Test Generation for Digital Hardware Based
on High-Level Models

! M.M. Chupilko <chupilko@ispras.ru>
123 A S, Kamkin <kamkin@ispras.ru>
1 M.S. Lebedev <lebedev@ispras.ru>
1S.A. Smolov <smolov@ispras.ru>
! Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.
% Lomonosov Moscow State University (MSU),
GSP-1, Leninskie Gory, Moscow, 119991, Russia.
¥ Moscow Institute of Physics and Technology (MIPT),
9, Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia

Abstract. Hardware testing is a process aimed at detecting manufacturing faults in integrated
circuits. To measure test quality, two main metrics are in use: fault detection abilities (fault
coverage) and test application time (test length). Many algorithms have been suggested for
test generation; however, no scalable solution exists. In this paper, we analyze applicability of
functional tests generated from high-level models for low-level manufacturing testing. A
particular test generation method is considered. The input information is an HDL description.
The key steps of the method are system model construction and coverage model construction.
Both models are automatically extracted from the given description. The system model is a
representation of the design in the form of high-level decision diagrams. The coverage model
is a set of LTL formulae defining reachability conditions for the transitions of the extended
finite state machine. The models are translated into the input format of a model checker. For
each coverage model formula the model checker generates a counterexample, i.e. an
execution that violates the formula (makes the corresponding transition to fire). The approach
is intended for covering of all possible execution paths of the input HDL description and
detecting dead code. Experimental comparison with the existing analogues has shown that it
produces shorter tests, but they achieve lower stuck-at fault coverage comparing with the
dedicated approach. An improvement has been proposed to overcome the issue.

Keywords: digital hardware; hardware description language; manufacturing testing; stuck-at
fault; high-level decision diagram; extended finite state machine; model checking; fault
propagation.

DOI: 10.15514/ISPRAS-2017-29(4)-16

247

Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for Digital Hardware Based on High-Level
Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 247-256.

For citation: Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for
Digital Hardware Based on High-Level Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 4, 2017, pp. 247-256. DOI: 10.15514/ISPRAS-2017-29(4)-16

1. Introduction

Functional verification and test generation are resource-consuming activities of the
hardware design process [1]. To automate these activities, models are frequently
used. Models are mathematical abstractions that describe system structure and
behavior. There is a variety of verification and test generation problems that can be
solved with the help of models: checking system behavior in simulation-based
verification [2], directed test generation [3], etc.

The essential stage of the hardware design process is register-transfer-level (RTL)
design. This stage results in code in a hardware description language (HDL), such
as VHDL and Verilog [4]. The RTL model is automatically synthesized into a gate-
level netlist represented in an HDL or a special language, such as BLIF [5]. Finally,
the place-and-route stage is applied to produce a chip layout.

Functional verification, including functional test generation, deals with RTL
models, while generation of manufacturing tests uses gate-level netlists. In this
paper, we analyze applicability of functional tests for manufacturing testing. The
motivation is clear: the simpler the model, the easier to get tests. We extract high-
level models from HDL descriptions and generate tests from them. The approach
allows reaching good code coverage with short tests [6].

This paper continues research initiated in [7], where we compared fault detection
abilities of different test generation methods. A test is said to detect a fault, if the
mutant, i.e. the design with the injected fault, and the original design return different
outputs for the test’s input sequence. Fault detection ability is measured as the
amount of faults having been detected.

The rest of the paper is organized as follows. Section 2 defines formalisms used in
the work and gives a brief overview of a fault model. Section 3 summarizes works
on applying model-based techniques to manufacturing testing. Section 4 describes
the proposed approach. Section 5 reports experimental results. Section 6 suggests a
possible approach improvement. Section 7 discusses the results of the work and
concludes the paper.

2. Preliminaries

Let V be a finite set of variables. A valuation is a function that associates each
variable with a value from the corresponding domain. Let D, be the set of all
possible valuations of V.

