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1. Introduction  

Software applications, which control various automatic devices, are usually built as 

a set of two kinds of sequential executing threads: tasks and interrupt service 

routines (ISRs). Coordination of execution of these threads is realized by the kernel 

of the embedded real-time operating system (OS). OS reliability is extremely 

important for correct functioning of the automatic technical device under software 

                                                        
1 This paper is an extended version of a presentation at the Industrial track poster session of 

the 29th IFIP International Conference on Testing Software and Systems (ICTSS-2017), St. 
Petersburg, Russia, October 9-11, 2017. 
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control. 
The variety of requirements for such an OS grows along with the variety of 
technical devices, for which embedded systems are designed, especially for devices 

built on the basis of microcontroller units (MCUs). Each OS for an MCU should be 

tested thoroughly to avoid a crash of an embedded application. Verification of 

embedded real-time software is a well-known problem [1], [2]. Thorough 

execution-based testing [3] of an embedded OS requires significant effort along two 

axes: full-bodied test suite design and test suite execution. 

Effort reduction for test execution may be achieved by designing a highly 

automated test suite. Effort reduction for design of such a test suite may be achieved 

through efficient testing techniques, languages, and tools.  

The paper describes a special language to define the testing task logic based on the 

concept of flat charts to efficiently run embedded OS execution-based testing. 

2. Approach to Testing an Embedded OS 

Usually, an embedded OS provides static and dynamic services for applications to 

run on top of this OS. Static services are used to specify static configuration features 

of the application: the set of its tasks and ISRs, the subset of the used OS functions, 

basic task properties (e.g., task priorities), static resource distribution among the 

application tasks (allocation of memory, stacks and other special structures). 

Dynamic services may be further split into basic and additional ones.  

Basic dynamic services ensure:  

 run-time distribution of resources among the threads (memory, special 

structures, processor time); 

 exchange of data and signals among tasks; 

 passing data and signals from ISRs to tasks; 

 error (fault, exception) handling which provides data on an abnormal 

situation in the application. 

Additional dynamic services support specific functions: 

 run-time generation of threads, tasks, and ISRs; 

 run-time updating of the basic task properties (e.g., the task priority); 

 run-time stack reallocation;  

 mathematical calculations, string processing, etc.  

The problem of basic dynamic services testing will be considered in this paper from 

two points of view: 

 functional testing – checking the correctness of the basic OS directives 

execution logic; and  

 timing testing – measurement of time intervals required for execution of 

basic OS directives. 

Functional testing is aimed at checking the correctness of the OS behavior through 
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finding defects in: 

 execution of basic OS directives invoked from application tasks and ISRs; 

 processor switching among threads; 

 data and signal transactions; 

 error handling routines. 

Timing testing is aimed at obtaining the following timing data on OS execution: 

 execution time of a particular OS directive (local time measurement); 

 total execution time of the whole application (global time measurement); 

 time interval between the moments when the interrupt occurred and when a 

respective ISR started this interrupt processing (latency measurement). 

The described flat chart technique is aimed at both kinds of testing of embedded OS 

basic dynamic services, functional and timing, through a unified approach. 

2.1 Testing Rules 

The following generally established testing rules [4], [5] are usually observed for 

embedded OS testing:  

 focus – each test should check only one OS feature under particular 

conditions with only two possible outcomes: pass or fail; 

 repeatability – the test behavior should be the same at each execution; 

 non-interference – the test should not intrude into OS functioning (no 

direct access to OS variables, command lines, or structures), the test uses 

the OS services as a regular application; 

 black-box approach – each test should be developed with no knowledge or 

assumptions about the OS inner structures, with information at the user’s 

level only. 

The above rules for focus and repeatability impose structural constraints for tests 

because with these rules each single test should be a multi-task application which 

starts from a known inital state. The most reliable way to bring the system under test 

into this state is system restart with re-initialization. Therefore, the size of each test 

for an embedded OS is that of a multi-task application, and the test execution time 

includes the time required for system initialization. 

The repeatability rule requires special solutions to ensure it. Regular real-time 

applications running under an embedded OS usually lack repeatability: their tasks 

and ISRs work asynchronously without any pre-defined order. Test applications 

should be built in such a way as to avoid such indetermination. 

