The Study into Cross-Site Request Forgery
Attacks within the Framework of Analysis of
Software Vulnerabilities

L A.V. Barabanov <ab@cnpo.ru>
L A.l. Lavrov <mail@cnpo.ru>
2A.S. Markov <a.markov@bmstu.ru>
L1.A. Polotnyanschikov <mail@cnpo.ru>
2V.L. Tsirlov <v.tsirlov@bmstu.ru>
1 NPO Echelon, Elektrozavodskaya street, 24, Moscow, 107023, Russia
2Bauman MSTU, 2 Baumanskaya street, 5, Moscow,105005 Russia

Abstract. Nowadays, web applications are one of the most popular types of target of
evaluation within the framework of the information security certification. The relevance of
the study of web applications vulnerabilities during information security certification is due
to the fact that web technologies are actively used while producing modern information
systems, including information systems critical from the information security point of view,
and on the other hand carrying out basic attacks on such information systems do not require
violators of high technical competence, since data on typical vulnerabilities and attacks,
including the attacking tools are heavily represented in publicly available sources of
information, and the information systems themselves are usually available from public
communication networks. The paper presents the results of a study of the security of web
applications that are target of evaluation within the framework of certification for information
security requirements against cross-site requests forgery attacks. The results of
systematization and generalization of information about the cross-site requests forgery attacks
and security controls used by web application developers are presented. The results of
experimental studies of 10 web applications that have passed certification tests against
information security requirements are presented. The results of experimental studies have
shown that most developers do not pay enough attention to protection from cross-site request
forgery attack - 7 out of 10 web applications tested have been vulnerable to this type of
attack. Based on the results of processing the results of experimental studies, the distribution
of security controls used in web applications and identified vulnerabilities by programming
languages were obtained. Recommendations regarding the protection of web applications
against cross-site request forgery attack for developers planning to certify their software are
formulated.

Keywords: information security; software security; analysis of wvulnerabilities; web-
application; CSRF-attack.

DOI: 10.15514/ISPRAS-2017-29(5)-1

Barabanov A.V., Lavrov A.l., Markov A.S., Polotnyanschikov I.A., Tsirlov V.L. The study into cross-site request
forgery attacks within the framework of analysis of software vulnerabilities. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 5, 2017, pp. 7-18

For citation: Barabanov A.V., Lavrov A.l., Markov A.S., Polotnyanschikov I.A., Tsirlov
V.L The study into cross-site request forgery attacks within the framework of analysis of
software vulnerabilities. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017. pp. 7-18.
DOI: 10.15514/ISPRAS-2017-29(5)-1

1. Introduction

Software created with the use of web-technologies is currently one of the main
components in automated control system (ACS) design. The designed ACS are, as a
rule, multi-user and can be found on public domain networks (for instance,
Internet), which increases the risk of their successful attack. Various procedures
(such as certification, independent security audit) are currently used to lower
probability of successful attack. They are aimed at identifying vulnerabilities in the
software used to design ACS [1, 2].

Software vulnerabilities are analyzed during certification for compliance with the
requirements to the protection profiles approved by FSTEC of Russia (Federal
Service for Technology and Export Control), which clearly includes requirements of
AVA VAN assurance family “Vulnerability analysis”, and during testing for
compliance with the requirements of the technical specifications and classic
governing documents of FSTEC of Russia. The procedure for vulnerability analysis
recommended by FSTEC of Russia consists in the joint use of approaches specified
in the Common Methodology for Information Technology Security Evaluation and
ISO/IEC TR 20004 [3]. It should be noted that more specific instructions for the test
laboratories (for instance, standard penetration tests) have not yet been developed,
which makes this procedure non-determined [4].

The experience of analysis into vulnerabilities of web-applications within the
framework of the accredited test laboratory showed that Cross-Site Request Forgery
attack, hereinafter — CSRF-attack is currently the most successful attack against
targets of evaluation. The main attention of the developers of web-applications, as a
rule, is concentrated on implementing measures protecting against attacks like SQL-
injections or Cross-site scripting. The situation is aggravated by the fact that
measures protecting against CSRF-attacks are still being actively studied, and best
practices have not been rigidly registered yet [2, 6].

The goal of this work consisted in developing guidelines for the developers of web-
applications, who are planning to certify their solutions as to the information
security requirements. The work solves the following tasks to achieve the set goal:
a) Classification and summary of information about CSRF-attacks and measures of
protection against them;

b) Consolidation of information about vulnerabilities of web-applications identified
within the framework of work of the accredited test laboratories.