A guard is a Boolean function defined on valuations: D, — {0,1}. An action is a
transformation of valuations: D, — Dy. A pair y — &, where y is a guard and § is an
action, is called a guarded action. It is implied that there is a description of every

248

Kamkun A.C., JIe6ene M.C., Cmoinos C.A., Yynmiko M.M. I'enepanust TecToB [UIs Lu(ppoBOii anmapaTypbl Ha OCHOBE
BBICOKOYPOBHEBBIX Mozeneit. Tpyoet UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 247-256.

function in an HDL-like language (thus, we can reason not only about semantics,
but about syntax as well).
An extended finite state machine (EFSM) is a tuple M = (S, Vi, Ty), Where S, is a
set of states, V,, = (I, U Oy U R,) is a set of variables, consisting of inputs (1),
outputs (0,,) and registers (R,,), and Ty, is a set of transitions. A transition t € T,
is a tuple (s;,y: = 6 5{), where s, and s{ are respectively the initial and the final
state of t, whereas y; and &, are respectively the guard and the action of t.
A pair (s,v) € Sy x Dy,, is referred to as a configuration. A transition t is said to
be enabled in a configuration (s,v) if s, = sand y,(v) = 1.
An EFSM operates in discrete time. In the beginning, it resets the configuration:
(s,v) = (sg,vy), Where (sq,v,) is a predefined configuration. On every tick, it
computes the set of enabled transitions:

Ty = {t € Tyl(s; = s) A (y:(v) = D}.
A single transition t € Ty (chosen nondeterministically) fires: (s, v) = (sg, St(v)).
A netlist is a tuple N = (Vy, Gy, Ly), Where Vy is a set of variables, Gy is a set of
gates, and Ly is a set of latches. A gate g € Gy is a tuple (I, 0,, f,), where I, S Vy
and o4 € Vy are respectively the inputs and the output of g, and f;: Dom,, - {o,1}
is the function of g. A latch | € Ly, is a tuple (i;, 0;), where i; € Vy, and o, € V,, are
respectively the input and the output of [.

A netlist operates as follows. In the beginning, it initializes the latches’ outputs with
some predefined values. On every tick, it computes the gates’ output values based
on the input values and transmits the latches’ input values to the outputs.

To compare test generation methods, the well-known stuck-at fault model is used.
We consider the following variation of the model. There is a stuck-at fault if some
gate is “corrupted” so as its function, which is not identically equal to a constant,
always returns a constant, either 0 (stuck-at-0) or 1 (stuck-at-1).

3. Related work
This section overviews the existing model-based test generation methods aimed at
covering stuck-at faults.

In [8], an approach to functional test generation for VHDL designs is proposed. The
method consists of the following stages:

1) translation of an HDL description into binary decision diagrams (BDD);
2) insertion of a stuck-at fault into the BDD;
3) generation of a distinguishing test for the original BDD and the faulty one.

For the HDL-to-BDD translation, the approach uses a method described in [9].

In [10], a combined approach is suggested. It uses two kinds of models: a high-level
decision diagram (HLDD) and an EFSM. Both models are automatically extracted
from an HDL description. HLDD is a generalization of BDD: non-terminal nodes of

249

Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for Digital Hardware Based on High-Level
Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 247-256.

a diagram are marked not only by 0 and 1 but by arbitrary expressions. First, a test
is generated that covers all branches of the diagram. Then, the test is passed to the
EFSM simulator to measure the transition coverage. To cover the uncovered EFSM
transitions, a special backjumping technique is applied.

In [6], another EFSM-based approach is proposed. It fixes several issues of the
previously mentioned method and uses a different EFSM extraction technique. The
experiments have shown that new tests are shorter, while code coverage is the same.
In [7], the method [6] is experimentally compared with another one, which uses the
ABC equivalence checker [11] to generate a distinguishing sequence for two BLIF
descriptions. The EFSM-based method demonstrates higher HDL code coverage
and shorter tests, while the ABC-based one achieves higher stuck-at fault coverage.