2.2 Repeatability of Testing 

The test scheme in Fig. 1 shows how variations of the test behavior may occur. The 

test DelayCoEnd below is related to the most basic service of an embedded OS – the 

delay service. The operator Delay(N) holds up the task execution for N ticks where 
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‘tick’ is an atomic time interval, usually part of a millisecond. The test DelayCoEnd 

checks the correctness of OS behavior when delay intervals of two tasks come to a 

completion simultaneously. The scheme uses a C-like notation. A digit in the name 

of the task starting point corresponds to the task priority. The task that starts at the 

point Task_1 has higher priority than the task labeled Task_2. 

 
Fig. 1. Variations of the test behavior 

Step numbers shown in comments indicate the expected order of execution. At 

Step_01 execution of Task_1 is held up for 50 tics, the processor switches to 

Task_2, and the ‘for’-operator of Task_2 (Step_02) starts. The value of 

WAIT_CONST should ensure a simultaneous completion of the two delay intervals. 

While both intervals have not been completed, the ‘for’-operator of Task_3 

(Step_04) is executed. The idea of the whole scheme is in selection of a 

WAIT_CONST value which ensures simultaneous completion of both delay 

intervals, so that if OS correctly handles this, then the actual sequence of steps 

follows that of the step numbers (additional steps may appear between them). 

For automatic registration of the sequence of executed steps, the Trace(i) operator 

should be substituted for each comment Step_i. The procedure Trace(i) checks 

whether its parameter i corresponds to the current step in the expected step sequence 

and signals an error otherwise. This trace operator should be inserted at each point 

where the execution sequence should be checked.  

At looking at these three tasks, one may decide that the only issue for checking the 

correctness of the OS delay function is an appropriate selection of the 

WAIT_CONST value which ensures simultaneous completion of the two delay 

intervals and therefore, DelayCoEnd repeatability. However, this is not true at a 

closer consideration. 

Non-repeatability of such test execution is caused by the fact, that Step_01 may start 

either at the beginning of an atomic tic interval or closer to its end and the required 

value of WAIT_CONST is different for these two situations. To make the test 

consistently correct, the operator Step_01 should be shifted to the end of an atomic 

tic by inserting an additional delay operator before Step_01.  

The requirement for repeatability is specific for a test application, which differs 

//   -----    “DelayCoEnd”  test  application   ------ 
 Task_1:        Task_2: 
/* Step_01 */ Delay(50);     /* Step_02 */ for(i = 0;  i == WAIT_CONST;  i++ ); 
/* Step_05 */ GlobFlag = 1;    /* Step_03 */  Delay(30); 
/* Step_06 */ TaskEnd( );    /* Step_07 */  GlobFlag = 1; 
            /* Step_08 */       TaskEnd( ); 
 Task_3: 
/* Step_04 */ for(GlobFlag = 0; GlobFlag == 0 ; ); 
/* Step_09 */ End_of_Test( ); 
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from the real one with asynchronous execution of application tasks where the order 

of operators from parallel tasks may vary from one execution to another.  

Test applications require special efforts for strict task synchronization. As a result, 

the sequence of operations from parallel tasks in test execution becomes strictly 

determined as if it were from a sequential process. 

In the listing in Fig. 2 the flag synchronization method with WaitFlag( ) and 

SetFlag() procedures ensures test repeatability: 

 
Fig. 2. Flag synchronization method ensures test repeatability 

Here GlobFlag is a global variable and LONG_WAIT is a constant, which limits the 

time of waiting to avoid an infinite execution of the loop. A simple procedure in 

Fig. 3 prevents any task to gain access to the processor during the time interval 

specified with the CycleNum value. 

 

 
Fig 3. A simple procedure to prevent gaining access to the processor 

3. Flat Charts 

The straightforward multi-task test description presented above has a weak point. 

When a test designer follows the test logic step by step, his attention jumps from 

one task to another across the text description. In spite of a clear execution order, it 

is too difficult to recognize the test logic even for very short and simple tests. And 

this is much more difficult for tests of the length of dozens of operators and more. A 

more suitable form for test description, the flat chart form, was developed by the 

authors and later was improved with creation of a number of real test suites for 

various embedded OSs. 

The simplest flat chart form is based on the following assumptions: 

 repeatability of the test execution order is maintained; 

 test utilities in the test application are simple and small in number; 

 tests contain invocations of only OS services and test utilities; 

 all tasks are generated statically; 

 task priorities are static; 

 no two tasks have the same priority. 

