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Abstract. State identification is a long standing problem in the area of Finite State Machine
(FSM) based modeling and testing of discrete event systems. For the identification of the
current state of the system, so-called homing and synchronizing experiments with FSMs are
used whereas for the initial state identification one can perform a distinguishing experiment.
The homing, synchronizing, and distinguishing experiments are known as “gedanken”
experiments, and the sequences for these experiments can be derived for deterministic and
nondeterministic, partial and complete specification FSMs that are used to formally represent
the required behavior of systems under investigation. The problems of checking the existence
and derivation of homing, synchronizing, and distinguishing sequences are known to become
harder as a specification FSM turns to be nondeterministic and partial. It is also known that in
some cases the complexity can be reduced through a ‘switch’ from preset to adaptive
experiment derivation. In this paper, we study how the partiality and adaptivity affect the
complexity of checking the existence of homing/synchronizing/distinguishing sequences for
deterministic and nondeterministic FSMs and visualize the complexity issues via appropriate
figures. We also mention that the existing solutions to state identification problems are
widely used for verification and testing of finite state transition systems.
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1. Introduction

The state identification problem using gedanken experiments with Finite State
Machines (FSMs) is a long standing problem. The first results were obtained by
Moore [1] and have been then improved by many researchers. For the identification
of the current state of the system, so-called homing and synchronizing experiments
are used whereas for the initial state identification one can perform a distinguishing
experiment. The first results on the state identification problem were obtained for
complete deterministic FSMs [1-4] while nowadays the homing, synchronizing, and
distinguishing sequences are derived for deterministic and nondeterministic,
observable and non-observable, partial and complete specification FSMs that are
used to formally model the required behavior of systems under investigation.
References [1-16] present only a short list of existing papers on this topic.

An FSM is a 4-tuple with finite non-empty sets of states, inputs and outputs; it
moves to the next state producing an output when an input is applied. An FSM is
complete and deterministic if at each state for each input, there is exactly one
transition. FSM state identification experiments include
homing/synchronizing/distinguishing experiments (and corresponding input
sequences), which are known to be either preset or adaptive. A sequence is adaptive
if the next input to be applied to an IUT is chosen based on the previously observed
outputs; otherwise, the sequence is preset. Homing and synchronizing sequences are
used for identifying the current state of the machine under experiment while
distinguishing sequences identify its initial state. The methods for deriving
homing/synchronizing/distinguishing sequences are well elaborated for complete
and deterministic FSMs. In this case, the length of most such sequences is
polynomial with respect to the number of FSM states but it is nearly to impossible
to derive a complete specification for modern interactive digital systems due to their
complexity. Moreover, current specifications often include various options for
output responses under the same input. That is the reason why nowadays
nondeterministic and partial FSM models attract a lot of attention [17, 18].

The problems of checking the existence and derivation of homing, synchronizing,
and distinguishing sequences are known to become harder as the specification FSM
turns to be nondeterministic and partial. It is also known that in some cases the
complexity can be reduced through a ‘switch’ from preset to adaptive experiment
derivation [6]. Partiality and adaptivity can be considered like two forces working in
the opposite directions. Partiality tends to make the problems more complex, and
adaptivity tends to make the problem solutions simpler. Correspondingly, it is
interesting to study the dynamics here. Why in some cases partiality beats
adaptivity, and why in some cases adaptivity beats partiality? Thus, one of the
contributions of the paper is to pose this question as a new problem in this area.
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In this paper, we also collect the results of how the partiality and adaptivity affect
the complexity of checking the existence of homing/synchronizing/distinguishing
sequences for deterministic and nondeterministic FSMs. Given a complete
deterministic strongly connected reduced FSM, the problem of checking the
existence of preset homing and synchronizing sequences is in P [5] while for
distinguishing sequences it is PSPACE-complete [6]; the latter means that there
exists a complete deterministic FSM such that the length of a shortest distinguishing
sequence is exponential with respect to the FSM size. The polynomial complexity is
preserved for adaptive homing/synchronizing sequences and the problem of
checking the existence of an adaptive distinguishing sequence also ‘falls into’ P,
i.e., in the latter case, the adaptivity reduces the problem complexity. For partial
deterministic FSMs, the complexity of checking the existence of an adaptive
distinguishing sequence is also in P, i.e., for distinguishing sequences the partiality
does not destroy the polynomial complexity. That is not the case for homing and
synchronizing sequences, since given a partial deterministic reduced strongly
connected FSM, the problem of checking the existence of an adaptive homing or
synchronizing sequence is PSPACE-complete [14].