4. Proposed approach

In this paper, we continue our work on applying the model-checking techniques for
test generation [12]. The approach allows achieving high HDL code coverage with
very short tests. Our current goal is to evaluate how good the approach is in terms of
the stuck-at-fault coverage. The method flow is shown in Fig. 1.

System model
(HLDD)
Y
HDL description Internal . Model checker Tests
representation
A
Coverage model
(EFSM)

Fig. 1. Model checking-based approach to test generation for HDL descriptions

The method uses two models extracted from an HDL description: a system model,
which is based on the HLDD formalism, and a coverage model, which utilizes the
EFSM concept (see [12] and [13] for more details). The system model represent the
system functionality, while the coverage model defines a set of conditions, so-called
coverage items, to be covered by tests.

Let us say a few words about the coverage model. For each HDL process, a separate
EFSM is extracted. The EFSM states are mutually disjoint constraints on state-like
registers (SLR). The SLR are chosen automatically with the help of dataflow-based
heuristics. The EFSM transitions are constructed from the process execution paths.
Coverage items are reachability conditions for the EFSM transitions. Let s be an
EFSM’s state, c(s) be the corresponding constraint, and t be an outgoing transition,
i.e. s; = s. In terms of the linear temporal logic (LTL), the reachability condition is
as follows: F{c(s) A y,}, where F{x} means that x will eventually be true.

In accordance with [12], the system model and the coverage items in the negated
form (=F{c(s) Ay;}), are translated into the input format of a model checker. For

250

Kamkun A.C., JIe6ene M.C., Cmoinos C.A., Yynmiko M.M. I'enepanust TecToB [UIs Lu(ppoBOii anmapaTypbl Ha OCHOBE
BBICOKOYPOBHEBBIX Mozeneit. Tpyoet UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 247-256.

each item, the model checker constructs a counterexample, i.e. an execution that
violates the corresponding formula. Since coverage is formulated in the negated
form, the counterexamples are executions that reach the related EFSM transitions.
Counterexamples are translated into testbenches and executed by an HDL simulator.
The method is aimed at covering EFSM transitions. However, being rather flexible,
it can be applied to various coverage models.

5. Experiments
The proposed approach has been implemented in the Retrascope 0.2.1 tool [14]. The
implementation uses the Fortress library [15] and the nuXmv model checker [16].

The method has been tested on some designs from the ITC’99 benchmark [17].
Three test generation methods were compared:

1) the method described in this paper (nuXmvy);
2) the method based on EFSM traversal (RETGA) [6];
3) the method based on equivalence checking (ABC) [7].

The third method uses the ABC tool [11] to generate distinguishing sequences for
design represented in the BLIF format.

Two metrics were used for test comparison: the length in ticks and the number of
killed mutants (detected faults).

To generate mutants, a DTESK prototype was used. Given a fault model and an
HDL description, the tool generates a number of mutants along with testbenches.
Each testbench contains the original design and the mutant; it reads input values
from the file, passes them to both designs, and compares the outputs’ values; if there
is a mismatch at some tick, then the mutant is considered to be killed.

Table 1 shows information about the ITC’99 designs: the source code size (in lines
of code), the system model size, and the number of stuck-at fault mutants.

Table 1. ITC 99 designs

Design Source code | System model Number of mutants
BO1 102 207 88

B02 70 143 48

B04 101 809 1342

B06 127 442 94

BO7 92 370 784

B08 88 315 324

B09 100 263 284

Table 2 shows the test-related information: the length in ticks and the percentage of
the killed mutants.

251

Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for Digital Hardware Based on High-Level
Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 247-256.