A sequence of actions performed by the test application consists of two kinds of 

void WaitFlag ( )      { 
 int i;              void  SetFlag ( ) { 
 for(GlobFlag = 0; GlobFlag == 0 ; )      GlobFlag = 1; } 
  if (i++ > LONG_WAIT) break;  } 

void HoldTime (int CycleNum)  {  
 int i;    
 for(i = 0;   i++;   i <  CycleNum); } 
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operations: OS service operations (for DelayCoEnd these are Delay() and 

TaskEnd() operators) and special testing utility operations (like HoldTime(), 

SetFlag(), WaitFlag(), and End_of_Test() operators). This structure is typical for 

any embedded OS test suite. Each OS service and testing utility has a limited 

number of parameters. With such assumptions, information about each test step may 

be described with the data structure shown in Fig 4. 

 

Fig. 4. Information about each test step 

where TaskId identifies the task that performs the operation. The field UtilServ 

stores a pointer to a procedure which either performs some actions with the test 

application variables (a procedure from the test utility library), or performs an OS 

service call. The fields Arg_1 and Arg_2 are used to represent the procedural 

parameters of the test utility or the OS service. As the type of arguments may vary 

from one operator to another, a union type StepArg in this C-like notation is defined, 

where ... denotes other types of parameters used in service or utility calls. 

Now the operator sequence of the test DelayCoEnd steps from subsection 2.2 may 

be described as an array of the TestStep type (Fig. 5; steps 01, 05, and 07 were 

added to ensure repeatability of the test as explained above): 

 

Fig. 5. Operator sequence of the test DelayCoEnd steps 

typedef struct Test_Step {    union StepArg    { 
  int TaskId;            int IntArg; 
  void (* UtilServ) (  );       char* StringArg; 
  StepArg Arg_1;        void (* FunArg) ( ); 
  StepArg Arg_2;  } TestStep;      ...      }; 
 

TestStep DelayCoEnd  [   ]  =  { 
  1,&CallDelay, 5, 0 ,      //  Step_01 
    2,&WaitFlag,  0,  0,    //  Step_02 
  1,&SetFlag,  0,  0,       //  Step_03 
  1, &CallDelay, 50,  0,      //  Step_04 
    2,&HoldTime,  0,  0,    //  Step_05 
    2,&CallDelay, 30,  0,    //  Step_06 
      3,&WaitFlag,  0,  0,  //  Step_07 
  1,&SetFlag,  0,  0,       //  Step_08 
  1, &CallTaskEnd,  0,  0,     //  Step_09 
    2,&SetFlag,  0,  0,     //  Step_10 
    2, &CallTaskEnd,  0,  0,   //  Step_11 
      3,&End_of_Test,  0,  0, //  Step_12 
 0,&End_of_scheme,  0, 0  }; 
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where the item <0,&End_of_scheme,0,0 > terminates the test description. There is 

no task with the number 0; therefore, a zero in the Task_Id field means that this item 

does not describe an application step, but is an auxiliary one. 

Representing a test scheme in form of a single entity (flat chart) is convenient for 

visual analysis of the test logic as well as for realization of the flat chart interpreter 

because this simplifies control over the correctness of the order, which steps of the 

application tasks are executed in.  

This DelayCoEnd array provides a complete specification of the test application 

logic. Two important features in this form of test presentation are worth mentioning. 

First, the order of the TestStep structure items is that, which they should be executed 

in. There's no need to specify step numbers as they are determined by ordering of 

the DelayCoEnd array elements. 

The second feature relates to the starting position of each line in the DelayCoEnd 

array description. The test description may be regarded as a table of 12 rows and 3 

columns. Columns correspond to tasks. If the line describes an operation to be 

performed by Task_i, then its description shall start in the i-th column. Thus, the 

column order reflects the task priorities and the order of rows reflects the execution 

sequence. 

The authors’ experience with test suites design proves the efficiency of this table 

form called a flat chart for describing multi-task test applications. It turned out to be 

an effective tool for test logic design, understanding, and updating. Moreover, it 

allows for automation of test suite development for testing embedded real-time 

operating systems. 

4. Data-Driven Test Applications 

Automatic processing of flat charts is performed through a corresponding 

interpreter. An instance of the interpreter is initialized for each task and all such 

instances run concurrently. Each interpreter instance scans the flat chart 

specification line by line. Suppose, that each instance has its own variable  

, 

which points to the flat chart element being analyzed or interpreted. 

The i-th instance of the interpreter executes only those lines of the flat chart which 

correspond to the i-th task. All others lines are skipped as they are executed by other 

interpreter instances. When the next line for execution is found, its number is 

checked – it should be the first line number in the whole flat chart not yet executed 

by any interpreter instance.  

The number of interpreter instances equals to the total number of tasks, which use 

the same interpreter body parameterized with the task number at the respective 

interpreter instance initialization. 