For nondeterministic complete observable FSMs, checking the existence of a preset
homing/synchronizing/distinguishing sequence is PSPACE-complete [5, 6, 15] and
in this paper, we show that it is the same for partial machines. For nondeterministic
complete FSMs the adaptivity reduces the complexity of the problem of checking
the existence of a homing/synchronizing sequence as the problem ‘falls into’ P [8,
13]. For distinguishing sequences, it is proven that there exists a class of FSMs
where the length of a shortest adaptive distinguishing sequence is exponential with
respect to the number of FSM states [16]. Moreover, in this paper, we strengthen
this result by proving the same result for 2-input FSMs. For partial nhondeterministic
observable FSMs, the problem of checking the existence of an adaptive
homing/synchronizing sequence is shown to be PSPACE-hard and in this paper, we
show that it is PSPACE-complete. We also show that the problem of checking the
existence of an adaptive distinguishing sequence for complete nondeterministic
FSMs is out of P. Finally, all the results on the complexity of the existence check of
homing/synchronizing/distinguishing ~ sequences  for  deterministic  and
nondeterministic, complete and partial FSMs are collected together and the
complexity issues are visualized via appropriate figures.

Therefore, the main contributions of the paper are as follows. First, we identify the
phenomenon of the dependency between partiality and adaptivity, and their
influence on the complexity of “gedanken” experiments for FSMs. Second, we
collect and visualize the known results in the area. Third, we close some gaps in the
area, in particular, we show that differently from deterministic machines the
adaptivity does not help to reduce the complexity of adaptive distinguishing
experiments for nondeterministic 2-input FSMs.

The structure of the paper is as follows. Section 2 contains the preliminaries.
Section 3 is devoted to exhibit how partiality and adaptivity affect the FSM state
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identification problems for deterministic FSMs while nondeterministic FSMs are
considered in Section 4. Section 5 concludes the paper.

2. Preliminaries

A Finite State Machine (FSM) S is a 4-tuple (S, I, O, h), where S is a finite set of
states; | and O are finite non-empty disjoint sets of inputs and outputs; h< Sx 1 x O
x S is a transition relation, where a 4-tuple (s, i, 0, ") € h is a transition. We
consider that the machine S is non-initialized, i.e., it can start working at any state
of the set S, unless the opposite is stated explicitly. An FSM S = (S, I, O, h) is
complete if for each pair (s,1) € S x | there exists a pair (0,5") € O x S such that
(s,1,0,5") e h; otherwise, the machine is partial. Given a partial FSM S, an input i
is a defined input at state s if there exists a pair (0,s) € O x S suchthat (s, i, 0,s")
e h. In this case, we say that input i can take the machine from state s to state s' and
the set of all states where input i can take the machine from state s is the i-successor
of state s. An FSM S is nondeterministic if for some pair (s, i) € S x |, there exist
at least two transitions (s, i, 01, S1), (S, i, 05, So) € h, such that 0; = 0, or s; = S,. An
FSM S is single-input if at each state there is at most one defined input, i.e., for each
two transitions (s, iy, 01, $1), (S, Ip, 02, S;) € h at state s it holds thati; = i,,and S is
output-complete if for each pair (s, i) € S x | such that the input i is defined at
state s, there exists a transition from s with i for every output in O. An FSM is
observable if for each state s and input i it holds that if (s, i, 0, s1'), (5,1, 0, S,') € h
then s’ = s,'; otherwise, the machine is non-observable. In this paper, we consider
only observable FSMs.

In usual way, the FSM behavior is extended to sequences of inputs and outputs, i.e.,
input/output sequences a/B, a. € I*, B € O*. Given a state s and an input sequence
o.i, the input sequence a..i is a defined input sequence at state s if o is a defined
input sequence at state s and i is a defined input at each state of the a-successor of s.
The set out(s, a) includes all possible output responses for the defined sequence o at
state s. A trace of S at state s is a sequence of input/output pairs of sequential
transitions starting from state s. As usual, for state s and a sequence y € (I0)* of
input-output pairs, the y-successor of state s is the set of all states that are reached
from s by trace y. If y is not a trace at state s then the y-successor of state s is empty
or we simply say that the y-successor of state s does not exist. As usual, the input
(output) sequence of vy is the input (output) projection of y. For an observable FSM
S, for any sequence y € (10)*, the cardinality of the y-successor of state s is at most
one. In this paper, an FSM under experiment is considered to be strongly connected,
i.e., we assume that for every two states s; and s, there is a trace that can take the
machine from state s, to state s,, i.e., state s, is reachable from state s; via some
trace.