Table 2. Test generation methods comparison

Design A_BC R_ETGA nl_Jva ABC RETGA | nuXmv
(ticks) (ticks) (ticks) (%) (%) (%)

BO1 227 49 37 90.91 98.86 90.9

B02 86 33 28 0 0 0

B04 — 36 56 — 99.93 99.93

B06 100 76 63 100 100 100

BO7 133 166 162 0 0 0

B08 2745 52 31 98.77 79.94 44.44

B09 777 231 55 97.18 0 0

Comparison results are as follows. For some designs (B02 and B07), all methods
achieve 0% stuck-at fault coverage. Such designs are classified as untestable [18];
their outputs are calculated in such a way that the internal stuck-at faults cannot
affect their outputs. For some designs (B0O1, B04, and B06), the proposed method
reaches the same or comparable stuck-at fault coverage as the leading one. Note that
in such cases model-checking-based tests are usually shorter than tests produced by
other methods. Finally, there are some designs (B08 and B09), where both nuXmv
and RETGA reach lower stuck-at fault coverage than ABC. Additional efforts are
needed to cope with this issue. A possible improvement is described below.

6. Future improvements

In our opinion, the main drawback of the proposed method and similar approaches
is a lack of fault propagation. Broadly speaking, an EFSM model contains a stuck-at
fault if some assignment (v := RHS) of some transition is “corrupted” (RHS is
substituted by 0 or 1). To activate the fault, a test should cause the transition to fire;
however, this is not enough. The erroneous values should be propagated to the
model outputs. Thus, the coverage model should be extended.

Given an EFSM model M, let us make some definitions. A variable v is defined in a
transition x (v € Def,) if §, contains an assignment to v. A variable v is used in a
transition y (v € Use,,) if v appears either in y, or in the right-hand side of §,,. A
transition y depends on a transition x (y € DEP(x)) if Def, nUse, # 0.
Depending on how v is used, in y, or in &,, they say about a control dependency
(y € DEP.(x)) or a data dependency (y € DEP4(x)) respectively.

A propagation path for a transition ¢ is a sequence of transitions {¢t;}7-, such that:

1) t, =t

2) tiy1 € DEPy(t), forall 0 <i < n;
3) Def,, N0y # 0.

252

Kamkun A.C., JIe6ene M.C., Cmoinos C.A., Yynmiko M.M. I'enepanust TecToB [UIs Lu(ppoBOii anmapaTypbl Ha OCHOBE
BBICOKOYPOBHEBBIX Mozeneit. Tpyoet UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 247-256.

Given a propagation path {(s;,y; = &;,s{)}/=,, the propagation condition can be
expressed as follows:

¢ = F{(c(s0) A¥o) AF{(c(s1) Av2) AF(. F{c(s) Ay} - 1}
Note that the notion of propagation path and the propagation condition can be
refined so as to avoid variable redefinitions and other undesirable effects.
If there are no propagation paths for a given transition, the original coverage item,

o = F{c(sy) Ay,}, is removed. If there are multiple propagation paths, two main
strategies can be applied:

1) try all of the propagation paths:
a. split the coverage item ¢, into the set of all possible fault
propagation conditions: {¢, ..., @ };
2) try at least one of the propagation paths:
a. replace the coverage item ¢, with the disjunction V%, ¢,,.

7. Conclusion

The primary scope of this work is reusing functional tests for manufacturing testing.
The paper describes a high-level test generation approach and analyzes whether it is
effective in detecting low-level faults. The approach implements two important
facilities: automatic extraction of models from HDL descriptions and directed test
generation based on model checking. The method is extremely flexible and can be
customized by choosing a proper coverage model. The presented implementation
tends to produce short tests with mediocre stuck-at fault coverage. We think that
fault detection abilities of the approach can be increased by adding fault propagation
conditions into coverage items. This may serve as a topic for future research.

Acknowledgment

The authors would like to thank Russian Foundation for Basic Research (RFBR).
The reported study was supported by RFBR research project Ne 15-07-03834.

References

[1]. Bergeron J. Writing Testbenches: Functional Verification of HDL Models. Springer,
2003, 478 p. DOI: 10.1007/978-1-4615-0302-6.