Such data-driven organization of the test suite has an important advantage: the test 

application calls the OS under test at only one point, where the test interpreter 

TestStep*  CurrentStep; 
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invokes a service procedure or a utility pointed to by the flat chart line being 

interpreted. This simplifies realization of local time measurements (subsection 6.1). 

A flat chart description for the DelayCoEnd test application in section 4 is 

represented as an array of TestStep structures. Such a form may be used directly for 

developing a test suite in C. OS services like CallDelay() may look as Fig 6 shows. 

 

Fig. 6. OS services CallDelay() 

To avoid heavy line interpreting during test runs in real-time, a Forth-like method 

based on threaded code [6] may be used: the test representation shall be pre-

processed in order to convert the initial form into a regular array which elements 

store the task number, a pointer to the procedure to be called, and the procedure 

parameters. 

5. Developing Scenario Tests with Flat Charts 

In accordance with the focus rule (subsection 2.1) each functional test such as 

DelayCoEnd checks a particular OS feature under specific conditions. In this 

respect, functional tests are not like regular applications. A complete test suite 

should include also a set of scenario tests, which are much closer to regular 

applications. Each scenario test realizes a sequence of actions, which is based on 

some underlying idea and uses the OS in a way close enough to real functioning. The 

flat chart technique is suitable to describe them. The following array (Fig. 7) describes a scenario test for 

message passing between four threads – three tasks and an ISR. 

 

Fig. 7. A scenario test for message passing between four threads 

void CallDelay ( )        {  
   /* Global test variables */ 
 Delay  ( (CurrentStep->Arg_1).IntArg );  } 

//   -----    Flat chart for message passing test application   ------ 
TestStep MsgTravel [  ] = { 
 1,&CallGetMsg, &mes1_ptr,  0,    // No msg, TASK_1 is waiting 
  2,&ResumeIsr,  0,  0,      //  Interrupt is  simulated 
 -1,&CallPutMsg, TASK_3, TEST_MSG,   // Send msg to TASK_3 
  2,&CallGetMsg,  &mes2_ptr,  0,    //  No msg, TASK_2 is waiting 
   3,&CallGetMsg,  &mes3_ptr,  0,    //  TASK_3 received Msg 
     3,&CallPutMsg,  TASK_1, &mes3_ptr, //  Activate TASK_1 
 1,&CallPutMsg,  TASK_2, &mes1_ptr,    // TASK_2 becomes ready 
 1,&CallTaskEnd,   0,  0 ,      //  Activate TASK_2 
  2,&Check_Equal,  &mes2_ptr, TEST_MSG,  //  Is msg the same 
  2,&End_of_Test,   0,   0,       // as TEST_MSG? 
 0,&End_of_scheme,  , 0 } 
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A negative number in the TaskId field corresponds to an operator to be executed by 

an ISR. Its absolute value specifies the nesting level of the interrupt, which this 

particular line of the flat chart is interpreted at, rather than a particular ISR. 

The scheme MsgTravel was designed to check the message exchange mechanism, 

which provides message pointer passing from an ISR to a task or from one task to 

another. Variables mes1_ptr, mes2_ptr, and mes3_ptr are message pointers. The 

value of the constant TEST_MSG is a pointer to some initialized message instance. 

The scenario of message passing between tasks consists of the following events: 

 Task_1 tries to receive a message and becomes suspended because there's 

no message for it yet (Step_01); 

 the ISR passes the message TEST_MSG to Task_3 which is not ready yet to 

receive it (Step_02, Step_03); 

 Task_2 tries to receive a message which is absent and therefore becomes 

suspended (Step_04); 

 Task_3 receives the message TEST_MSG sent previously by the ISR and 

resends it to suspended Task_1 waiting for it (Step_05, Step_06); 

 Task_1 resends the message to Task_2 and frees the processor through 

invoking the service procedure TaskEnd() (Step_07, Step_08); 

 upon termination of Task_1 the message received by Task_2 is compared 

to TEST_MSG – the two message pointers should coincide (Step_09). 

The utility procedure ResumeIsr() initializes ISR invocation. The simplest way to do 

this is to throw a software interrupt. Each ISR scans the flat chart line after line, 

similar to a task. Therefore, an instance of the same common flow chart interpreter 

is generated for this ISR. Its configuring is performed by just a few operators 

executed by ISR before entering the common interpreter body. Hence, the same 

unified flat chart interpreter is used by tasks and by ISRs. 