If an FSM has the assigned initial state spthen it is an initialized FSM (S, s, I, O, h).
An initialized FSM S is acyclic if the set of traces at the initial state is finite, i.e., the
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FSM transition diagram has no cycles. An initialized, single-input, output-complete,
and observable FSM P such that each state is reachable from the initial state, over
input alphabet I and output alphabet O with an acyclic transition graph is a test case
(over alphabets | and O). A test case P over alphabets | and O is a test case for FSM
S that can be partial and nondeterministic if for each trace y(io) of FSM P at the
initial state, it holds that if y is a trace at a state s of S then i is a defined input at all
states in the y-successor of s. A state p of P without any transitions is a deadlock
state. A trace from the initial state to a deadlock state is a complete trace of P. Note
that when S is complete, any test case P over input alphabet | and output alphabet O
is a test case for S and if |I| > 1 then a test case P is a partial FSM. According to [8],
a test case P for S specifies an adaptive experiment with S. The length or the height
of a test case is the length of a longest trace from the initial state to a deadlock state.
A test case P for an FSM S is a distinguishing test case (DTC) for S if for each
complete trace y of P, the trace vy is a trace of at most one state of the FSM S. A test
case P for an FSM S is a homing test case (HTC) for S if for each complete trace y
of P, the y-successor of the set S has at most one state. An FSM S is adaptively
distinguishing (adaptively homing) [8] if there existsa DTC (HTC) for S.

Given a possibly nondeterministic observable partial FSM S, an input sequence o is
a distinguishing sequence if o is a defined input sequence at each state and for every
two different states s; and s,, out(s;, o) and out(s,, o) do not intersect. An input
sequence o is a homing sequence if it is a defined input sequence at each state and
for each input/output sequence o/, the non-empty o/B-successors of two initial
states coincide. The sequence a is a synchronizing sequence if it is a defined input
sequence at each state and for every two states s; and s,, the a-successors of s; and
s, are singletons and coincide.

As synchronizing sequences are usually constructed for finite automata, researchers
also use the notion of a finite automaton (FA, without empty messages, initial and
final states) [19]. The sequence a. is a synchronizing sequence for an FA [20] if o is
a defined sequence of actions at each state of the automaton and for every two states
s; and s,, the a-successors of s; and s, are singletons and coincide. If such a
sequence exists, the automaton is called synchronizing.

3. How adaptivity and partiality affect the complexity of
distinguishing/homing/synchronizing experiments for
deterministic FSMs

In this section, we consider possibly partial deterministic FSMs, which are reduced
and strongly connected. Given a possibly partial deterministic FSM S, S is reduced
if for each two different states s; and s, there exists an input sequence o that is a
defined input sequence at both states such that output responses to o at states s; and
s, are different. For other kinds of deterministic FSMs more results on
homing/synchronizing sequences can be found in [5, 14].
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3.1 Distinguishing experiments

It is known [6] that the problem of checking the existence of a distinguishing
sequence for deterministic complete FSMs is PSPACE-complete and the length of
such a sequence can be exponential with respect to the number of FSM states. A
distinguishing sequence for a possibly partial deterministic FSM can be derived by
the following procedure.

Algorithm 1 Deriving a distinguishing sequence for a deterministic possibly partial
FSM

Input: Deterministic possibly partial FSM S = (S, I, O, h)

Output: A distinguishing sequence for FSM S or the reply «There is no
distinguishing sequence for the FSM S »

Step 1. Derive a truncated successor tree for the FSM S. Each node in the tree is
labeled by a set of subsets of S of cardinality 1 or 2, i.e., the label of a node is a
subset of the set $°={ §'| < S and 1< |S] < 2 }. The root of the tree is labeled by

the set of all state pairs, i.e., by the set of all pairss,,s, , s, S; € S, p <q. Given a

non-leaf node of the tree that is labeled with a set P = S there exists an edge
labeled by an input i from this node if and only if i is a defined input at every state
of each pair in UP, where UP is the union of the elements of P, and states of any
pair of P do not have the same io-successor (for any output 0 € O). If this is the
case, then the edge labeled with i leads to the node labeled with the set Q ={ g |q s
the non-empty io-successor of p, p € P, 0 € O }. A node at the k™ level, k > 0,
labeled with a set P < S?is a leaf if one of the following conditions holds.

