Discovering Near Duplicate Text
in Software Documentation*

L.D. Kanteev <lkolt2@mail.ru>
Yu.O. Kostyukov <taxixx@inbox.ru>
D.V. Luciv <d.lutsiv@spbu.ru>
D.V. Koznov <d.koznov@spbu.ru>
M.N. Smirnov <m.n.smirnov@spbu.ru>
Saint Petersburg State University,
7/9 Universitetskaya emb., St. Petersburg, 199034, Russia

Abstract. Development of software documentation often involves copy-pasting, which
produces a lot of duplicate text. Such duplicates make it difficult and expensive
documentation maintenance, especially in case of long life cycle of software and its
documentation. The situation is further complicated by duplicate information frequently
being near duplicate, i.e., the same information may be presented many times with different
levels of detail, in various contexts, etc. There are a number approaches to deal with
duplicates in software documentation. But most of them use software clone detection
technique, that is make difficult to provide efficient near duplicate detection: source code
algorithms ignore a document structure, and they produce a lot of false positives. In this
paper, we present an algorithm aiming to detect near duplicates in software documentation
using natural language processing technique called as N-gramm model. The algorithm has a
considerable limitation: it only detects single sentences as near duplicates. But it is very
simple and may be easily improved in future. It is implemented with use of Natural Language
Toolkit (NLTK), and. Evaluation results are presented for five real life documents from
various industrial projects. Manual analysis shows 39 % of false positives in automatic
detected duplicates. The algorithm demonstrates reasonable performance: documents of 0,8—
3 Mb are processed 5-22 min.

Keywords: software documentation, near duplicates, natural language processing, N-gram
model.

DOI: 10.15514/ISPRAS-2017-29(4)-21
For citation: Kanteev L.D., Kostyukov Yu.O., Luciv D.V., Koznov D.V., Smirnov M.N.

Discovering Near Duplicate Text in Software Documentation. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 303-314. DOI: 10.15514/ISPRAS-2017-29(4)-21

“ This work is partially supported by RFBR grant No 16-01-00304
303

Kanteev L.D., Kostyukov Yu.O., Luciv D.V., Koznov D.V., Smirnov M.N. Discovering Near Duplicate Text in
Software Documentation. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 303-314.

1. Introduction

Software projects produce a lot of textual information, and analysis of this data is a
truly significant task for practice [1]. One particular problem in this context is
software documentation duplicate management. When being developed, a lot of
copy-pasted text fragments appeared in software documentation, which is often not
tracked properly. According classification from [2], there are different kinds of
software documents. For some of them, duplicate text is undesired, while others
should contain duplicate text. But in any case duplicates increase documentation
complexity and maintenance costs. The situation is further complicated by duplicate
information frequently being “near duplicate”, i.e., the same information may be
presented many times with different levels of detail, in various contexts, etc.

Most popular technique to detect duplicates in software documentation is software
clone detection [3]. There are a number of approaches using this technique in
software documentation research [4],[5],[6]. However, these approaches operate
only with exact duplicates. Near duplicate clone detection techniques [7],[8],[9],[10]
are not directly capable of detecting duplicates from text documents as they involve
some degree of parsing of the underlying source code for duplicate detection.

In our previous studies [11],[12],[13] we have presented a near duplicate detection
approach which is based on software clone detection. We adapted clone detection
tool Clone Miner [14] to detect exact duplicates in documents, then near duplicates
were extracted as combinations of exact duplicates. However, this approach
outcomes a lot of false positives because it can not manage exact duplicate detection
and operates with bad-quality “bricks” for combination of near duplicates.
Meanwhile false positives’ problem is one of the big obstacle of duplicate
management in practice [4].

In this paper we suggest an near duplicate detection algorithm based on N-gram
model [1]. The algorithm doesn't use software clone detection, omitting the
intermediate phases of exact duplicate detection. We have implemented the
algorithm using Natural Language Toolkit [15] (NLTK). The algorithm was
evaluated on documentation of five industrial projects.

2. Related Work

The problem of duplicate management in software project documents is being
actively explored at the moment. Juergens et al. [4] analyze redundancy in
requirement specifications. Horie et al. [16] consider the problem of text fragment
duplicates in Java API documentation. Wingkvist et al. [5] detect exact duplicates to
manage documents maintenance. Rago et al. [17] detect duplicate functionality in
textual requirement specifications. However, the problem of near duplicate
detection is still open. It is mentioned in [4], and Nosal and Porubin [18] suggest
only using near duplicates omitting the way to detect them.