5.1. Loops in Flat Charts 

Auxiliary items, such as the terminator End_of_scheme mentioned in previous 

sections are used to build flat charts. Two other kinds of auxiliary items are 

described below: a flat chart loop delimiter (this subsection) and an error checking 

operator (subsection 5.2). 

The flat chart loop mechanism allows to prevent construction of a long scheme with 

repeated fragments. The test MessQueue checks the message queue mechanism: a 

queue of 10 messages is formed for Task_2, which then consumes these messages 

from the queue one after another.  
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Fig. 8. Flat chart with single loop 

The variable cycle_var is used as the loop control variable. Nested loops may by 

designed, each with its own control variable; e.g., cycle1_var for an outward loop 

and cycle2_var for an inner loop.  

For each loop a boundary condition shall be satisfied: the task state at the LoopEnd 

delimiter shall be the same as its state when the corresponding LoopStart was 

encountered. 

5.2. Testing the Error Handling Service 

Test applications DelayCoEnd and MessTravel demonstrate the suitability of the flat 

chart technique for testing most of the OS basic services. Each one checks the order 

of processor switching among threads of actions. MessTravel checks correctness of 

data passing between tasks and from an ISR to a task. Allocation of memory and of 

special data structures may be checked in a similar way. 

 Flat chart forms may be further extended to cover testing of the error handling 

service as well. The following flat chart sample illustrates this possibility (Fig. 9). 

 

Fig. 9. Flat chart for error service testing 

Task_1 requires 30 memory blocks, which causes an error because the memory 

resource becomes exhausted. The proposed technique of testing the error handling 

//   -----    Flat chart with single loop   ------ 
TestStep MessQueue [  ] = { 
// ----  The message queue with 10 messages is formed for Task_2 
0, &LoopStart, &cycle_var,  10, 
 1,&CallPutMessage, Task_2, &mes1_ptr, // Repeat msg send 
0, &LoopEnd, &cycle_var,  0, 
 1, &CallTaskEnd,  0,  0,      // Task_1 terminates 
 // ---- The message queue of 10 messages is consumed by Task_2 
0, &LoopStart, &cycle_var,  10, 
   2,&CallGetMessage,  &mes2_ptr, 0, // Repeat msg receive  
0, &LoopEnd, &cycle_var,  0, 
0,&End_of_scheme,  , 0  } 
 

//   -----    Flat chart for error service testing   ------ 
 TestStep MemReqErr [  ] = { 
// .......Steps from Step_01 to Step_i exhaust all memory resource  
  1,&GetMemory,  30, &mem_ptr,   //  Step_i+1 
  0, &CheckErrData, NO_MEMORY,  0, 
 // ...................... Remaining elements of the MemReqErr array 
  0,&End_of_scheme,  , 0 } 
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service is based on the same interrupt simulation technique as in the ResetIsr() 

utility. An error invokes a special thread of actions, which the flat scheme 

interpreter body enters. The interpreter finds the respective auxiliary line in the flat 

chart and performs the CheckErrData() utility assuming that the OS reports the 

NO_MEMORY error code into the error handling block. 

Thus, auxiliary items extend the flat chart technique and allow to build tests for 

checking the OS error handling service. 

6. Automated Test-Run Sessions 

A test suite for an embedded OS shall include automated means for building a test 

application, for loading it into the target device, for test run, and for producing test-

run reports with analysis of the test-run session. Automation tools are intended to 

organize a specified test session. The test session specification describes an action 

list for building, loading, running test applications, and analyzing the results.  

Scalability is one of the most important requirements for an embedded OS testing 

application. The user may configure its options to achieve the needed level of 

efficiency in terms of speed, memory usage, and the needed inventory of services to 

be used. The number of such OS clones grows exponentially with the number of 

options. A dozen of binary options correspond to a thousand and more of different 

OS clones to be tested. A wide set of tests should be built, loaded, run, and analyzed 

for each such clone, their total number may be a million and more. This results in 

the need for automation of test sessions with tools to specify them.  

Beyond OS scalability there are at least two more reasons for test session 

automation: OS projected enhancements and OS porting to other MCUs. 

When an OS is ported to a different MCU, the test suite should be ported as well 

and such porting should take much less effort than initial development. The flat 

chart technique and automated test sessions allow to save porting efforts . 

6.1. Local Time Measurement 

There are three basic points in the flat chart interpreter body executed by every 

thread in the test application. They are:  

 the main interpreter loop start point; 

 the main interpreter loop end point; 

 points of invocation of an OS service or utility. 