Rule 1: The set P has only singletons.

Rule 2: There exists a node at the j level, j, j < k, labeled with a set R such that P
contains each pair of R that is not a singleton.

Rule 3: There does not exist an input defined at every state of each pair in UP.

Rule 4: For each input i, states of some pair of P have the same io-successor.

Step 2. If all the tree paths are terminated using Rules 2, 3 and 4 then return reply
«There is no distinguishing sequence for the FSM Sy». If there exists a path
terminated using Rule 1, then the sequence o labeling this path is a distinguishing
sequence for the FSM S.

Due to the above procedure, for each input the set of pairs of states of the given
FSM is considered. On the other hand, the problem is known to be PSPACE-
complete for deterministic complete FSMs and thus the following statement holds.
Proposition 1. The problem of checking the existence of a distinguishing sequence
for a possibly partial deterministic FSM is PSPACE-complete.

In [6], the authors show that the existence check and the derivation of a DTC* for a
complete deterministic FSM is in P. In [10], Hierons and Tiirker presented a method

in [10], a DTC is called as an Adaptive Distinguishing Sequence (ADS)
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to check the existence of a DTC for a partial deterministic FSM by augmenting the
partial FSM up to a complete FSM and show that the upper bound on the height of
the DTC is polynomial with respect to the number of FSM states. The upper bound
on the length of a shortest adaptive distinguishing sequence was improved in [11].
Correspondingly, the conclusion can be drawn that the problem of checking the
existence of a DTC for a possibly partial deterministic FSM is in P, i.e., the FSM
partiality does not destroy the polynomial complexity for DTCs. To illustrate the
effects of adaptivity and partiality on checking the existence of a distinguishing
sequence for a deterministic FSM we present these results in Fig. 1. We hereafter
notice that when the upper bound of the shortest
distinguishing/homing/synchronizing sequence is known to be exponential but the
tight upper bound is unknown, we denote this fact by putting O(2") for the sequence
length.

Sequence
longth Deterministic FSMs

Distinguishing Experiments

AR
i L

. Existence check
it >

complexity

PSPACE
@ Complete ( Partial

Fig. 1. How partiality and adaptivity affect the complexity of distinguishing experiments for
deterministic FSMs

3.2 Homing experiments

It is known [4, 5] that a homing sequence always exists for deterministic complete
strongly connected reduced FSMs, and the length of a shortest homing sequence is
polynomial, O(n%), with respect to the number n of FSM states. The upper bound of
the length of the homing experiment remains the same for the adaptive case [21].
An algorithm that is very similar to Algorithm 1 can be used when deriving a preset
homing sequence for a possibly partial deterministic FSM. The condition “states of
any pair of P do not have the same io-successor (for any output o € O)” at Step 1
and Rule 4 should be deleted.

Proposition 2. The problem of checking the existence of a homing sequence for
possibly partial deterministic FSM is in PSPACE.

In [14], the authors also show the hardness of this problem. In fact, they prove that
the problem of checking the non-emptiness of the language of the product of k finite
automata can be reduced to the problem of checking the existence of a homing
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sequence for partial reduced strongly connected deterministic FSM and thus, the
following statement holds.

Proposition 3 [14]. 1) The problem of checking the existence of a homing sequence
for deterministic reduced strongly connected partial FSMs is PSPACE-complete. 2)
The problem of checking the existence of an adaptive homing sequence for
(unreduced and reduced) deterministic strongly connected partial FSMs is PSPACE-
complete.

Correspondingly, the conclusion can be drawn that the problem of checking the
existence of a homing sequence for possibly partial deterministic FSM is PSPACE-
complete even for the class of reduced strongly connected FSMs, i.e., the FSM
partiality destroys the polynomial complexity for preset and adaptive homing
sequences. We present the impact of adaptivity and partiality on checking the
existence of a homing sequence in Fig. 2.

length Deterministic FSMs
4 Homing Experiments

(o) (o R - F

Adaptivity
i

i E
lilla--—--- o Existence check

complexity

PSPACE
@Complete  (_ Partial
Fig. 2. How partiality and adaptivity affect the complexity of homing experiments
for deterministic FSMs

3.3 Synchronizing experiments

Given an FSM, the problem of deriving a synchronizing sequence can be reduced to
deriving such a sequence for an automaton that is obtained by erasing transition
outputs. Correspondingly, the problem of checking the existence of a synchronizing
sequence for complete deterministic FSMs is known to have the polynomial
complexity [5]. However, for the automaton that is obtained from a partial FSM by
erasing the output action at each transition, the problem is PSPACE-complete [22].
Using a bit modified termination rules in Algorithm 1 for getting a synchronizing
sequence one can conclude the problem of checking the existence of a
synchronizing sequence for deterministic partial FSMs is PSPACE-complete.