[2]. Ivannikov V.P., Kamkin A.S., Kossatchev A.S., Kuliamin V.V., Petrenko A.K. The Use
of Contract Specifications for Representing Requirements and for Functional Testing of
Hardware Models. Programming and Computer Software, 33(5), 2007, pp. 272-282.
DOI: 10.1134/s0361768807050039.

[3]. Mishra P., Dutt N. Specification-Driven Directed Test Generation for Validation of
Pipelined Processors. ACM Transactions on Design. Automation of Electronic Systems,
13(3), 2008, pp 1-36. DOI: 10.1145/1367045.1367051.

[4]. Botros N.M. HDL Programming Fundamentals: VHDL and Verilog. Charles River
Media, 2005, 506 p.

253

Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for Digital Hardware Based on High-Level
Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 247-256.

[5].
[6].

[7].

[8].

[9].

[10].

[11].

[12].

[13].

[14].
[15].
[16].

[17].
[18].

254

Berkeley Logic Interchange Format (BLIF). Berkeley, U.C., Oct Tools Distribution 2,
1992, pp. 197-247.

Melnichenko 1., Kamkin A., Smolov S. An Extended Finite State Machine-Based
Approach to Code Coverage-Directed Test Generation for Hardware Designs.
Proceedings of ISP RAS, 2015, 27(3), pp. 161-182. DOI: 10.15514/ispras-2015-27(3)-
12.

Smolov S., Lopez J., Kushik N., Yevtushenko N., Chupilko M., Kamkin A. Testing
Logic Circuits at Different Abstraction Levels: An Experimental Evaluation.
Proceedings of IEEE East-West Design Test Symposium (EWDTS), 2016, pp. 189-192.
DOI: 10.1109/ewdts.2016.7807687.

Ferrandi F., Fummi F., Gerli L., Sciuto D. Symbolic Functional Vector Generation for
VHDL Specifications. Proceedings of Design, Automation and Test in Europe
Conference and Exhibition, 1999, pp. 442-446. DOI: 10.1145/307418.307541.

Minato S. Generation of BDDs from Hardware Algorithm Descriptions. Proceedings of
the 1996 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
1996, pp. 644-649. DOI: 10.1109/iccad.1996.571340.

Guglielmo G.D., Fummi F., Jenihhin M., Pravadelli G., Raik J., Ubar R. On the
Combined Use of HLDDs and EFSMs for Functional ATPG. Proceedings of IEEE East-
West Design and Test Symposium (EWDTS), 2007, pp. 503-508.

Brayton R., Mishchenko A. ABC: An Academic Industrial-Strength Verification Tool.
Proceedings of the Computer Aided Verification Conference (CAV), 2010, pp. 24-40.
DOI: 10.1007/978-3-642-14295-6_5.

Kamkin A., Lebedev M., Smolov S. An EFSM-Driven and Model Checking-Based
Approach to Functional Test Generation for Hardware Designs. Proceedings of IEEE
East-West Design and Test Symposium (EWDTS), 2016, pp.60-63.
DOI: 10.1109/ewdts.2016.7807736.

Smolov S., Kamkin A. A Method of Extended Finite State Machines Construction From
HDL Descriptions Based on Static Analysis of Source Code. St. Petersburg State
Polytechnical University Journal. Computer Science, Telecommunications, 1(212),
2015, pp. 60-73 (in Russian). DOI: 10.5862/jcstcs.212.6.

Retrascope site. http://forge.ispras.ru/projects/retrascope

Fortress library site. http://forge.ispras.ru/projects/solver-api

Cavada D., Cimatti A., Dorigatti M., Griggio A., Mariotti A., Micheli A., Mover S.,
Roveri M., Tonetta S. The nuXmv symbolic model checker. Proceedings of the 16th
International Conference on Computer Aided Verification (CAV), No.8559, 2014,
pp. 334-342. DOI: 10.1007/978-3-319-08867-9_22.

ITC'99 benchmark site. http://www.cad.polito.it/tools/itc99.html

Liu X., Hsiao M.S. On lIdentifying Functionally Untestable Transition Faults.
Proceedings of the Ninth IEEE International High-Level Design Validation and Test
Workshop, 2004, pp. 121-126. DOI: 10.1109/hldvt.2004.1431252.