These points split the body of the interpreter FlatChartInterpreter() into the 

following three sections: 

  Section 1 – thread configuring to prepare the thread to enter the main 

interpreter loop: initialize local variables, determine the TaskId or the ISR 

nested level, set CurrentStep to point at the top of the TestStep array, and 

specify the start point of the main interpreter loop;  
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  Section 2 – organize interpretation of the flat chart through a search of the 

appropriate item in the TestStep array: set CurrentStep at the appropriate 

value, check correctness of the operation sequence, and perform actions 

prior to invocation of a respective service or utility; 

  Section 3 – perform a call of the UtilServ utility: (A) for local time 

measurement read the timer register, (B) call the UtilServ utility, (C) for 

local time measurement read the timer register again, (D) perform log 

operations. 

The flat chart technique simplifies realization of local time measurements. Calling 

an OS service or a utility in the point B is performed through indirect addressing of 

the called procedure. All time measurement actions are around the point B (in points 

A and C). Storing the result of time measurement is performed in point D. 

In case of a context switch resulting from performing operator D, operator A may be 

performed in a thread other than that, which operator C was performed in. 

6.2. Global Time Measurement 

The OS time service directives are not appropriate for local time measurements. 

Their precision is not adequate and a direct access to the hardware time register is 

needed. In contrast, global time measurements are less precise; therefore, the OS 

time service may be used for them. The structure of a flat chart for global 

measurements may look as Fig. 10 shows. 

 

Fig. 10. Structure of a flat chart for global measurements 

The number N of cycles required for measurement depends on the relation between 

the precision ΔTm of the SysTime() mechanism and the duration Tc of one 

application cycle. Another factor is the duration Tp of the LoopStart() and 

LoopEnd() operations (assuming they are equal). The larger the value of 

N⨉(Tc/(ΔTm+Tp)), the more precise measurement results will be obtained. 

Global measurements provide an answer the question: “Does the time of context 

switching depend on the task priority?” To answer this question, compare the result 

TestStep HighPriorTaskSwitching [  ] =  { 
 1,&CallSysTime, &start_time,  0,   // Store the start time 
 0, &LoopStart, &cycle_var,  1000,   // Initialize the loop 
//  ------ The set of operations for measurements  ------ 
 1,&CallGetMessage, &mes1_ptr,  0,  //  Suspend Task_1 
  2,&CallPutMessage, &mes1_ptr,  0, // Send msg to Task_1 
 0, &LoopEnd, &cycle_var,  0,    // Terminate loop operations 
 1,&CallSysTime, &finish_time,  0,   // Store the end time 
 0,&LogGlobalTime,  0,  0,     // Store the result 
 0,&End_of_scheme,  , 0     } // End of scheme 
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of the HighPriorTaskSwitching test with the result of the test shown in Fig. 11. 

 
Fig. 11. The test, in which a set of high priority tasks is suspended prior to entering 

the flat chart loop 

The only difference between flat chart loops in the tests HighPriorTaskSwitching 

and LowPriorTaskSwitching is in the task priority. In the second test, a set of high 

priority tasks was suspended prior to entering the flat chart loop. If the OS context 

switching is performed at the same time for tasks with different priorities, then the 

measurement results will be the same for both tests. 

The considered two tests are a particular case of a round-robin processor switching 

among tasks. Such a scheme may include an arbitrary number of tasks with different 

priorities. Changing the number of operating tasks allows to establish the 

dependency between OS performance and its load while changing the task priorities 

may impact the speed of task scheduling. 

6.3. Latency Testing 

For a multi-threaded application executed on a single processor, the tasks and ISRs 

operations are executed in a quasi-parallel mode. Flat charts are convenient for 

specifying such quasi-asynchronous processes. From the OS point of view, all 

threads are asynchronous, but the test logical structure guarantees strong 

synchronization of all operations in different threads. 

However, a true asynchronous mode of operation is needed for measuring the 

application latency w.r.t. external interrupts. The simplest statistical way of latency 

measurement assumes simultaneous execution of two logically isolated 

components: 

 a benchmark application with a set of interacting tasks; 

 a special measurement ISR to calculate time difference between the 

moment of the measurement interrupt and the moment when its processing 

started. 

The benchmark application determines conditions for measuring the latency value. 