For software engineering, the conceptual background of near duplicate analysis is
provided by Bassett [19]. He introduced the terms of archetype (the common part of
various occurrences of variable information) and delta (the variation part). Based on

304

Kanrees JI.J1., Koctrokos 0.0., JIynus JI.B., Ko3nos /I.B., Cmupros M.H. O6Hapy»eHHe HETOYHO IOBTOPSIOIETOC
TeKCTa B JOKYMEHTALMU MporpaMMHoro obecniedenusi. Tpyowt UCIT1 PAH, Tom 29, Beim. 4, 2017 r., ctp. 303-314.

this concept, Jarzabek developed an XML-based software reuse method [20].
Koznov and Romanovsky [21],[22] applied the ideas of Bassett and Jarzabek to
software documentation reuse, including automated documentation refactoring.
However, these studies did not resolve the problem of document duplicate detection.
There are various techniques to detect near duplicate clones in source code.
SourcererCC [7] detects near duplicates of code blocks using a static bag-of-tokens
strategy that is resilient to minor differences between code blocks. Deckard [8]
computes certain characteristic vectors of code to approximate the structure of
Abstract Syntax Trees in the Euclidean space. Locality sensitive hashing (LSH) [9]
is used to group similar vectors with the Euclidean distance. NICAD [10] is a text-
based near duplicate detection tool that also uses a tree-based structural analysis.
However, these techniques are not directly capable of detecting duplicates in text
documents as they involve some degree of parsing the underlying source code for
duplicate detection. A suitable customization for this purpose can be explored in the
future.

Finally, there is a need for mature near duplicate detection methods to provide a
proper duplicate analysis in software documentation. New information retrieving
methods should be applied to increase the search quality. Natural language
processing methods appear attractive for that purpose [1].

3. Background

Modern natural language processing and computer linguistics employ numerous
standard approaches to analyze and transform texts. One of them is N-gram
model [23]. Let us consider the text as a set of sentences. For every sentence the N-
gram model includes all sequences (N-grams) consisting of n words, where every
next word directly follow to previous one in the same order as in the sentence.
Therefore every N-gram is a substring of the correspondent sentence. For example,
if we want to detect the fact that two sentence are similar we can to compare their
N-gram sets. N-gram model is used to perform different kinds of text analysis.

One of the most common programming tools for practical use of N-gram model is
Natural Language Toolkit (NLTK) [15]. It provides a number of standard linguistic
operations and is implemented in Python, that makes it easy to integrate NLTK into
our Documentation Refactoring Toolkit [24] environment.

4. The Algorithm

The proposed algorithm requires the raw input document to be preprocessed: it
should be divided into sentences, the sentences should be divided into words
(tokens), and for every sentence an N-gram set is build. The algorithm collects
document sentences into groups, if they are close to each other and were likely
derived from one source by copy and paste.

The algorithm works as follows. First, it extracts sentences and builds 3-gram set for
each of them. After that, for each sentence, the algorithm scans existing groups and
chooses the best one, which already contains the largest number of the sentence’s 3-

305

Kanteev L.D., Kostyukov Yu.O., Luciv D.V., Koznov D.V., Smirnov M.N. Discovering Near Duplicate Text in
Software Documentation. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 303-314.

grams. Then, if the best group already contains at least a half of the sentence’s 3-
grams, the sentence is added to this group, and the group's 3-gram set is
complemented with the new sentence's 3-grams. When no such group is found, a
new group is introduced. Finally, the algorithm outputs the groups that contain two
or more sentences. These groups are near duplicate groups.

1. fori=1to size(sent) do

2 curSent « sent][i]

3 bestOverlap < 0

4. bestGroup <« NULL

5: for j = 1 to size(groups) do

6: curGroup < groupslj]

7 curlntersect < intersect(curSent.nGrams, curGroup.nGrams)
8 curOverlap < size(curlntersect) / size(curSent.nGrams)

9: if curOverlap > bestOverlap then

10: bestOverlap < curOverlap

11: bestGroup « curGroup

12: end if

13: end for

14: if bestOverlap < 0.5 then

15: create new group newGroup

16: newGroup.nGrams += curSent.nGrams
17: newGroup.sent += curSent

18: else

19: bestGroup.nGrams += curSent.nGrams
20: bestGroup.sent += curSent

21: end if

22: end for

23: for all G in groups such that size(G) «— 1
24: groups =G
25: end for
26: return groups
27: Algorithm 1. Specification of the algorithm

Let’s describe the algorithm in more detail. The formal specification of the
algorithm is presented on the listing. Below the main functions of the algorithm are
briefly considered.

intersect(A, B) function returns elements, which exist in both A and B sets
size(A) function returns number of elements in the set A
sent is an array of sentences in document text
o sent[i].nGrams is 3-gram set of the i-th sentence
groups is an array of near duplicate groups
o groups[i].nGrams is a 3-gram set of i-th group

306

Kanrees JI.J1., Koctrokos 0.0., JIynus JI.B., Ko3nos /I.B., Cmupros M.H. O6Hapy»eHHe HETOYHO IOBTOPSIOIETOC
TeKCTa B JOKYMEHTALMU MporpaMMHoro obecniedenusi. Tpyowt UCIT1 PAH, Tom 29, Beim. 4, 2017 r., ctp. 303-314.

o groups[i].sent is a set of sentences of i-th group
Details of proposed algorithm are described below:
1. Lines 1-22: the main algorithm cycle, which iterates over all sentences of the
document.

