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Abstract. Modern embedded OS are designed to be used in control solutions in various
hardware contexts. Control computers may differ in the architecture of the CPU, the structure
of communication channels, supported communication protocols, etc. Embedded OS are
often statically configured to create an OS image, which intended to be executed on some
specific control computer. System integrator usually performs this configuration. Embedded
OS are often developed by many companies. Joint development and integration is very
complex if OS doesn’t support modularity. Support of modularity and component assembly
reduces the need of communication among companies during development and integration.
This allows customers to create minimal solutions that are optimally adapted to the particular
task and hardware platform. Furthermore, customers may be interested in adding their own
low level components without OS maodification. In this article, we present an approach to
building modular embedded solutions from heterogeneous components based on the RTOS
JetOS. The mechanism of components binding developed by us allows uniting heterogeneous
components from different manufacturers within the same section of the address space. This
mechanism allows component developer to independently develop their components. And
system integrator can independently from developers configure what component he likes to
see in OS image and how components should interact.
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1. Introduction

Embedded operating systems are built to provide specific functionality on specific
hardware. Development of a new OS from scratch for every task and hardware is
unwise and operating systems are designed to support several CPU architectures and
a lot of peripheral devices in a single distribution. Therefore, OS distribution
contains many drivers to support a large number of different hardware. Most of the
drivers are not needed for correct OS execution on a specific board. Moreover,
many embedded systems are aimed to run in restricted environment, for example
with limited memory.

Static OS configuration is used in cases when it is known in advance, on which
hardware the OS image is going to be executed. OS configuration is commonly
performed by the system integrator. They choose OS features suitable for OS task
and drivers for hardware. Only chosen parts will get into final OS image. System
integrator doesn’t change OS source code. Static configuration allows keeping final
image small.

Safety-critical systems must be certified. For airborne systems there is a standard for
certification called DO-178C [1], where OS kernel must be certified by highest level
of reliability. Certification is complex and lengthy process. Small change in one part
of system leads to recertification of the whole system.

We develop an open-source real-time operating system for civil aircraft airborne
computers called JetOS. JetOS is ARINC-653 [2] compliant, supports static
configuration and aimed to DO-178 certification.

ARINC-653 specifies interfaces that RTOS (real-time operating system) should
provide to avionics software, also the standard specifies some design constrains to
the OS. The most pertinent constraint is that application code is executed inside
partitions that are isolated from each other by resources and in time.

To simplify and minimize OS kernel and therefore to simplify OS certification
process we moved drivers and some services from kernel to special ARINC-653
partitions, called system partitions [3]. Besides drivers system partition contains
services such as network stacks, file systems, logging, etc.

System partitions should be certified as well as the kernel. Certification for highly-
critical software requires absence of unreachable code. Usage of static configuration
of the system partition allows to static selection of required drivers and services, and
therefore getting rid of unused code.

It is common that there are many vendors involved in building a specific embedded
solution: OS vendor, BSP vendor, device driver developers, system integrator, etc.
When services or drivers they are developing are strongly coupled, developers have
to interact a lot.

Therefore splitting system partition to independent isolated components seems to be
suitable solution. Each driver and service will be in dedicated component. Each
component would have a single developer.
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Component should interact with each other. Appearance of fixed interface between
components would make component development easer. Moreover fixed interface
can make system flexible. Statically configured component-based system (in our
case system partition) can be flexible in several aspects:

e When there are several components implementing the same interface (e.g.
several file systems) and system integrator can choose which component
will get into final image.

e When there are several components implementing the same interface, and
they all can get into final image. System integrator configure on static,
which components interact. For example, if there are two file systems,
some component would work with one file system and others with the
second one.

e When system integrator can add new component between two interacting,
if the new component has a suitable interface. This is useful and can be
used, for example, to insert traffic analyzer between protocol stack and
network card driver.

Another use-case is to reuse a device driver in an applications stack, such as
network card driver in the network stack. Isolated into component the same driver
code might serve multiple device instances due to different sets of internal states
and configuration parameters. All copies of the component share same driver code,
so that each component copy would work with assigned device, would make system
scalable and flexible.

Certification of system includes, among others, unit and integration tests. Splitting
system partition to components makes certification easier. Component-level tests
can be run by component developer. And system integrator doesn’t need to rerun
unit tests, he only needs to run integration tests.e.

