaMsITH
cemeiictrea MOSI, peann3oBaHHOTO B MHKPOIPOIECCOPHOI cucteMe DmpoOpyc-4C.
OKCIepuMeHTaNIbHbIE Pe3yNbTaThl ITOKA3ald, YTO 3aTPaThl MPOIECCOPHOTO BPEMEHH U
NaMsATH Ha NPOBEJCHHE MapaMeTPU30BaHHON BepU(HKAIMN HE3HAYUTENbHBI, a TPEOYyeMBbIi
00beM pyuHOit paboThl mpuemiieM. [t yTouHeHUs: MOU(UIMPOBAHHONW MOJIENH POTOKOJIA
cucteMbl Dnb0pyc-4C MoHag0OMIIOCh BBECTH JIUIIE IBE BCIIOMOTATEIbHBIC TIEPEMEHHEIE.

KnioueBble c10Ba: MHOTOSIEPHBIE MUKPOIPOIIECCOPHI; MYJIBTHIIPOLIECCOPHI C Pa3lIesieMoit
MaMAThIO; IPOTOKOJIBI KOTEPEHTHOCTH MaMATH; TIPOBepKa Moeeii; Spin; Promela.
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