2. Lines 5-13: the cycle for the best group selection. For each groups:

2.1. Line 7: intersection of 3-gram set with the 3-gram set of current sentence
is calculated.

2.2. Line 8: we calculate the ratio of this intersection size to total sentence 3-
grams set size.

2.3. Lines 9-12:if the current group is the best of processed ones, we
remember it.

3. Line 14: we check if above ratio is less than 0.5, and:

3.1. Lines 15-17: when it is less than 0.5, we create new group and put
sentence into it.

3.2. Lines 19, 20: otherwise, we put the sentence into the best group found.

4. Lines 23-25: groups with single sentence are not near duplicate groups,
therefore we remove them.

5. Evaluation

We follow to the GQM framework [25] to organize evaluation of our algorithm. We
formulate a set of evaluation questions:

Question 1: How many false positives (incorrect and irrelevant duplicate groups)
and meaningful near duplicates are found?

Question 2: What is the performance of the algorithm?

We use the notion reuse amount [26] that means the relation of the reusable part to
document length. For exact duplicates the reusable part is the total number of
symbols, covered by duplicates, for near duplicates we consider only their
archetypes. In [4] the same metric is named clone coverage.

Following [12], [13] we selected documentation of the four open sources as
evaluation objects, but add one more commercial project documentation:

e Linux Kernel documentation (LKD), 892 KB in total [27];

e Zend Framework documentation (Zend), 2924 KB in total [28];
e DocBook 4 Definitive Guide (DocBook), 686 KB in total [29];
e Version Control with Subversion (SVN), 1810 KB in total [30];
e Commercial project user guide (CProj), 164 KB in total.

To answer question 1, we performed an manual analysis of near duplicate detected.
The results are presented in Table 1.

307

Kanteev L.D., Kostyukov Yu.O., Luciv D.V., Koznov D.V., Smirnov M.N. Discovering Near Duplicate Text in
Software Documentation. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 303-314.

The table includes column Document (evaluation documents) and two sections:
Proposed algorithm (data concerning algorithm presented in the paper) and Manual
analysis (results of manual analysis of the algorithm output). The Proposed
algorithm section is organized as follows:

e automatically detected shows numbers of groups, which algorithm found;

e raw reuse amount contains reuse amount values for the evaluated
documents.

The Manual analysis section contains the following columns:

e markup-only contains numbers of groups without human-readable text
(they only contain markup);

e irrelevant presents numbers of false-positive groups, which were detected
by human during manual revision of algorithm output;

e total meaningful shows number of meaningful duplicates, manually
detected analyzing algorithm output;

e meaningful reuse amount presents reuse amount values for meaningful
near duplicates detected.

Table 1. Near-duplicate groups detected

Proposed algorithm xgp;si
s [=2 >
s 2.1 3 s | = Z |2 2|32
= 3 T o | O o | D
8 ge | D& g g £ |g € £|E E
23 X s > = PE [S28|PE|[S2F
LKD 189 | 18.9% | 20.1% | 13.2% | 66.7% 7.7% 15 5.1%
Zend 601 | 14.5% | 10.3% | 26.5% | 63.2% 8.6% 27 2.1%
DocBook 73 | 13.0% | 13.7% | 32.9% | 53.4% 3.2% 12 1.7%
SVN 349 | 10.2% | 27.8% | 21.5% | 50.7% 5.0% 16 2.3%
CProj 72 | 38.3% 0.0% | 29.2% | 70.8% | 29.5% 9| 14.1%
Average 19.0% | 14.4% | 24.6% | 61.0% | 10.8% 5.0%

14.4% of groups contain no human-readable text, but only markup, 24.6% of
groups contain text which is similar, but this is just formal similarity, and duplicates
of those groups are not semantically connected. Remaining 61% of groups are
meaningful duplicate groups. For documents of different sizes their count varies
from few dozens to several hundreds depending on the size and nature of document,
therefore we can say that proposed algorithm detects considerable amount of near
duplicates, and most of them are meaningful. The reuse amount has been decreased
in 2 times after manual processing. These data indicates the false positive problem
need to be resolved for the algorithm.

308

Kanrees JI.J1., Koctrokos 0.0., JIynus JI.B., Ko3nos /I.B., Cmupros M.H. O6Hapy»eHHe HETOYHO IOBTOPSIOIETOC
TeKCTa B JOKYMEHTALMU MporpaMMHoro obecniedenusi. Tpyowt UCIT1 PAH, Tom 29, Beim. 4, 2017 r., ctp. 303-314.