Once a homing sequence is constructed for a deterministic strongly connected
possibly partial FSM, an adaptive synchronizing sequence can be constructed
similar to that for complete machines [5], i.e., by prolonging a homing sequence

14



Henuryn X., Errymenko H., Kyumik H., Jlones X. BiusiHue 4aCTHUHOCTH M aJaNITHBHOCTH Ha CJIOKHOCTD 3a/1auk
uaeHTH(UKALMY COCTOsHMI aBToMaTa. Tpyowt UCIT PAH, Tom 30, Bein. 1, 2018 1., c1p. 7-24

with a corresponding transfer sequence that takes a machine under investigation to a
given state s. Therefore, the following statement can be established.

Proposition 4. The problem of checking the existence of a synchronizing test case
for deterministic strongly connected partial FSMs is PSPACE-complete.
Correspondingly, the conclusion can be drawn that the problem of checking the
existence of a synchronizing sequence for possibly partial deterministic FSM is
PSPACE-complete even for the class of reduced strongly connected FSMs, i.e., the
FSM partiality destroys the polynomial complexity for adaptive synchronizing
sequences. The impact of adaptivity and partiality on checking the existence of a
synchronizing sequence for a deterministic FSM is presented in Fig. 3.

Sequence

length Deterministic FSMs
A Synchronizing Experiments

- l Existence check

complexity

PSPACE
@ Complete { Partial
Figure 3: How partiality and adaptivity affect the complexity of synchronizing
experiments for deterministic FSMs

4. How adaptivity and partiality affect the complexity of
distinguishing/homing/synchronizing experiments for
nondeterministic FSMs

In this section, we study how adaptivity and partiality affect the complexity of
distinguishing/homing/synchronizing experiments for nondeterministic FSMs.

4.1 Distinguishing experiments

In order to describe the set of all distinguishing sequences for a nondeterministic
possibly partial FSM we use the procedure for deriving an appropriate automaton
proposed in [23] with slight modifications. For a nondeterministic FSM
S=(51,0,h),S={sy, Sy ..., Sn}, We derive an automaton S2 such that the set of
(all) synchronizing sequences of this automaton coincides with the set of (all)
distinguishing sequences of FSM S, i.e., Lgisi(S) = Lsynch(szdist).
Algorithm 2 for deriving the automaton S%ist
Input: Possibly partial observable FSM S = (S, I, O, h)
Output: The automaton S%gis
States of S%; are pairs (Sj, sk), J <k, and the designated state sink while actions are
inputs of the FSM ' S;
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For each inputi € |
For each state (s;, si) of the automaton S2ist
Add to the automaton S’ the transition ((sj, s, 1, sink) if states s; and s
are separated by i, i.e., out(s;, i) N out(sy, i) = &;
Add to the automaton S% the transition ((Sjy 8, 1, (Spr Sp), p<tand j <k,
if for each 0 € O, the io-successors of states s; and s, do not coincide and
{sp, s} is the io-successor of the set {s;, s} for some o’ € O;
EndFor
Add to the automaton S% the transition (sink, i, sink) for each inputi € I;
EndFor

Based on the construction of S%g, similar to [23], the following result can be
established.

Proposition 5. An input sequence a is a distinguishing sequence for the FSM S if
and only if a is a synchronizing sequence for S%g;.

This result means that the set of all distinguishing sequences of the possibly partial
and nondeterministic FSM S coincides with the set of all synchronizing sequences
of the automaton Sy, i-€., Laist(S) = Lsynen(S aist)-

Given a partial observable nondeterministic FSM S, the automaton S%4it derived by
Algorithm 2 can be nondeterministic and partial, since for some pair (s;, Si), j <k, of
states of FSM S, there can be no transition to different pairs under an input i if
states s; and s, have the same non-empty io-successor for some output o or the input
i is an undefined input for some state of the pair. Therefore, taking into account the
complexity of the existence check for the synchronizing experiments and the fact
that the problem of deriving a distinguishing sequence for complete deterministic
FSMs is PSPACE-complete, we conclude the following.