Bapabanos A.B., JlaBpos A.H., Mapkos A.C., [Tonotusanumkos U.A., [upnos B.JI. MccnenoBanue arak tuna «Cross-
Site Request Forgery» B pamMkax mpoBeieHHUsI aHANM3a yI3BUMOCTe# BeO-npunoxenuit. Tpyowt UCIT PAH, 2017, Tom 29,
BbIIN. 5, pp 7-18

2. The results of classification and summary of information
about CSRF-attacks and relevant security measures

A hacker performing a CSRF-attack makes the web-browser used by the legal user,
who has been authenticated in "security measures against " the attacked web-
application, send HTTP-request, which is going to be identified by the application
as a request received from a legal user, to the web-application.

A possible consequence from a successful CSRF-attack implementation is running
of an arbitrary code in the web-application in the name of authenticated user. Thus,
the main causes of CSRF-attacks are vulnerabilities in web-applications related to
wrong implementation of algorithm of HTTP-request authorization. Success of
CSRF-attack is determined by the following factors [7, 8]:

e The browser automatically applies authentication data of the user (for
instance, session cookie-files), when sending HTTP-request to the web-
application;

e Web-application uses the obtained authentication data to authorize the
action required for performance by HTTP-request.

It should be noted that despite difficulties in implementation, there are cases of
successful CSRF-attacks of ‘Login’ and ‘Logout’ type on web-applications [1, 9,
10]. The probability of successful ‘stored’ CSRF-attack is higher, because a
malicious code is stored on the side of the attacked web-application, and the hacker
does not have to make the user (for instance, using methods of social engineering)
go to a special resource with a malicious code.

Implementation of the security measures on the client’s side [11-16], represented by
plugins/extensions of the browser or additional software (proxy), has significant
drawbacks [8] and is currently only of academic interest.

There are suggestion on implementing security measures directly with the browser
source code, for instance, using ‘samesite’ properties of the cookie-files, but
currently these measures are experimental and are implemented only in certain
browsers. Integrated measures (measures implemented jointly by the software code
on the client- and the server-sides), as a rule, implement a certain information
control policy [6, 17], which contain critical information (for instance,
authentication data), between the browser and the web-server. It should be noted
that effective implementation of this type of security measures is possible by
making changes in the browser source code. Moreover, essential limitations of these
security measures are well-known, which does not allow their use as a sole measure
of protection.

The most popular security measures against CSRF-attacks are tokens (synchronic
tokens or generated using HMAC cryptographic function) that are generated and
checked on the web-application side. This security measure is implemented, as a
rule, by the web-application itself or the framework. It should be noted that the
majority of the most popular frameworks (such as, Ruby on Rails, ASP.NET,

9

Barabanov A.V., Lavrov A.l., Markov A.S., Polotnyanschikov I.A., Tsirlov V.L. The study into cross-site request
forgery attacks within the framework of analysis of software vulnerabilities. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 5, 2017, pp. 7-18

Django) implement this measure, which somewhat decreases the workload for the
developer of a certain web-application and reduces the number of errors related to
implementation of the security algorithm by the developer of the web-application.
The main distinctive feature of the token-based security measures is in the token
storage method:

e Generated token may be stored on the web-application side (it is associated
with the user session) and it shall be compared with the token received
from the web-browser;

e Generated token may be stored on the web-browser side (for instance, in
the cookie); when the web-application receives a request from the web-
browser, the web-application compares the values of tokens in the cookie
and the HTTP-request body.

It should be noted that this measure of the web-application security is used
correctly, if it is designed and implemented in a way that HTTP-requests of GET
type do not change the server state, and are used only for request of the necessary
information. AJAX-requests may be protected with tokens inserted in HTTP-header,
or custom HTTP-headers (during implementation of this security measure the web-
application only checks availability of the heading in the received request).

The leading specialists in the web-application security recommend using the
defense in depth principle, when implementing security measures. Thus, specialists
of OWASP community recommend implementing security of the web-application
by combining two types of the security measures —HTTP-headers verification and
tokens.

In some cases, the developers use three or more security measures for critical
information systems (for instance, online banking systems). For example, it can be a
combination of tokens, verification of HTTP-header and security measures that
require actions from the end user, who performs a critical operation (entry of one-
time code/ password).

3. Methods and results of the study

The study into the security level of the web-application was carried out in the
accredited test laboratory of NPO Echelon (study period: January — November
2016). Brief information about the web-applications that participate in the study is
represented in Table 1.