Finally, to answer question 2 we estimated the working time of the algorithm with
the evaluation documents. For our experiments we used the usual work station Intel
i5-2400, 3.10GHz, RAM 4 GiB, Windows 10. Our estimation results are presented
in table 2. The first column of the table contains the acronyms of the documents to
be evaluated. The second one contains the size of the documents. The third column
presents the algorithm processing time values. The forth column presents the
processing speed. The processing speed depends on two parameters: the size of the
document and the reuse amount. It decreases when the document size grows and as
the reuse amount increases. The first statement is obvious. The second one follows
from the fact that, roughly speaking, the larger the reuse amount is, the fewer groups
of single sentence exist, and therefore number operations in cycle of the best group
selection (see listing 1, lines 5-13) decreases. However, this is a rough estimation
because the size of the groups also contributes to the processing speed. And we
cannot say for certain whether or not a larger reuse amount might compensate for a
larger document size. Among the five documents presented in table 2, we can see
our assumption confirmed. In the case of these documents, the processing speed
decreases as the document size increases, with one exception. The processing speed
of the algorithm for Zend was higher than that for SVN, although the size of the
Zend document was bigger than that of SVN. At the same time, the reuse amount of
Zend is substantially higher than that of SVN. Also the assumption concerning the
reuse amount works well in our experiments carried out outside of results presented
in this paper. However, further research is needed to verify this assumption. In
addition, implementation factors need to be explored, which can influence the
algorithm performance. Finally, the performance of the algorithm appears sufficient
for practical applications. The algorithm demonstrates an acceptable processing
time for rather large documents, i.e. from 1 to 3 Mb. Larger documents are quite
rare in practice.

Table 2. Performance analysis

oo | s | Flocesg | rocessts
LKD 892 5.30 168.35
Zend 2924 22.14 132.08
DocBook 686 2.02 339.60
SVN 1810 17.14 105.59
CProj 164 0.17 946.15

6. Conclusion

We have presented an algorithm for the detection of near duplicates in software
documentation based on N-gram model. The proposed algorithm is close to the
naive voting clustering algorithm [31], using a similarity measure resembling the
Jaccard index [32]. Compared to [12],[13], the algorithm looks much simpler, while
also making use of the techniques and apparatus conventionally used for text

309

Kanteev L.D., Kostyukov Yu.O., Luciv D.V., Koznov D.V., Smirnov M.N. Discovering Near Duplicate Text in
Software Documentation. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 303-314.

analysis. It should be noted, the algorithm has a considerable limitation: it only
detects single sentences as near duplicates. Our primary goal for future research is
to extend the algorithm to make possible processing arbitrary text fragments. Here
are some additional future directions of the research:

1. It is necessary to resolve false positives problem. The algorithm output should
be compared to manual document analysis.

2. Classification of false positives and meaningful near duplicates should be
developed. False positives may include markup, document metadata, etc.
Meaningful near duplicates usually describe entities of the same nature
(function descriptions, command line parameters, data type specifications, etc.).

3. Improvement of experiment model should be performed. For example, Juergens
et al. [4] spend much effort to obtain objective results in analyzing duplicates of
real industry documents.

Research results could be applied in various fields of software engineering, e.g. in
model based testing [33],[34] to provide correctness of initial requirement
specifications, which are used for test generation.

References

[1] WagnerS., Fernandez D.M. Analysing Text in Software Projects. Preprint, 2016.
URL: https://arxiv.org/abs/1612.00164

[2] Parnas D. L. Precise Documentation: The Key To Better Software. Nanz S. (ed.) The
Future of Software Engineering, Springer, 2011. DOI: 10.1007/978-3-642-15187-3_8

[3] Akhin, M., Itsykson, V. Clone Detection: Why, What and How? Proceedings of CEE-
SECR’10, 2010, pp. 36-42. DOI: 10.1109/CEE-SECR.2010.5783148

[4] JuergensE. et al. Can clone detection support quality assessments of requirements
specifications? Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering, 2010, vol. 2, pp. 79-88.

[5] Wingkvist A., Ericsson M., Lincke R., Lowe W. A Metrics-Based Approach to
Technical Documentation Quality. Proceedings of 7th International Conference on the
Quality of Information and Communications Technology, 2010, pp. 476-481.

[6] Nosal M., Porubén J. Preliminary report on empirical study of repeated fragments in
internal documentation. Proceedings of the Federated Conference on Computer Science
and Information Systems, Gdansk, 2016, pp. 1573-1576.

[7]1 Sajnani H., Saini V., Svajlenko J., Roy C.K., Lopes C.V. Sourcerercc: Scaling code
clone detection to big-code. Proceedings of the 38th International Conference on
Software Engineering, ACM, New York, USA, 2016, pp. 1157-1168.
DOI: 10.1145/2884781.2884877

[8] Jiang L., Misherghi G., Su Z., Glondu S. DECKARD: Scalable and accurate tree-based
detection of code clones. Proceedings of 29th International Conference on Software
Engineering. Institute of Electrical and Electronics Engineers, 2007, pp. 96-105. DOI:
10.1109/ICSE.2007.30

[9] Huang T.K., Rahman M.S., Madhyastha H.V., Faloutsos M., Ribeiro B. An analysis of
socware cascades in online social networks. Proceedings of the 22Nd International
Conference on World Wide Web, 2013, pp. 619-630.