2. Related Works

Classical distributed components models like Enterprise JavaBeans, CORBA, Corba
Component Model and DCOM [4,5,6] define components and interfaces between
them. Models allow substituting one component with the other one with the same
interfaces. Components configuration dynamically configured by brokers. This
approach is not suitable for embedded systems with static configuration.

Ideas to separate OS appeared long ago in microkernels. Microkernel architecture’s
[7,8,9] primary goal is to separates OS into independent servers that could be
isolated from each other. Servers interact through inter-process communication
(IPC). IPC calls are typed and servers with the same interface can substitute one
another. But there cannot be two servers with the same interface; therefore this
model is not suitable for our tasks too.

VxWorks is a popular embedded operating system. VxWorks board support
package (BSP) is divided into components. Components interface is declared in
component description language (CDL). BSP developer can construct BSP from
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existing component and can add their own components. But this system is not
flexible; for example, each component has hardcoded in it a list of names of
components it interact with, therefore one component cannot be easily substituted in
a configuration with another one with the same interfaces.
We are not aware of any component based model with the following set of features:
e  Static configuration,
e Low overhead,
e  Flexible configuration (in all aspects from introduction),

e Low mishit probability, when component interact with component it not
designed to (runtime addressing checks)

3. Basic Capabilities of Component-Based Model

Our model aimed to have small overhead, so it can be suitable for RTOS. In its raw
form, our model assumes that there is a lot of similar code written by component
developers in C language. To reduce the amount of hand work we generate helper
code, based on configuration files. Language, which is used to write configuration
files, can be any declarative language; we use YAML for these purposes.

3.1 Component developer view

Model defines component types and component instances. Each component has a
unique component type and assigned implementation and any number of instances.
Component type is similar to term “class” from object oriented languages and
component instance is similar to “class objects”. Component instances share code,
but sharing does not apply to some private data, called instance state.

Components interact. The ability of one component to use services of the others is
achieved through typed ports. There are two kinds of component ports:

e Input ports, which show that the component provides some functionality.
Input ports have assigned handlers implemented by the component, which
will be called when some other component calls the interface of the
component.

e Output ports, which are used by a component when invokes behavior of
another component. The component calls others indirectly, through output
ports.

Ports are typed, input port of one component and output of the other one can be
connected only if they have the same port type. Port type is called interface.
Interface is the set of functions, which input port provides or output port require.
Since interface can have several functions, then output port that implements this
interface has several assigned handlers, one for each function in interface.

Interface declares as the set of triple of function names, signature, and return types.
Example of simple interface declaration can be seen at fig.1.
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- name: data sender
functions:
- name: send
return type: ret t
args_t§pe: [int]

Fig 1. Data_sender interface with one function ret_t send(int)

Component type declaration contains component name, component instance state
structure, and component ports. Output ports are declared as pair of port name and
port interface. Input ports are declared as triple (n, I, m): port name n, port interface
I, and m a list of pairs of interface function and assigned implementation specified
by components function name.

You can see example of component type configuration at fig. 2.

name: Filter
state struct:
edge: int

input ports:
- name: in
type: data sender
implementation:
send: filter send

output ports:
- name: out
type: data sender

Fig 2. Component type Filter. Component state contains one field edge. Componet type has
single input port called in, port interface is data_sender, fucntion send of data_sender
interface is implemented by filter_send function.

During system build configuration files are parsed and corresponding C code is
generated:
e  C-structure describing component, with name identical to component
name. (e.g. structure rilter for component Filter)

o Declaration of functions specified in input ports (e.g. declaration of
function filter send for component Filter). This declaration enforces
naming convention.

e  Special function for calling output ports.

Component developers should use only ports to communicate with other
components. Direct call of another component might work but is not guaranteed.
The component developer is guaranteed only the interfaces. The developer chooses
names for ports. Input ports are an entry point to component. Component developer
does not use names on input ports. Output ports are used when component should
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use service of another component. To call the output port a developer should specify
output port name, output port function name, and function arguments. Developer
should not assume what real function of which component will be called. You can
see an example of calling function from output port at fig. 3

ret t filter send(Filter *self, int data)
{

res = Filter call out send(self, data);

Fig 3. Call of function send of port out.

3.2 System integrator view

System integrator decides how many instances of each component should be
created, and how they are connected. For each component, they choose unique
name, and how to initialize its state. System integrator uses instance names and
names of their ports to link ports of different instances. All of this information
integrator specifies in configuration file. Graphical view of example configuration
use can see at fig. 4.