Table I. Brief information about the study objects

Level of measures for
secure software
development
implementation
(maturity level)

Programming Type of

Software identifier
language developer

Software No. 1 PHP Russian 2

10

Bapabanos A.B., JlaBpos A.H., Mapkos A.C., [Tonotusanumkos U.A., [upnos B.JI. MccnenoBanue arak tuna «Cross-
Site Request Forgery» B pamMkax mpoBeieHHUsI aHANM3a yI3BUMOCTe# BeO-npunoxenuit. Tpyowt UCIT PAH, 2017, Tom 29,
BbIIN. 5, pp 7-18

Software No. 2 Java Foreign 5
Software No. 3 PHP Russian 1
Software No. 4 Java Foreign 5
Software No. 5 C# Russian 4
Software No. 6 Java Russian 1
Software No. 7 C# Russian 1
Software No. 8 PHP Russian 1
Software No. 9 Ruby Russian 3
Software No. 10 Ruby Russian 3

Level of measures for secure software development implementation (maturity level)
was assessed by the expert method with account of the scope of measures
implemented by the developer of measures from the basic set of measures for
developing secure software suggested in the National Standard GOST R 56939-
2016 Information Protection. Secure Software Development. General Requirements.
[4, 18]: 1 - not one measure is implemented, 2 - less than 20% of measures is
implemented, 3 — from 20% to 40% of measures is implemented, 4 - from 40% to
60% of measures is implemented, 5 - from 60% to 80% of measures is
implemented, 6 - over 80% of measures is implemented.

Vulnerabilities were analysed using standard tests developed with account of
recommendations and CAPEC resource. Below is the general sequence of the
performed tests.

1) Analysis of parts of web-applications (pages), which allow changing the state of
the web-application (creating/ changing/ deleting user accounts, protected
information, other information etc.).

2) Study of the requests to the identified parts of web-applications: transmission of
the requests from the web-browser to the web-application with further interception
and analysis of the request structure. The expert analyses the intercepted request and
defines the type of security measure against CSRF-attack on a specific page.

3) Generating a mock HTTP-request, which is saved as an HTML-file on the local
computer and is opened in the web-browser, provided that there is a session
authenticated by the target of evaluation (web-application).

4) If the analysis of intercepted request (cl. 2) revealed security measures against
CSRF-attacks, the following actions shall be additionally taken:

a) when tokens are used as a security measure:

o analysis of URL for a presence of token in a plain text;
e sending a request without a token;
e sending a request with an altered token;

11

Barabanov A.V., Lavrov A.l., Markov A.S., Polotnyanschikov I.A., Tsirlov V.L. The study into cross-site request
forgery attacks within the framework of analysis of software vulnerabilities. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 5, 2017, pp. 7-18

o sending a request using one token for various user accounts;

e an attempt to guess /select a token;
b) when using verification of the HTTP-headers as a security measure;

e sending a request with altered HTTP Referer (originally a misspelling of
«referrer»)/Origin fields;

e sending a request without HTTP Referrer/Origin fields.
The tests were performed using the following software: BurpSuite software, Scaner-
VS software. The average time spent on testing of one web-application by one
expert of the test laboratory is 8 hours.
The results of the study are specified below.
1) CSRF-attacks were successful in 70% of cases — 7 out of 10 analysed web-
applications turned out to be vulnerable.
2) The majority of CSRF-attacks were successful in relation to web-applications
developed in Russia. It should be noted that the only CSRF-attack that was
successful in relation to the foreign web-application was that of “Logout” type, and
the experts of the test laboratory failed to develop an attack vector that implements
information security threat. Only one web-application initially did not have any
security measures against CSRF-attacks. The other vulnerable web-applications had
security measures based on verification of HTTP-headers or token (Figure 1).

nothing

Fig. 1. Distribution of protection measures used in vulnerable web-applications

3) It has been established that web-applications written in PHP have a few more
vulnerabilities that results in successful CSRF-attacks (Figure 2) [20].

4) The developers upgraded vulnerable web-applications using security measures
based on tokens in all cases.

5) In the majority of cases the upgraded web-application and web-applications,
where the vulnerability has not been identified, used a combination of several
security measures against CSRF-attacks.

12

Bapabanos A.B., JlaBpos A.H., Mapkos A.C., [Tonotusanumkos U.A., [upnos B.JI. MccnenoBanue arak tuna «Cross-
Site Request Forgery» B pamMkax mpoBeieHHUsI aHANM3a yI3BUMOCTe# BeO-npunoxenuit. Tpyowt UCIT PAH, 2017, Tom 29,
BIIL 5, pp 7-18

Fig. 2. Distribution of identified vulnerabilities as to the programming language

6) The average time required for the web-application developer to correct
vulnerability is 3 weeks.