310

Kanrees JI.J1., Koctrokos 0.0., JIynus JI.B., Ko3nos /I.B., Cmupros M.H. O6Hapy»eHHe HETOYHO IOBTOPSIOIETOC
TeKCTa B JOKYMEHTALMU MporpaMMHoro obecniedenusi. Tpyowt UCIT1 PAH, Tom 29, Beim. 4, 2017 r., ctp. 303-314.

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]
[19]
[20]

[21]

[22]

[23]
[24]
[25]
[26]

[27]

Cordy J.R., Roy C.K.: The NiCad clone detector. Proceedings of the 19th IEEE
International Conference on Program Comprehension. Institute of Electrical and
Electronics Engineers, 2011, pp. 219-220. DOI: 10.1109/ICPC.2011.26

Lutsiv D.V., Koznov D.V., Basit H.A., Lieh O.E., Smirnov M.N., Romanovsky K.Yu.
An approach for clone detection in documentation reuse. Nauchno-tehnicheskij vestnik
informacionnyh tehnologij, mehaniki i optiki [Scientific and Technical Journal of
Information Technologies, Mechanics and Optics] vol. 92, issue 4, 2014, pp. 106-114
(in Russian).

Koznov D. et al. Clone detection in reuse of software technical documentation.
Mazzara M., Voronkov A. (eds.), International Andrei Ershov Memorial Conference on
Perspectives of System Informatics, 2015; Lecture Notes in Computer Science, vol.
9609, 2016, pp. 170-185. DOI: 10.1007/978-3-319-41579-6_14

Luciv D., Koznov D., Basit H.A., Terekhov A.N. On fuzzy repetitions detection in
documentation reuse. Programming and Computer Software, vol. 42, issue 4, 2016, pp.
216-224. DOI: 10.1134/s0361768816040046

Basit H.A., Smyth W.F., Puglisi S.J., Turpin A., Jarzabek S. Efficient Token Based
Clone Detection with Flexible Tokenization. Proceedings of ACM SIGSOFT
International Symposium on the Foundations of Software Engineering, ACM Press,
2007, pp. 513-516. DOI: 10.1145/1295014.1295029

Natural Language Toolkit, URL: http://nltk.org/

Horie M., Chiba S. Tool support for crosscutting concerns of APl documentation.
Proceedings of 9th International Conference on Aspect-Oriented Software
Development, 2010, pp. 97-108. DOI: 10.1145/1739230.1739242

Rago A., Marcos C., Diaz-Pace J.A. ldentifying duplicate functionality in textual use
cases by aligning semantic actions. International Journal on Software and Systems
Modeling, vol. 15, issue 2, 2016, pp. 579-603. DOI: 10.1007/s10270-014-0431-3
Nosal” M., Porubin J. Reusable software documentation with phrase annotations. Open
Computer Science, vol. 4, issue 4, 2014, pp. 242-258. DOI: 10.2478/s13537-014-0208-3
Bassett P. Framing software reuse — lessons from real world. Prentice Hall, 1996.
ISBN: 0-13-327859-X

Jarzabek S., Bassett P., Zhang H., Zhang W. XVVCL: XML-based Variant Configuration
Language. Proceedings of 25th International Conference on Software Engineering,
2003, pp. 810-811. DOI: 10.1109/ICSE.2003.1201298

Koznov D., Romanovsky K.. DocLine: A Method for Software Product Lines
Documentation Development. Programming and Computer Software, vol. 34, issue 4,
2008, pp. 216-224. DOI: 10.1134/S0361768808040051

Romanovsky K., Koznov D., Minchin L. Refactoring the Documentation of Software
Product Lines. Central and East European Conference on Software Engineering
Techniques, Brno (Czech Republic), 2008; Lecture Notes in Computer Science, vol.
4980, Springer, 2011, pp. 158-170. DOI: 10.1007/978-3-642-22386-0_12

Broder A.Z. et al. Syntactic clustering of the web. Computer Networks and ISDN
Systems. vol. 29, issue 8, 1997, pp. 1157-1166. DOI: 10.1016/S0169-7552(97)00031-7
Documentation Refactoring ToolKit,

URL: http://www.math.spbu.ru/user/kromanovsky/docline/index_en.html

Basili V., Caldiera G., Rombach H. The Goal Question Metric Approach. Encyclopedia
of Software Engineering, Wiley, 1994. DOI: 10.1002/0471028959.s0f142

Frakes W., Terry C.. Software reuse: metrics and models. ACM Computing Surveys,
vol. 28, issue 2, 1996, pp. 415-435. DOI: 10.1145/234528.234531

Linux Kernel Documentation, snapshot on Dec 11, 2013.