Kamkun A.C., JIe6ene M.C., Cmoinos C.A., Yynmiko M.M. I'enepanust TecToB [UIs Lu(ppoBOii anmapaTypbl Ha OCHOBE
BBICOKOYPOBHEBBIX Mojeneit. Tpyost UCII PAH, Tom 29, Bbim. 4, 2017 1., cTp. 247-256.

FeHepaumsa TecToB Ans uucdpoBon annapaTypbl Ha OCHOBe
BbICOKOYPOBHEBbIX MoAeren

Y M.M. Yynunxo <chupilko@ispras.ru>
123 4 C. Kamkun <kamkin@ispras.ru>
L M.C. Jlebeoes <lebedev@ispras.ru>
1 C.A. Cuonos <smolov@ispras.ru>
1PI}Ltcmumym cucmemnozo npoepammuposarnusi PAH,
109004, Poccus, . Mockea, yn. Anexcanopa Condcenuyvina, 0. 25.
2 Mockosckuii 2ocyoapcmeenbili ynusepcumem um. M.B. Jlomonocosa,
119991, Poccus, e. Mocksa, Jlenunckue eopewt, 0. 1.
¥ Mockosckuii Qusuxo-mexHueckull uHCMumym,
141701, Poccus, Mockoeckas 06x., 2. [loneonpyoustii, Uncmumymckuii nep., 0. 9.

AnHotamms. TecTHpoBaHHUE ammapatypbl — 3TO INPOLECC, HALENCHHBIII Ha OOHapyKeHHUE
HEUCIPaBHOCTEH, BHECCHHBIX B HHTEIPAIbHBIC CXEMbl B IIpolecce Npou3BoxacTa. Jlis
OLICHKM Ka4yecTBa TAKUX TECTOB HCIOJIB3YIOT J[BE OCHOBHBIE METPUKH: CHOCOOHOCTBH
oOHapyXuBaThb OIIMOKK (IIOKPHITHE OMIMOOK) M BpeMs TECTHPOBAaHHA (JUIMHA TeECTa).
VI3BeCTHO MHOXXECTBO METOJIOB T'CHEPAIMH TECTOB, OJHAKO MAacIITabMpyeMOro pELICHHMS,
NPUMEHHMOT0 K CJIOKHOM HudpoBOH ammaparype, HeT 10 cuxX Hop. B maHHOW craThe
AQHAIM3UPYETCSI BO3MOXKHOCTD HMCIHOJB30BaHUS (DYHKIIMOHAIBHBIX TECTOB, IIOCTPOCHHBIX II0
BBICOKOYPOBHEBBIM MOZEISIM (TIPEX/Ie BCEro, MOJEISIM YPOBHS PETHCTPOBBIX Iepenad), Uil
HH3KOYPOBHEBOTO IIPOMU3BOJICTBEHHOTO TECTHPOBaHH. PaccMaTpuBaeTcss KOHKPETHBIH METOJ
reHepalliy TECTOB, HCIIOIB3YIOIIHIA TeXHUKY poBepku Mozeneit (model checking). BxoaHoi
nHpopmarmeit BeicTynaer HDL-omucanme. MeTon COCTOMT M3 JABYX KIIIOUEBBIX ILIAroB:
HOCTPOCHHE MOJEIH CHCTEMbl U IIOCTPOCHHE MOJENM IOKPBITHS. YKa3aHHbIC MOJEIH
aBTOMaTHYeCKH H3BiekatoTcs u3 HDL-omucanus. Moaens cHCTEMBl NpPECTAaBICHA B BHJC
BBICOKOYPOBHEBBIX pEMIAIOMINX JHarpaMM. Mojens TOKPBITHS — 3TO MHOXecTBo LTL-
(dhopMyI1, ONpeneNsIoIUX YCIOBHS JOCTH)KUMOCTH IIEPEXOJ0B PACIIMPEHHOTO KOHEYHOTO
aBTOMAaTa, OMKCHIBAIOLIEr0 CHCTeMYy. [loCTpOEHHBIE MOJAENH TPAHCIUPYIOTCS BO BXOIHOU
(bopmar uHCTpyMeHTa npoBepku Mozesteit (model checker), kotopsrit st kaxa0it Gopmyisl
MOJIENH MOKPBITUSI TEHEPUPYeT KOHTPIPUMEP — BBIYHCICHHE, Hapyalomee 3Ty GopMyIy,
TO €CTh NPUBOJALIEE K CPabaThIBAHUIO COOTBETCTBYIOLIETO Mepexoa aBToMara. M3Ha4ansHO
paccMaTpuBaeMblii METOJ NpeIHa3Havalcs Ul HOKPBITHsS Beex myTeil mcnonnenus HDL-
omMcaHus 1 0OHAPYKEHHST HEAOCTHKHUMOTO KoJia. DKCIEPUMEHTAIBHOE CPaBHEHHE METo/ia ¢
CYILIECTBYIOIMMHU aHAJIOTaMH IOKa3allo, YTO OH CTPOUT 0oJiee KOPOTKHE TECThI, OAHAKO TH
TECTBI JOCTUTAIOT MEHBIIEr0 YPOBHS MOKPHITUS KOHCTAHTHBIX HEHCIIPABHOCTEH, YeM TECTHI,
MOCTPOCHHBIE C MOMOUIBIO CIIENUATBHBIX CPEeNCTB. B crathe mpeyiaraercs MoangHKarys
MeTo/1a JUTsl IPEO/I0JICHUs] YKa3aHHOTO HeJJOCTaTKa.