7) One of the results of the study was a deduced empirical rule, in accordance with
which the number of vulnerabilities identified in the software is in inverse
proportion to the maturity level of the secure software development processes
implemented by the developer.

4. Recommendations to developers on increasing the
security level of web-applications

Based on the results of the study the following recommendations were provided for
the developers of web-applications that are planning to hold certification tests as to
information safety requirements.

1) It is advisable that the developers implement measures for secure software
development in the software lifecycle processes. At the very least, it is
recommended to implement measures related to testing penetration of web-
application prior to their submission to the test laboratory. To minimize time for
such testing, the developers should generate sets of standard tests, which may be
developed with account of guidelines represented in the works [17, 19]. The
developers are advised against limiting their tests to the standard test only, and are
recommended to run additional tests aimed at performing CSRF-attacks, like
‘Login’ and ‘Logout’, and verify that the selected security measure is correctly
implemented.

2) The developers are recommended using the defense in depth principle — combine
two or more security measures (as a rule, verification of token and HTTP-headers),
when implementing security measures against CSRF-attacks in the web-application.
3) When implementing security measures against CSRF-attacks in the web-
application, the developers are, first of all, recommended to use security measures

13

Barabanov A.V., Lavrov A.l., Markov A.S., Polotnyanschikov I.A., Tsirlov V.L. The study into cross-site request
forgery attacks within the framework of analysis of software vulnerabilities. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 5, 2017, pp. 7-18

that are already implemented in the operational environment, for instance,
frameworks.

5. Conclusions

This work consisted in the study into security of web-applications, which are the
test targets within the framework of certification as to information security
requirements, against cross-site request forgery attacks. The result showed that the
majority of the developers (around 70%) do not pay due attention to implementing
security measures against such attacks. Resulting from the study, we defined
recommendations for the developers, the main of them being recommendations on
the use of defense in depth principle and the use of token-based security measures
that had already been implemented by the framework developers. We deduced
empirical rule, in accordance with which the number of vulnerabilities identified in
the software is in inverse proportion to the maturity level of the secure software
development processes implemented by the developer. Further studies are intended
into the issues of the web-application protection against SQL-injection attacks and
cross-site scripting attack and defining general guidelines for the developers of web-
applications, who are planning certification.

References

[1]. H. Selim, S. Tayeb, Y. Kim, J. Zhan, and M. Pirouz. Vulnerability Analysis of Iframe
Attacks on Websites. In Proceedings of the The 3rd Multidisciplinary International
Social Networks Conference on Sociallnformatics 2016, Data Science 2016 (MISNC,
SlI, DS 2016). ACM, New York, NY, USA, Article 45, pp. 1-6, August 2016. DOI:
10.1145/2955129.2955180.

[2]. W. Du, K. Jayaraman, X. Tan, T. Luo, and S. Chapin. Position paper: why are there so
many vulnerabilities in web applications? In Proceedings of the 2011 New Security
Paradigms Workshop (NSPW '11). ACM, New York, NY, USA, pp. 83-94. 2011. DOI:
10.1145/2073276.2073285.

[3]. A. Barabanov, A. Markov, A. Fadin, V. Tsirlov, I. Shakhalov. Synthesis of Secure
Software Development Controls. In Proceedings of the 8th International Conference on
Security of Information and Networks (Sochi, Russia, September 8-10, 2015). SIN '15.
ACM, New York, NY, USA, pp. 93-97. 2015. DOI: 10.1145/2799979.2799998.

[4]. A.V. Barabanov, A.S. Markov, V.L. Tsirlov. Methodological Framework for Analysis
and Synthesis of a Set of Secure Software Development Controls. Journal of Theoretical
and Applied Information Technology. 2016. V. 88. No 1, pp. 77-88.

[5]. N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross site request forgery attacks. In
the IEEE International Conference on Security and Privacy for Emerging Areas in
Communication Networks (Securecomm) , pp. 1-10, September 2006.

[6]. A. Czeskis, A. Moshchuk, T. Kohno, and H.J. Wang. Lightweight server support for
browser-based CSRF protection. In Proceedings of the 22nd international conference on
World Wide Web (WWW '13). ACM, New York, NY, USA, 2013, pp. 273-284. DOI:
10.1145/2488388.2488413.