URL: https://github.com/torvalds/linux/tree/master/Documentation/DocBook/

311

Kanteev L.D., Kostyukov Yu.O., Luciv D.V., Koznov D.V., Smirnov M.N. Discovering Near Duplicate Text in
Software Documentation. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 303-314.

[28] Zend PHP Framework documentation, snapshot on Apr 24, 2015.

URL: https://github.com/zendframework/zf1/tree/master/documentation

[29] DocBook Definitive Guide, snapshot on Apr 24, 2015.

URL: http://sourceforge.net/p/docbook/code/HEAD/tree/trunk/defguide/en/

[30] SVN Book, snapshot on Apr 24, 2015.

URL: http://sourceforge.net/p/svnbook/source/HEAD/tree/trunk/en/book/

[31] Braun R.K., Kaneshiro R. Exploiting topic pragmatics for new event detection.
Technical report. National Institute of Standards and Technology, Topic Detection and
Tracking Workshop, 2004.

[32] Jaccard P. Distribution de la flore alpine dans le Bassin des Dranses et dans quelques
regions voisines [Distribution of Alpine flora in the Dranses Basin and some neighboring
regions]. Bulletin de la Société Vaudoise des Sciences Naturelles [Bulletin of the VVaudois
Society of Natural Sciences], vol. 140, issue 37, 1901, pp. 241-272 (in French)

[33] Drobintsev P.D., Kotlyarov V. P., Letichevsky A A. A formal approach to test
scenarios generation based on guides. Automatic Control and Computer Sciences,
vol. 48, issue 7, 2014, pp. 415-423. DOI: 10.3103/S0146411614070062

[34] ZelenovS.V., SilakovD.V., Petrenko A.K., Conrad M., Feyl. Automatic test
generation for model-based code generators. Proceedings of 2nd International
Symposium on Leveraging Applications of Formal Methods, Verification and
Validation, pp. 75-81. DOI: 10.1109/ISoLA.2006.70

O6HapyXeHue HeTOYHO NOBTOPAIOLLErocs TeKCTa B
AOKYMeHTaLMmn NporpaMMHOro obecne4vyeHus *

JLJ]. Kanmees <Ikolt2@mail.ru>
10.0. Kocmiokoe <taxixx@inbox.ru>
J.B. Jlyyue <d.lutsiv@spbu.ru>
I.B. Koznos <d.koznov@spbu.ru>
M.H. Cmupros <m.n.smirnov@spbu.ru>
Canxm-Ilemepbypackuii 20cy0apcmeenHblil YHugepcumen,
199034, Poccus, Canxm-Ilemepbype, Ynusepcumemckas nabepesicuas 119

Aunoramusi. Ilpy CO3JaHMM JOKYMEHTAIlMH TPOTPAMMHOIO OOECIEYEHHS! 9acTo
HPUMEHSIETCS. KOMUPOBaHHE W BCTABKa C IMOCICAYIOUIMM PEIaKTHPOBAHHEM, B PE3yJbTaTe
Yero BO3HHKAET MHOTO MOBTOPSIOIIETOCs TeKCcTa. Takue MOBTOPHI YCIOXKHSIOT U YIOPOXKAIOT
HOJICPKKY JOKYMCHTAIIMH, OCOOCHHO B Cilydae JUIMTENIbHBIX JKU3HEHHBIX IHKJIOB
HOPOrpaMMHOTO obecredeHus] U JoKyMeHTauuu. Emg Gomee yCIoKHAET CHTYAIMIO TO, YTO
3a4acTyr0 MH(OpPMAIUs TIOBTOPSETCS MPHOIM3UTENIBHO, T.€. OJHA W Ta ke WH(OopManus
MOKET OBITh MHOTOKPATHO MPEJCTABJIEHA C Pa3HBIMH YPOBHSAMH JETAIM3AINH, B PA3IHYHBIX
KOHTEKCTaX W T.J. B JaHHOW paboTe TNpPEMIONKEH ajirOpHTM, MpPEIHAZHAUECHHBIA JUIs
OOHApy>KeHHs1 HETOYHBIX [OBTOPOB B JIOKyMEHTAMH MPOIPAMMHOTO OOECHEeUEHHS.
Anroputm ocHoBaH Ha Mojienn N-rpamMM U peann3oBaH ¢ ucrosb3oBanuem Natural Language
Toolkit. Anroputm ampoOupOBaH Ha JOKYMEHTAIMH HECKOJBKHX MPOCKTOB C OTKPBITHIM
HUCXOJHBIM KOJIOM.