TestStep LowPriorTaskSwitching [  ] = { 
//    .................... Suspend the set of 100 tasks with high priorities  
  101,&CallSysTime, &start_time,  0,   //  Store the start time 
  0, &LoopStart, &cycle_var,  1000,   //  Initialize the loop  
//  ------ The set of operations for measurements  ------ 
  101,&CallGetMessage, &mes1_ptr,  0,  // Suspend Task_101 
             102,&CallPutMessage, &mes1_ptr,  0, // Msg to Task_101 
  0, &LoopEnd, &cycle_var,  0,    // Terminate the loop  
  101,&CallSysTime, &finish_time,  0,  // Store the end time 
   0,&LogGlobalTime,  0  0,      // Store the result 
  0,&End_of_scheme,  , 0   }    // End of scheme 
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It is built in form of a flat chart within a loop with a large number of iterations, 

which ensures the repeatability of the conditions of latency measurement.  

With this approach, a single result Lm of measuring the latency value will be less 

than or equal to the maximal possible latency value Lr: Lr ≤ Lm. The difference 

d=Lr–Lm represents the inaccuracy a single latency measurement. Let the acceptable 

inaccuracy Δt of the final result of measurement and the time interval T of time 

measurement interrupts be greater than the duration of one iteration of the 

benchmark application. Then the probability P that the required accuracy of 

measurement is achieved (d<Δt) is greater than or equal to Δt/T: P ≥Δt/T. To 

achieve higher accuracy of the latency measurements, single measurements are 

performed n times and the maximum of the values Lm is considered as the final 

result. The required accuracy of the final result is achieved with the probability P 

not less than 1–(1–Δt/T)n: P ≥1–(1–Δt/T)n. 

6.4. Measuring Code Coverage 

A straightforward technique to measure code coverage of the OS under test by a 

given test suite is based on direct tracing of the OS code control flow supported with 

designated software-hardware means. It’s hardware component should have a 

mechanism of trace interrupts with a designated vector (TRAP-interrupts). This 

software component is composed by a handler of step-wise interrupts which 

performs the role of the tracing program. Execution of each OS instruction is 

preceded by an interrupt on the TRAP-vector, which results in the next activation of 

the tracing program.  

This technique of direct tracing matches the rule for non-interference (subsection 

2.1). However, it may be inapplicable for embedded systems because an embedded 

application under test may work much slower when running in parallel with the 

tracing program. Some operators covered in a real run may be unreachable in the 

mode of coverage measuring.  

A more appropriate technique of measuring code coverage is based on using codes 

of prohibited TRAP instructions. This mechanism is realized with another 

designated vector of TRAP-interrupts. In this case, the respective interrupt handler 

plays the role of the tracing program and the coverage measurement process 

consists of the following steps: 

 the contents of the memory area with the OS body (its code) is saved in a 

special array and then is filled with the codes of TRAP instructions; 

 execution of the test application is started and a software TRAP-interrupt 

occurs when any OS service is invoked;  

 the tracing program is invoked as the interrupt handler, it restores the 

original OS instruction from the special array and passes control to it; 

 the restored original OS instruction is executed; 
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 if the next instruction to be executed is from the OS body, then it may be 

either restored through previous executions or still replaced with a TRAP 

instruction and then another TRAP-interrupt occurs which restores the 

original OS instruction so that more and more OS instructions are restored. 

Upon termination of the test application all OS instructions needed for this 

application will be restored and their number equals to the number of invocations of 

the tracing program. 

This technique of code coverage measurement with TRAP instructions decreases 

the time of the test application execution if compared to technique with direct 

tracing. Each OS instruction corresponds to at most one invocation of the tracing 

program and therefore the overall execution pace becomes close to that of a regular 

execution without tracing. A complete match of these two paces is achieved when 

only one OS instruction, which we'd like to find whether it's covered or not is 

replaced: 

 this one OS instruction is saved and replaced with a TRAP instruction; 

 the test application runs to termination and if the instruction is not restored 

then it was not covered. 

This technique with single instruction replacing requires much more processor time 

because complete measurement of code coverage assumes iterative runs of the test 

application as many times as there are instructions in the OS body. 

6.5. Enhancements of the Flat Chart Technique 

As noted in subsection 6.3, the flat chart technique allows to describe a quasi-

asynchronous order of test application runs only. To represent true asynchronous 

threads of actions (as required for latency measurements), methods beyond the flat 

chart scheme should be used.  

The quasi-asynchronous order fits well for testing OS kernel services. However, for 

testing services related to peripheral devices an extension of the flat chart technique 

is needed which allows to specify real asynchronous action flows. This may be done 

through introducing new forms, which specify alternatives in the action flow similar 

to loop forms in subsection 5.1.  