14

Bapabanos A.B., JlaBpos A.H., Mapkos A.C., [Tonotusanumkos U.A., [upnos B.JI. MccnenoBanue arak tuna «Cross-
Site Request Forgery» B pamMkax mpoBeieHHUsI aHANM3a yI3BUMOCTe# BeO-npunoxenuit. Tpyowt UCIT PAH, 2017, Tom 29,
BbIIN. 5, pp 7-18

[7].

(8].

[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].

K. Jayaraman, P. G. Talaga, G. Lewandowski, S.J. Chapin, and M. Hafiz. Modeling user
interactions for (fun and) profit: preventing request forgery attacks on web applications.
In Proceedings of the 16th Conference on Pattern Languages of Programs (PLoP '09).
ACM, New York, NY, USA, Article 16, pp. 1-9. August 2009. DOI:
10.1145/1943226.1943246.

A. Barth, C. Jackson, and J.C. Mitchell. Robust defenses for cross-site request forgery.
In Proceedings of the 15th ACM conference on Computer and communications security
(CCS '08). ACM, New York, NY, USA, pp. 75-88. October 2008. DOI:
10.1145/1455770.1455782.

M. Zhou, P. Bisht, and V.N. Venkatakrishnan. Strengthening XSRF defenses for legacy
web applications using whitebox analysis and transformation. In Proceedings of the 6th
international conference on Information systems security (ICISS'10), pp. 96-110. 2010.
E. Shernan, H. Carter, D. Tian, P. Traynor, and K. Butler. More Guidelines Than Rules:
CSRF Vulnerabilities from Noncompliant OAuth 2.0 Implementations. In Proceedings
of the 12th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA 2015), pp. 239-260, June 2015. DOI: 10.1007/978-
3-319-20550-2_13

H. Shahriar and M. Zulkernine. Client-Side Detection of Cross-Site Request Forgery
Attacks. In Proceedings of the 2010 IEEE 21st International Symposium on Software
Reliability Engineering (ISSRE '10). IEEE Computer Society, Washington, DC, USA,
pp. 358-367. November 2010. DOI: 10.1109/ISSRE.2010.12.

P.D. Ryck, L. Desmet, T. Heyman, F. Piessens, and W. Joosen. CsFire: transparent
client-side mitigation of malicious cross-domain requests. In Proceedings of the Second
international conference on Engineering Secure Software and Systems (ESS0S'10), pp.
18-34. 2010. DOI: 10.1007/978-3-642-11747-3_2.

R. Pelizzi and R. Sekar. A server- and browser-transparent CSRF defense for web 2.0
applications. In Proceedings of the 27th Annual Computer Security Applications
Conference (ACSAC '11). ACM, New York, NY, USA, pp. 257-266. December 2011.
DOI: 10.1145/2076732.2076768.

L. Xing, Y. Zhang, and S. Chen. A client-based and server-enhanced defense
mechanism for cross-site request forgery. In Proceedings of the 13th international
conference on Recent advances in intrusion detection (RAID'10), pp. 484-485. 2010.

N. Gelernter and A. Herzberg. Cross-Site Search Attacks. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (CCS '15).
ACM, New York, NY, USA, pp. 1394-1405. October 2015. DOI:
10.1145/2810103.2813688.

E. Z. Yang, D. Stefan, J. Mitchell, D. Maziéres, P. Marchenko, and B. Karp. Toward
principled browser security. In Proceedings of the 14th USENIX conference on Hot
Topics in Operating Systems (HotOS'13). USENIX Association, Berkeley, CA, USA,
pp. 17-17. 2013.

W. Maes, T. Heyman, L. Desmet, and W. Joosen. Browser protection against cross-site
request forgery. In Proceedings of the first ACM workshop on Secure execution of
untrusted code (SecuCode '09). ACM, New York, NY, USA, pp. 3-10. November 2009.
DOI: 10.1145/1655077.1655081.

A. Barabanov, A. Markov, V. Tsirlov. Procedure for substantiated development of
measures to design secure software for automated process control systems. In
Proceedings of the International Siberian Conference on Control and Communications,
SIBCON 2016, IEEE, 1-4. June 2016. DOI: 10.1109/SIBCON.2016.7491660.

15

Barabanov A.V., Lavrov A.l., Markov A.S., Polotnyanschikov I.A., Tsirlov V.L. The study into cross-site request
forgery attacks within the framework of analysis of software vulnerabilities. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 5, 2017, pp. 7-18

[19]. X. Li and Y.Xue. A survey on server-side approaches to securing web applications.
ACM Comput. Surv., 46, 4, Article 54 (March 2014), 29 pages. April 2014. DOI:
10.1145/2541315

[20]. A.S. Markov, V.L. Tsirlov. Experience in identifying vulnerabilities in foreign software
products. VVoprosy kiberbezopasnosti [Cybersecurity Issues]. 2013. No 1(1), pp. 42-48.
(In Russian).