KiioueBble ci10Ba: JOKYMEHTAIMs MHPOTPAMMHOTO OOEcCIedeHnsi, Heu€TKHEe MOBTOPEI,
00paboTKa TEKCTOB Ha €CTECTBEHHBIX S3bIKaX, MOJeNb N-rpaMm.

“ PaGota wactruHO nmojaepkana rpantoM PO®U Nel6-01-00304
312

Kanrees JI.J1., Koctrokos 0.0., JIynus JI.B., Ko3nos /I.B., Cmupros M.H. O6Hapy»eHHe HETOYHO IOBTOPSIOIETOC
TeKCTa B JOKYMEHTALMU MporpaMMHoro obecniedenusi. Tpyowt UCIT1 PAH, Tom 29, Beim. 4, 2017 r., ctp. 303-314.

DOI: 10.15514/ISPRAS-2017-29(4)-21

Jas uutuposanus: Kanrees JI.J[., Kocriokos 10.0., JIynus /I.B., Kozunos /[.B., CmupHOB
M.H. OGHapykxeHHE HETOYHO MOBTOPSIOLIETOCS TEKCTa B JOKYMEHTALMH HPOTrPaMMHOTO
obecnieuenusi. Tpyovt UCII PAH, tom 29, Bem. 4, 2017 ., ctp. 303-314 (Ha anrnumiickom
spike). DOI: 10.15514/ISPRAS-2017-29(4)-20

Cnucok nutepaTtypbl

[1] WagnerS., Fernandez D.M. Analysing Text in Software Projects. Preprint, 2016.
URL.: https://arxiv.org/abs/1612.00164

[2] Parnas D. L. Precise Documentation: The Key To Better Software. Nanz S. (ed.) The
Future of Software Engineering, Springer, 2011. DOI: 10.1007/978-3-642-15187-3_8

[3] Akhin, M., Itsykson, V. Clone Detection: Why, What and How? Proceedings of CEE-
SECR’10, 2010, pp. 36-42. DOI: 10.1109/CEE-SECR.2010.5783148

[4] JuergensE. et al. Can clone detection support quality assessments of requirements
specifications? Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering, 2010, vol. 2, pp. 79-88.

[5] Wingkvist A., Ericsson M., Lincke R., Lowe W. A Metrics-Based Approach to
Technical Documentation Quality. Proceedings of 7th International Conference on the
Quality of Information and Communications Technology, 2010, pp. 476-481.

[6] Nosal M., Porubdn J. Preliminary report on empirical study of repeated fragments in
internal documentation. Proceedings of the Federated Conference on Computer Science
and Information Systems, Gdansk, 2016, pp. 1573-1576.

[7]1 Sajnani H., Saini V., Svajlenko J., Roy C.K., Lopes C.V. Sourcerercc: Scaling code
clone detection to big-code. Proceedings of the 38th International Conference on
Software Engineering, ACM, New York, USA, 2016, pp. 1157-1168.
DOI: 10.1145/2884781.2884877

[8] Jiang L., Misherghi G., Su Z., Glondu S. DECKARD: Scalable and accurate tree-based
detection of code clones. Proceedings of 29th International Conference on Software
Engineering. Institute of Electrical and Electronics Engineers, 2007, pp. 96-105. DOI:
10.1109/ICSE.2007.30

[9] Huang T.K., Rahman M.S., Madhyastha H.V., Faloutsos M., Ribeiro B. An analysis of
socware cascades in online social networks. Proceedings of the 22Nd International
Conference on World Wide Web, 2013, pp. 619-630.

[10] Cordy J.R., Roy C.K.: The NiCad clone detector. Proceedings of the 19th IEEE
International Conference on Program Comprehension. Institute of Electrical and
Electronics Engineers, 2011, pp. 219-220. DOI: 10.1109/1CPC.2011.26

[11] JIyuume OA.B., Kosuos [.B., Bacut X.A., JIu O.E., CmuproB M.H., Pomanosckwuii K.FO.
Merton noucka NOBTOPSIIOIIUXCS q)parMeHTOB TEKCTa B TEXHUYECKON TOKYMEHTAIUU.
Hay4no-TexHMUYecKknli BECTHUK WH(POPMAIIMOHHBIX TEXHOJIOTHI, MEXaHUKU U OITHKH,
T. 92, Boim. 4, 2014, cTp. 106-114.

[12] Koznov D. et al. Clone detection in reuse of software technical documentation.
Mazzara M., Voronkov A. (eds.), International Andrei Ershov Memorial Conference on
Perspectives of System Informatics, 2015; Lecture Notes in Computer Science, vol.
9609, 2016, pp. 170-185. DOI: 10.1007/978-3-319-41579-6_14

[13] JIyume A.B., Kosuoe I.B., Bacut X.A., TepexoB A.H. 3agaua mnoucka HEYETKUX
IIOBTOPOB npu OopraHusanuun IIOBTOPHOTI'O HCIIOJIb30BaHUA JAOKYMCHTAIlUH.
IIporpammupoBanmue, 1. 42, Ne 4, 2016, ctp. 39-49.