KiroueBble ciioBa: nudpoBas anmaparypa; sS3bIK OMHCAHUS allapaTypbl; POM3BOJICTBEHHOE
TECTHPOBAaHME; KOHCTAHTHas OIIMOKa; BBHICOKOYPOBHEBas — pellarolias Jdarpamma;
pacuIMpeHHbIH KOHSYHBIH aBTOMAT; IIPOBEPKa MOJIEIIH; JIEPEBO PaCPOCTPaHEHHUS.

DOI: 10.15514/ISPRAS-2017-29(4)-16

Jnst murupoBanms: Yynuiko M.M., Kamkun A.C., Jle6enes M.C., Cmono C.A. Meron
TeHepaluy TecTOB Ui LU(POBOM ammaparypbl, OCHOBaHHBIH Ha BBICOKOYPOBHEBBIX
mozensix. Tpyoet MUCIT PAH, Tom 29, Bemm. 4, 2017 1., ctp. 247-256 (Ha aHTTIHMHACKOM S3BIKE).
DOI: 10.15514/ISPRAS-2017-29(4)-16

255

Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for Digital Hardware Based on High-Level
Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 247-256.

Cnucok nutepaTtypbl

(1]

[2].

[3].

[4].
[5].
[6].

[7].

[8l.

9.

[10].

[11].

[12].

[13].

[14].
[15].
[16].

[17].
[18].

256

Bergeron J. Writing Testbenches: Functional Verification of HDL Models. Springer,
2003, 478 p. DOI: 10.1007/978-1-4615-0302-6.

NBannukoB B.II.,, Kamkun A.C., KocaueB A.C., Kymamun B.B., Ilerpenxko A.K.
Vcnonb3oBaHne KOHTPAKTHBIX cHeUUMGUKAUWN Ui TPEeNCTaBICHUS TpeOOBaHHUN U
(YHKIIMOHAJIBHOTO TECTUPOBAHMS Mojeield anmaparypsl. [IporpammupoBanue, 1. 33,
Ne 5, 2007 r., ctp. 272-282.