UccnepoBaHue atak Tuna «Cross-Site Request Forgery» B
pamMKax npoBefeHUs aHanu3a yasBumMocTen Beo-
NPUNOXEHUN

4B bapabanos < ab@cnpo.ru>
L A1 Jlaspos < mail@cnpo.ru>
2 A.C. Mapros < a.markov@bmstu.ru>
Y 1. A. Honomusimyuros < mail@cnpo.ru>
2 B.JI. Iupnos <v.tsirlov@bmstu.ru>
YHITO «Dwenony, 107023, Poccus, 2. Mockea, yi. dnexmposasodckas, 0.24
MITY um. H.D. baymana,
105005, Poccus, . Mockea, 2-a Baymanckas ya., 0. 5, cmp. 1

AHHOTanms. BeG-npuiiokeHns sIBISAIOTCS OJHUM U3 HauOoyiee PacrpoCTPAaHEHHBIX THIIOB
OOBEKTOB HCCIENOBAHMS B paMKax pPabOTBI CHCTEMBI CePTH(HUKAIMH CPEICTB 3alIUTHI
nHpopMay. AKTYaTbHOCTh HCCIEJOBAHUS YSI3BHIMOCTEH B BEO-TIPHIIOKEHUSIX B paMKax
cepTudUKaKU M0 TPeOOBaHUAM 0Oe30MacHOCTH HMH(OpMAIUU O0YCIOBICHA TEM, YTO BeO-
TEXHOJIOTHH, C OJHON CTOPOHBI, aKTHBHO MCIIOJB3YIOTCS IIPU PEATM3alMi COBPEMEHHBIX
MH(OPMAIIMOHHBIX CHCTEM, B TOM YHCJIE KPUTHYHBIX C TOYKH 3PEHUS MH(POPMAIMOHHON
0e30macHOCTH, a, C JAPYroil CTOPOHBI, MPOBEACHHE O0a30BBIX aTaKk Ha MOJ00HBIC
WHPOPMAIIMOHHBIE CHCTEMBI HE TpeOyloT OT HapylmIuTeneld BBICOKOW TEXHHYECKOH
KOMIIETeHTHOCTH, IIOCKOJNBKY JaHHBIE O THIIOBBIX YS3BHMOCTAX M aTakaX, BKIIOYas
HWHCTPYMEHTAJbHBIE CPE/ICTBA IIPOBEJCHHS aTak, B OOJBIIOM OOBEME IPEACTABICHHI B
OOIIEeJOCTYITHBIX HCTOYHUKAX HHGOPMAanWH, a caMd HH(OPMAIMOHHBIE CHCTEMBI, Kak
MpaBUIIO, JOCTYMHBI W3 CeTel CBsi3M 0OIIero mojp3oBaHus. B paboTe mpencTaBieHbI
pe3yabTaThl HCCICIOBAHUS 3aIIUIIEHHOCTH BEO-TIPUIIOKEHHUH, SBISIIOLIMXCS O0bEKTaMH
HCOBITAaHKI B paMKax cepThduKanuy no TpedoBaHusIM 0€30MacHOCTH MH(OPMAILIMH, OT aTak
THNA «MEKCAHTOBasi IMOJJETKAa 3ampocoB». [IpHBeNeHBI pe3yNbTaThl CHCTEMATH3ALMUd U
000011eHNs CBeJICHHH 00 aTake TUIa «MeXcaiToBas MOIENKa 3alPOCOBY U Mepax 3alllUThI,
HCTIONB3YeMBIX pa3zpaboTumkamu BeO-mpunokennil. [IpencraBieHBl pe3ymibTaThl
OKCIEPHMEHTANBHBIX ~ nccienoBaHud 10 BeO-pmiloXKeHWH, KOTOpPBIE IIPOXOJHIN
CepTU(HKAIMOHHbIE HCIBITAaHUS 10 TpeOoBaHMSIM Oe3omacHoCTH HH(opMarmu. Pe3ympTaTet
OKCHEPHMEHTAIBHBIX HCCIECJOBAaHMI IIOKa3ald, YTO OOJBIIMHCTBO pa3pabOTYNKOB HE
YACNAIOT JOJDKHOTO BHMMAHMS 3allUTe OT MEXKCAaHTOBOW Mojjaenku 3ampocoB — 7 u3 10
UCCIIEIOBAaHHBIX BEO-TIPUIIOKEHUH OKa3alM yA3BUMBIMH K JaHHOMY THIy artaku. Ilo
pe3yabTaTaM 00pabOTKM pe3yJbTaTOB JKCIIEPHUMEHTANIBHBIX MCCIEIOBAHUNA MONyYEHBI
pacnpeneneHus Mep 3alllUThl, HCHONb3yeMbIX B BEO-TIPUIOKEHUSX, M BBIIBICHHBIX
YSI3BUMOCTEH MO si3pIkaM HporpammupoBanus. CopMynHpoBaHEl PEKOMEHAANNH B YaCTH