[14] Basit H.A., Smyth W.F., Puglisi S.J., Turpin A., Jarzabek S. Efficient Token Based
Clone Detection with Flexible Tokenization. Proceedings of ACM SIGSOFT

313

Kanteev L.D., Kostyukov Yu.O., Luciv D.V., Koznov D.V., Smirnov M.N. Discovering Near Duplicate Text in
Software Documentation. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 303-314.

[15]
[16]

[17]

(18]
[19]
[20]

[21]
[22]

(23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]

[31]

[32]

[33]

[34]

314

International Symposium on the Foundations of Software Engineering, ACM Press,
2007, pp. 513-516. DOI: 10.1145/1295014.1295029

Natural Language Toolkit, URL: http://nltk.org/

Horie M., Chiba S. Tool support for crosscutting concerns of APl documentation.
Proceedings of 9th International Conference on Aspect-Oriented Software
Development, 2010, pp. 97-108. DOI: 10.1145/1739230.1739242

Rago A., Marcos C., Diaz-Pace J.A. Identifying duplicate functionality in textual use
cases by aligning semantic actions. International Journal on Software and Systems
Modeling, vol. 15, issue 2, 2016, pp. 579-603. DOI: 10.1007/s10270-014-0431-3
Nosal’ M., Porubidn J. Reusable software documentation with phrase annotations. Open
Computer Science, vol. 4, issue 4, 2014, pp. 242-258. DOI: 10.2478/s13537-014-0208-3
Bassett P. Framing software reuse — lessons from real world. Prentice Hall, 1996.
ISBN: 0-13-327859-X

Jarzabek S., Bassett P., Zhang H., Zhang W. XVVCL: XML-based Variant Configuration
Language. Proceedings of 25th International Conference on Software Engineering,
2003, pp. 810-811. DOI: 10.1109/ICSE.2003.1201298

KozHos /I.B., Pomanosckuii K.FO. Docline: werox pa3paGOTKH — JTOKyMEHTAIUH
ceMeiiCcTBa MPOrpaMMHBIX POAYKTOB. [IporpammupoBsanue, T. 34, Bem. 4, 2008, C. 1-13.
Romanovsky K., Koznov D., Minchin L. Refactoring the Documentation of Software
Product Lines. Central and East European Conference on Software Engineering
Techniques, Brno (Czech Republic), 2008; Lecture Notes in Computer Science, vol.
4980, Springer, 2011, pp. 158-170. DOI: 10.1007/978-3-642-22386-0_12

Broder A.Z. et al. Syntactic clustering of the web. Computer Networks and ISDN
Systems. vol. 29, issue 8, 1997, pp. 1157-1166. DOI: 10.1016/S0169-7552(97)00031-7
Documentation Refactoring Toolkit,

URL: http://www.math.spbu.ru/user/kromanovsky/docline/index.html

Basili V., Caldiera G., Rombach H. The Goal Question Metric Approach. Encyclopedia
of Software Engineering, Wiley, 1994. DOI: 10.1002/0471028959.s0f142

Frakes W., Terry C.. Software reuse: metrics and models. ACM Computing Surveys,
vol. 28, issue 2, 1996, pp. 415-435. DOI: 10.1145/234528.234531

Linux Kernel Documentation, snapshot on Dec 11, 2013.

URL: https://github.com/torvalds/linux/tree/master/Documentation/DocBook/

Zend PHP Framework documentation, snapshot on Apr 24, 2015.

URL: https://github.com/zendframework/zfl/tree/master/documentation

DocBook Definitive Guide, snapshot on Apr 24, 2015.

URL.: http://sourceforge.net/p/docbook/code/HEAD/tree/trunk/defguide/en/

SVN Book, snapshot on Apr 24, 2015.

URL: http://sourceforge.net/p/svnbook/source/HEAD/tree/trunk/en/book/

Braun R.K., Kaneshiro R. Exploiting topic pragmatics for new event detection.
Technical report. National Institute of Standards and Technology, Topic Detection and
Tracking Workshop, 2004.

Jaccard P. Distribution de la flore alpine dans le Bassin des Dranses et dans quelques
regions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles, vol. 140,
issue 37, 1901, pp. 241-272 (¢pparir.)

Drobintsev P.D., Kotlyarov V. P., Letichevsky A.A. A formal approach to test
scenarios generation based on guides. Automatic Control and Computer Sciences,
vol. 48, issue 7, 2014, pp. 415-423. DOI: 10.3103/S0146411614070062

Zelenov S.V., Silakov D.V., Petrenko A.K.,, Conrad M., Feyl. Automatic test
generation for model-based code generators. Proceedings of 2nd International
Symposium on Leveraging Applications of Formal Methods, Verification and
Validation, pp. 75-81. DOI: 10.1109/ISoLA.2006.70