The flat chart technique may be further extended to distributed OS testing. In this 

case, a test application is a program with true parallelism and if quasi-asynchronous 

execution turns out to be suitable for particular testing, then the only extension 

needed is refinement of action flows naming. Otherwise, a separate flat chart should 

be developed for each physical processor with additional means for cross-

referencing among elements of these flow charts.  

Flat charts form representations considered above are suitable for usage in C-

programs. Similar syntax forms, which require no any special pre-processing, may 

be developed for other programming languages. However, when moving from one 

language to another flat charts should be completely reworked which is effort 
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consuming as the total size of flat charts in a test suite may reach hundreds of 

thousands lines. Thus, it is reasonable to develop a language independent unified 

syntax for flat chart forms. Then porting a test suite to another platform requires 

only to develop a pre-processor of several hundred lines of code. Development of a 

universal syntax forms for test representation opens the opportunity to build 

standardized test suites for embedded OS testing. A universal language for OS test 

applications could be a step forward in development of an automatic test generator 

[7], [8].  

7. Results of Experiments 

Experimental data provided below come from authors' experience in developing and 

testing a particular software product – a compact embedded OS for real-time 

applications with specific features requested by the customer. The overall approach 
to developing this OS follows the classical one [9] initially designed for 16-bit 

single board controllers manufactured by DEC since early 1980-ies. To emphasize 

the compactness and specifics of such OSs they are usually named "kernals" or 

"executives". The usual size of such an OS developed within this approach is about 

several thousand lines of code in C plus several hundred lines in assembler. 

The MCUexec (MicroController Unit EXECutive) product, which development the 

authors participated in, supported execution of software applications on 

microcontrollers HC-11 and HC-12 originally manufactured by Motorola, Inc. and 

since 2015 by NXP Semiconductors. To test the MCUexec functional features, 9 

groups of flat charts were developed with the described technique. 

For integration testing of MCUexec additional 234 flat charts split in 17 groups 

were developed, the total number of the developed flat charts being 378. Running 

all these test suites resulted in 8 detected defects in different versions of MCUexec, 

each of about 5 KLOCs in assembler. The overall effort for developing these flat 

charts, running the test suites, and analyzing test run results was 6 staff-months.  

Table 1. Nine groups of flat charts for testing the MCUexec functional features 

Test group 

identifier 
Brief description 

Number of flat 

charts 

Basic Task delay, system configuration and 
reconfiguration 

10 

TaskId Getting the task Id 3 

Task Task suspending/resuming 12 

EventU Updating and checking of events 21 

EventW Waiting for an event to be set or cleared 30 

Slice Time-slicing features 6 

Buf Buffer manipulating 23 

MesS Message sending and receiving 20 

MesR Reply features 19 

 TOTAL: 144 



Никифоров В.В., Баранов С.Н. Метод плоских схем. Труды ИСП РАН, том 29, вып. 5, 2017 г., стр. 75-92 

91 

8. Conclusion 

The flat chart technique gives an efficient way to develop test suites for embedded 

OS execution-based testing. Flat chart forms allow to build well-structured and 

understandable descriptions of test applications with specifications of tasks and 

ISRs for parallel execution. The flat chat technique is suitable for checking the 

correctness of implementation of basic OS mechanisms – data and signal exchange 

among action threads, run-time allocations of memory, special structures, and 

processor’s time. Flat charts are efficient not only for developing functional tests but 

for local and global time measurements, for measuring the OS latency and code 

coverage. Standardized test suites for embedded OS testing may be built with the 

described flat chart technique.  
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Аннотация. Современные автоматические устройства все чаще оснащаются 

микроконтроллерами. Логика работы автоматического оборудования поддерживается 

рядом различных встроенных программных приложений, которые выполняются под 
управлением встроенной операционной системы реального времени (ОС). Надежность 



Nikiforov V.V., Baranov S.N. A Flat Chart Technique. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 75-92 

92 

ОС чрезвычайно важна для правильной работы всей автоматической системы. Поэтому 
встроенную ОС следует тщательно тестировать с помощью соответствующего набора 
автоматических тестов. Такой набор тестов для тестирования встроенной ОС обычно 
организуется как набор многозадачных тестовых приложений, которые должны 

выполняться под управлением данных. В статье представлены специальный язык для 
определения соответствующей логики задачи тестирования и концепция плоских съем 
для эффективного выполнения тестирования встроенной ОС. Чтобы избежать 
интенсивной интерпретации текстовых строк во время тестового прогона, 
предварительно образуется специальное представление теста, в котором исходная 
строковая форма преобразуется в форму регулярного массива и, таким образом, 
повышается эффективность тестирования. 
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