16

Bapabanos A.B., JlaBpos A.H., Mapkos A.C., [Tonotusanumkos U.A., [upnos B.JI. MccnenoBanue arak tuna «Cross-
Site Request Forgery» B pamMkax mpoBeieHHUsI aHANM3a yI3BUMOCTe# BeO-npunoxenuit. Tpyowt UCIT PAH, 2017, Tom 29,
BbIIN. 5, pp 7-18

3alIUTHl BEO-IPUJIOKEHUH OT MEXCAaHTOBOW MOAMENKH 3allpoCcoB Id pPa3pabOTUMKOB,
TUTAHUPYIOIIUX MPOBEICHNE CepTH(UKAILIIMY CBOETO IPOrpaMMHOT0 00ecTIeueHusI.

KnwueBbie CJI0BA: I/IH(bOpMaIII/IOHHaH 6esor[ac1{oc*n;; Oe3omacHoe IIporpaMMHOC
06ecnequI/Ie; aHaJlIn3 yH3BHMOCTefI; Be6-HpI/IJ'IO)KeHI/IG; MEKCauTOBas MO ACIKa 3a1poca.

DOI: 10.15514/ISPRAS-2017-29(5)-1

Jas nutupoBanus:. bapabanos A.B., JlaBpoB A.l., Mapkos A.C., [Tonorasxmukos W.A.,
upios B.JI. UccnenoBanue arak tuma «Cross-Site Request Forgery» B paMKax mMpoBeICHHS
aHanm3a ys3BuMocteil BeO-npunoxenuil. Tpyast UCIT PAH, Tom 29, Bemn. 5, 2017 1., c1p. 7-
18 (ua anrmmiickom s3bike). DOI: 10.15514/ISPRAS-2017-29(5)-1

Cnucok nutepartypbl

[1]. H. Selim, S. Tayeb, Y. Kim, J. Zhan, and M. Pirouz. Vulnerability Analysis of Iframe
Attacks on Websites. In Proceedings of the The 3rd Multidisciplinary International
Social Networks Conference on Sociallnformatics 2016, Data Science 2016 (MISNC,
Sl, DS 2016). ACM, New York, NY, USA, Article 45, pp. 1-6, August 2016. DOI:
10.1145/2955129.2955180.

[2]. W. Du, K. Jayaraman, X. Tan, T. Luo, and S. Chapin. Position paper: why are there so
many vulnerabilities in web applications? In Proceedings of the 2011 New Security
Paradigms Workshop (NSPW '11). ACM, New York, NY, USA, pp. 83-94. 2011. DOI:
10.1145/2073276.2073285.

[3]. A. Barabanov, A. Markov, A. Fadin, V. Tsirlov, I. Shakhalov. Synthesis of Secure
Software Development Controls. In Proceedings of the 8th International Conference on
Security of Information and Networks (Sochi, Russia, September 8-10, 2015). SIN '15.
ACM, New York, NY, USA, pp. 93-97. 2015. DOI: 10.1145/2799979.2799998.

[4]. A.V. Barabanov, A.S. Markov, V.L. Tsirlov. Methodological Framework for Analysis
and Synthesis of a Set of Secure Software Development Controls. Journal of Theoretical
and Applied Information Technology. 2016. V. 88. No 1, pp. 77-88.

[5]. N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross site request forgery attacks. In
the IEEE International Conference on Security and Privacy for Emerging Areas in
Communication Networks (Securecomm) , pp. 1-10, September 2006.

[6]. A. Czeskis, A. Moshchuk, T. Kohno, and H.J. Wang. Lightweight server support for
browser-based CSRF protection. In Proceedings of the 22nd international conference on
World Wide Web (WWW '13). ACM, New York, NY, USA, 2013, pp. 273-284. DOI:
10.1145/2488388.2488413.