Sensor_1 #> """" )dl> Filter_1 £|>“
Sensor 2 |£l> -------- >I£l> Filter 2 i>"

Fig 4. Example linkage configuration. Sensor_1 and Sensor_2 are instances of Sensor
component type. Filter_1 and Filter_2 are instance of Filter component type. Sensor_1 ouput
port connect to Filter_1 input port. Filter_1 input port connected to Printer. Same for
Sensor_2 and Filter_2

§d|> Printer

4. Advanced capabilities of component based model

4.1 Init function

Instances can have init function: component developers should declare init function
name in configuration. At system partition start all init functions of all instances are
called sequentially. There is no way to specify dependencies on init (i.e. init of open
component should be called before init of the other one) because we assume that
components are independent and should not have any dependency.
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4.2 Active and reactive components

All components with input ports are reactive, i.e. get control by call from other
component. Some components are active, i.e. the component gets control from OS
by some regularities (periodically or by event). Component can be active and
reactive at the same time.

There are two types of active components in our model:

e Components which have a special entry point — activity. This type of active
components is useful when component instances should do some simple
work from time to time (for example, checking whether there are any new
networks packets). Component developer declares activity name in
configuration. All activities are called sequentially. This type of active
components has a big disadvantage: if some instance will freeze in its
activity then all instances of this type in the system are going to freeze, so
component developer should not use any wait objects in activity.

e Components, which instances create their own threads inside init function.
In this case freezing of the instance, which is running in the dedicated
thread, will not cause freezing other instances.

4.3 Array of ports

Sometimes component developers need to create configurable number of ports of
the same type. We support array of ports, but only for output ports. For calling
function of output port array developers should specify index in the array besides
port name, function name and function arguments.

Arrays of ports are useful in components like router (at the fig. 5). Router sends data
to configurable of instances. Integrator in the configuration specifies number of
elements in port array and their linkage with instances.

v handier 1
0 router |2 427> randier 2 |
a2 hander 3|

Fig. 5. Router has an array of out port which are connected to instances handler_1,
handler_2 and handler_3

4.4 Memory blocks

Component instances in our system cannot use system heap, because there can be
heap underflow with many instances and not enough heap size.

Access to heap and physical (for drivers) memory is done through ARINC-653
memory blocks. For each memory block component developer specifies:

e memory block name suffix
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e memory size
e memory alignment

o flag, that shows if this memory block used by single instance or shared
between instances.

e physical address for drivers working with memory mapped devices.
Memory blocks with fixed physical address must be shared.
Name of shared memory blocks is identical to name suffix from configuration.
Name of non-shared memory block is concatenation of instance name and memory
block name suffix. Instances can access memory blocks by ARINC-653 API
specifying memory block name.

4.5 Memory ownership

This part of the paper does not describe a feature of our approach. Here is some
consideration on memory ownership.

Let us consider a component based system partition, which implement networking.
There can be a track of components: Message sender >UDP_IP_sender ->
Eth_sender-> Network_card_driver. Message sender sends pointer message to
UDP_IP_sender; UDP_IP_sender prepends message with UPD and IP header and
sends message to Eth_sender; Eth_sender prepends message with Ethernet header
and sends to Network_card_driver. Should be specified how own memory and
responsible for memory allocations.

If UDP_IP_sender and Eth_sender components would allocate buffers in their own
memory, then this would greatly complicate their code, as they should also free
buffers. Our real time C library does not support memory freeing because memory
freeing can make indeterminate amount of time.

To simplify implementation and reduce overhead we used an approach when
Message_sender allocates enough memory for all headers (component gets this
value from configuration), copies message at the needed offset and pass to next
layer pointer to message, message size, prepend and append values. Prepend
describes how many bytes before message are allocated. Append describes how
many bytes after message are allocated.

UDP_IP_sender to add header moves pointer it gets from Message sender and
decreases prepend value to header size.

5. Future work

We are going to work on supporting component distribution by binary images. This
can be used to protect intellectual property of component developer, who does not
want to share component source code.

Currently system integrator should specify component instances and their linkage in
YAML language. We are going to support AADL language, which allows system
integrator to graphically create and link instances. To work with AADL we are
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going to use MASIW framework. MASIW [10, 11] (MASIW — Modular Avionics
System Integrator Workplace) is s an open source Eclipse-based IDE for
development and analysis of AADL models.