Mishra P., Dutt N. Specification-Driven Directed Test Generation for Validation of
Pipelined Processors. ACM Transactions on Design. Automation of Electronic Systems,
13(3), 2008, pp 1-36. DOI: 10.1145/1367045.1367051.

Botros N.M. HDL Programming Fundamentals: VHDL and Verilog. Charles River
Media, 2005, 506 p.

Berkeley Logic Interchange Format (BLIF). Berkeley, U.C., Oct Tools Distribution 2,
1992, pp. 197-247.

Melnichenko 1., Kamkin A., Smolov S. An Extended Finite State Machine-Based
Approach to Code Coverage-Directed Test Generation for Hardware Designs. Proceedings
of ISP RAS, 2015, 27(3), pp. 161-182. DOI: 10.15514/ispras-2015-27(3)-12.

Smolov S., Lopez J., Kushik N., Yevtushenko N., Chupilko M., Kamkin A. Testing
Logic Circuits at Different Abstraction Levels: An Experimental Evaluation.
Proceedings of IEEE East-West Design Test Symposium (EWDTS), 2016, pp. 189-192.
DOI: 10.1109/ewdts.2016.7807687.

Ferrandi F., Fummi F., Gerli L., Sciuto D. Symbolic Functional Vector Generation for
VHDL Specifications. Proceedings of Design, Automation and Test in Europe
Conference and Exhibition, 1999, pp. 442-446. DOI: 10.1145/307418.307541.

Minato S. Generation of BDDs from Hardware Algorithm Descriptions. Proceedings of
the 1996 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
1996, pp. 644-649. DOI: 10.1109/iccad.1996.571340.

Guglielmo G.D., Fummi F., Jenihhin M., Pravadelli G., Raik J., Ubar R. On the
Combined Use of HLDDs and EFSMs for Functional ATPG. Proceedings of IEEE East-
West Design and Test Symposium (EWDTS), 2007, pp. 503-508.

Brayton R., Mishchenko A. ABC: An Academic Industrial-Strength Verification Tool.
Proceedings of the Computer Aided Verification Conference (CAV), 2010, pp. 24-40.
DOI: 10.1007/978-3-642-14295-6_5.

Kamkin A., Lebedev M., Smolov S. An EFSM-Driven and Model Checking-Based
Approach to Functional Test Generation for Hardware Designs. Proceedings of IEEE
East-West Design and Test Symposium (EWDTS), 2016, pp.60-63.
DOI: 10.1109/ewdts.2016.7807736.

CwmonoB C., Kamkun A. MeToJ MOCTpOEHHs PAaCHIMPEHHBIX KOHEUHBIX aBTOMATOB I10
HDL-ommcannio Ha OCHOBE CTAaTHYECKOrO aHamu3a Kona. HaydHo-TexHHWYeckue
Benomoctu CIIGITIY. Undopmaruka. TenekommyHukanuu. Ynpasnenue, 1(212), 2015,
crp. 60-73. DOI: 10.5862/jcstcs.212.6.

Crpannna uHcTpymenta Retrascope. http://forge.ispras.ru/projects/retrascope (mara
obpamenus: 18.07.17)

Crpanuiia Oubmuorekn Fortress. http://forge.ispras.ru/projects/solver-api (mara
obpammenust: 18.07.17)

Cavada D., Cimatti A., Dorigatti M., Griggio A., Mariotti A., Micheli A., Mover S.,
Roveri M., Tonetta S. The nuXmv symbolic model checker. Proceedings of the 16th
International Conference on Computer Aided Verification (CAV), No0.8559, 2014,
pp. 334-342. DOI: 10.1007/978-3-319-08867-9_22.

Crpannna nHabopa tectoB ITC'99. http://www.cad.polito.it/tools/itc99.html (mara
obpamenust: 18.07.17)

Liu X., Hsiao M.S. On lIdentifying Functionally Untestable Transition Faults.
Proceedings of the Ninth IEEE International High-Level Design Validation and Test
Workshop, 2004, pp. 121-126. DOI: 10.1109/hldvt.2004.1431252.