[7]. K. Jayaraman, P. G. Talaga, G. Lewandowski, S.J. Chapin, and M. Hafiz. Modeling user
interactions for (fun and) profit: preventing request forgery attacks on web applications.
In Proceedings of the 16th Conference on Pattern Languages of Programs (PLoP '09).
ACM, New York, NY, USA, Article 16, pp. 1-9. August 2009. DOI:
10.1145/1943226.1943246.

[8]. A. Barth, C. Jackson, and J.C. Mitchell. Robust defenses for cross-site request forgery.
In Proceedings of the 15th ACM conference on Computer and communications security
(CCs '08). ACM, New York, NY, USA, pp. 75-88. October2008. DOI:
10.1145/1455770.1455782.

17

Barabanov A.V., Lavrov A.l., Markov A.S., Polotnyanschikov I.A., Tsirlov V.L. The study into cross-site request
forgery attacks within the framework of analysis of software vulnerabilities. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 5, 2017, pp. 7-18

[9]. M. Zhou, P. Bisht, and V.N. Venkatakrishnan. Strengthening XSRF defenses for legacy
web applications using whitebox analysis and transformation. In Proceedings of the 6th
international conference on Information systems security (IC1SS'10), pp. 96-110. 2010.

[10]. E. Shernan, H. Carter, D. Tian, P. Traynor, and K. Butler. More Guidelines Than Rules:
CSRF Vulnerabilities from Noncompliant OAuth 2.0 Implementations. In Proceedings
of the 12th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA 2015), pp. 239-260, June 2015. DOI: 10.1007/978-
3-319-20550-2_13

[11]. H. Shahriar and M. Zulkernine. Client-Side Detection of Cross-Site Request Forgery
Attacks. In Proceedings of the 2010 IEEE 21st International Symposium on Software
Reliability Engineering (ISSRE '10). IEEE Computer Society, Washington, DC, USA,
pp. 358-367. November 2010. DOI: 10.1109/ISSRE.2010.12.

[12]. P.D. Ryck, L. Desmet, T. Heyman, F. Piessens, and W. Joosen. CsFire: transparent
client-side mitigation of malicious cross-domain requests. In Proceedings of the Second
international conference on Engineering Secure Software and Systems (ESS0S'10), pp.
18-34. 2010. DOI: 10.1007/978-3-642-11747-3_2.

[13]. R. Pelizzi and R. Sekar. A server- and browser-transparent CSRF defense for web 2.0
applications. In Proceedings of the 27th Annual Computer Security Applications
Conference (ACSAC '11). ACM, New York, NY, USA, pp. 257-266. December 2011.
DOI: 10.1145/2076732.2076768.

[14]. L. Xing, Y. Zhang, and S. Chen. A client-based and server-enhanced defense
mechanism for cross-site request forgery. In Proceedings of the 13th international
conference on Recent advances in intrusion detection (RAID'10), pp. 484-485. 2010.

[15]. N. Gelernter and A. Herzberg. Cross-Site Search Attacks. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (CCS '15).
ACM, New York, NY, USA, pp. 1394-1405. October 2015. DOI:
10.1145/2810103.2813688.

[16]. E. Z. Yang, D. Stefan, J. Mitchell, D. Maziéres, P. Marchenko, and B. Karp. Toward
principled browser security. In Proceedings of the 14th USENIX conference on Hot
Topics in Operating Systems (HotOS'13). USENIX Association, Berkeley, CA, USA,
pp. 17-17. 2013.

[17]. W. Maes, T. Heyman, L. Desmet, and W. Joosen. Browser protection against cross-site
request forgery. In Proceedings of the first ACM workshop on Secure execution of
untrusted code (SecuCode '09). ACM, New York, NY, USA, pp. 3-10. November 2009.
DOI: 10.1145/1655077.1655081.

[18]. A. Barabanov, A. Markov, V. Tsirlov. Procedure for substantiated development of
measures to design secure software for automated process control systems. In
Proceedings of the International Siberian Conference on Control and Communications,
SIBCON 2016, IEEE, 1-4. June 2016. DOI: 10.1109/SIBCON.2016.7491660.

[19]. X. Li and Y.Xue. A survey on server-side approaches to securing web applications.
ACM Comput. Surv., 46, 4, Article 54 (March 2014), 29 pages. April 2014. DOI:
10.1145/2541315

[20]. MapkoB. A.C., IlupmoB B.JI. OnbeiT BBISBICHUS YA3BUMOCTEH B 3apyOeKHBIX
NpOrpaMMHBIX IPOJAyKTax. Bompocsl knbepoesomnacHocty, 2013, Ne 1 (1), crp. 42-48

18