In addition, we are going to research possibility of using dataflow language to
specify component, so that there will be no need to write component
implementation in C language

6. Conclusion

In the paper, we presented a component-based approach that was created for JetOS,
but can be used in other systems. The approach turned out to be efficient; it has low
overhead and make system flexible and scalable while statically configured.
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AHHoTanusi. COBpEeMEHHBIE OINEPAllMOHHBIE CHCTEMBI AT BCTPOEHHBIX CHCTEM MOTYT
HCIIONB30BAThCS Ul PEIICHHs 3ajad YIpaBICHHUS B Pa3sIMYHBIX aNIIapaTHBIX KOHTEKCTaX.
Vopasisitomue OBM  Moryt pasiauuaThCs apXUTEKTYpOl IEHTpalbHOIO Ipoleccopa,
COCTaBOM KAaHAJIOB CBSI3H, IOJJICP)KUBAEMBIMH MPOTOKOJIaMH CBS3H M T. 1. OOBIYHO
BcTpanBaeMble OC KOHOQUTYypHpYIOTCS Ha 3Tame CcOOpPKH, MO3BOJAL co3maTh obpa3 OC,
NpeAHA3HAuYCHHBI JJIsI BBINOJNIHEHHS Ha OIpEIeJCHHOW ammapaTHoil mmatdopme. OTy
KOHQUTYpaluio OCYIIECTBISET KOMaHJA, Ha3blBaeMasl TPYINON CHCTEMHON HWHTETpaldh.
3agactyro OC 11 BCTPOCHHBIX CHCTEM pa3pabaThIBAIOTCA MHOXKECTBOM KoMITaHUH. Ecim
OC =He sBmsercs MOIYIbHOW, TO COBMECTHBIE NPOEKTHpOBaHHE, pa3paboTka U
koHOurypupoBanne OC mpeAcTaBIAIOT co0OH OdYeHb CIIOXKHBIM 3amaud. [lomnmepikka
MOAYJIBHOCTH W KOMIIOHEHTOH COOpKM 3HAYMTEIbHO YMEHBIIAeT HEoOXOIHUMOCTh BO
B3aHMOJICHCTBUM MEXAYy KOMIaHHWsAMH-padpabortunkamu. KimeHtam 53T0 mo3Bousier
CO371aBaTh MUHUMAJBHBIC PEIICHHsI, ONITUMAIIBHO aJalITHPOBAHHBIE MO 0COOCHHOCTH 331a4n
U ammapatHoil miatdopmsl. KpoMe Toro, pa3nudHbIe MPOW3BOJUTENH CHCTEM MOTYT OBITh
3aMHTEPECOBAaHBI B TOM, 4YTOOBI BHEAPATH B pENICHHE CBOM CIENHAIM3MPOBAHHBIC
KOMIIOHEHTBl, B TOM YHCJIe W B OWHApHOM BHJE, 3AMUINAIONIEM HHTEIUICKTyalbHYIO
COOCTBEHHOCTH pa3pabOTYMKOB. B maHHOU CTaThe MBI NPENCTABIISEM MOAXOA K MTOCTPOSHUIO
MOAYJBHBIX pELIEHHH W3 TeTepOreHHbIX KoMmoHeHToB Ha 6aze OC PB  JetOS.
Pa3paGoTaHHbIii HaMHM MeXaHHM3M CBS3BIBAHHMS KOMIIOHEHTOB TMO3BOJSET OOBEIMHSITH
TeTepPOreHHbIe KOMIIOHEHTBI OT Pa3iM4YHBIX MPOM3BOJWTENECH B paMKax OJHOTO pasziena
aJIPeCHOTO TPOCTPAHCTBA. ITOT MEXaHM3M HO3BOJSIET pa3pabOTYMKaM KOMITIOHEHTOB
OCYIIECTBIISITh HE3aBUCHMYIO pPa3pabOTKy. A CHCTEMHOMY WHTETpaTopy IO3BOJISIET
HE3aBUCUMO OT pa3paborunkoB KoHpurypupoBats OC, BBIOMpas Kakne KOMIOHEHTHI
MOMaayT B KOHeuHbIH 00pa3 OC, 1 KaKk 3TH KOMIIOHEHTHI OYAyT B3aUMO/ICHCTBOBATD.
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