Proposition 6. The problem of checking the existence of a distinguishing sequence
is PSPACE-complete for observable complete and partial nondeterministic FSMs.
The length of a shortest distinguishing sequence for complete observable machines

with n states is known to be O(2”2) and cannot be more for partial observable
nondeterministic FSMs according to Algorithm 1 that can be applied for
nondeterministic observable FSMs.

We now show that the problem of checking the existence of an adaptive
distinguishing test case for a complete observable FSM is PSPACE-hard. In order to
prove this, we will show that for any integer n, one can construct a 2-input FSM S
such that the size of FSM S is polynomial in n, but the minimal length of an
adaptive test case for a subset of n states of S is exponential in n. In fact, this
strengthens the previous result [16] where the exponential height of a DTC was
proven for an FSM with the exponential number of inputs.

Let n > 2 be an integer and p,, po, ..., P, be the first n different primes considered in
increasing order. Furthermore, let £, = p; + p, + ... + p, be the sum of the first n
primes, and let IT, = p; x p, x ... x p, be the product of the first n primes. For n > 2,
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we show that there exists an FSM S,, with X, states such that the minimal length of
an adaptive test case for a subset with n states equals IT,. Note that %, is polynomial
in n and IT,, is exponential in n. The state set of the FSM is S = {1, 2, ..., ¥, }. We
consider the set of states partitioned into n subsets Sy, Sy, ..., Sy, where §;= { Z; — p;
+1,%-pjt+2,...,Z} for 1 <j<n. An FSM has two inputs i, and i, and the set of
outputs is {0, X4, 2o, ..., Zn}. The transitions under i, constitute a cycle of length p;
for the states in §j, for 1 < j < n, with the same output 0. Formally, for a state k € §;,
for 1 <j <n, we have the transition (k, i;, 0, K) where K=k + 1ifk <Z;and K=Z; -
p;+ 1if k= X;. For a state %, for 1 < j < n, we have the transition (Z;, i, %, ).
Finally, for a state k € S;\{Z;}, for 1 <j <n, we have the transitions (k, i, 21, Z1), (k,
i, 2o, X»), ..., (K, iy, Zp, Z,). Transitions under i, distinguish only states of the subset
b={Z4 2, ..., Z,}. An example of such an FSM for n = 3 is shown below inTab. 1.
The number of states is 23= 2 + 3 + 5=10.

Table 1. FSM S, forn =3

Sl Sg SS

iy | 2/0 1/0 | 4/0 5/0 3/0 | 7/0 8/0 9/0 10/0 | 6/0

ip | 212 2[2 | 2/2 212 5/5 | 2/2 212 212 212 10/10
5/5 5/5 5/5 5/5 5/5 5/5 5/5

10/10 10/10 | 10/10 10/10 | 10/10 | 10/10 | 10/10

By definition, only states %;, %, ..., Z, can be distinguished by i,; therefore, until
this subset is reached states of any other subset of cardinality more than two cannot
be distinguished. Moreover, input i, cannot be applied when analyzing such a subset
due to merging reasons. Given the initial subset ¢ = {1, ;+1, ¥,+1, ..., £,,+1} of n
states, the subset b can be reached from ¢ only when input i, is applied IT,, times,
that is known to be exponential in n.

Proposition 7. The length of a shortest DTC for S,, is at least IT,.

The height of a shortest adaptive distinguishing test case for a complete observable
FSM with n states is known to reach 2" — n — 1 [8, 16]. However, the machines of
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the proposed class have exponential number of inputs with respect to the number of
states. On the other hand, given an arbitrary observable FSM, we still have no
procedure for deriving an adaptive distinguishing experiment by using a memory of
polynomial size. For this reason, Fig. 4 has only the upper bound on the length of an
adaptive distinguishing experiment.

Sequence

length Nondeterministic FSMs
A Distinguishing Experiments
o(2"), " S
L B Existence check
complexity
PSPACE

@ Complete { Partial

Fig. 4. How partiality and adaptivity affect the complexity of distinguishing
experiments for nondeterministic FSMs

4.2 Homing experiments

For complete reduced deterministic FSMs a homing sequence always exists. For
complete nondeterministic but observable FSMs the problem becomes PSPACE-
complete. In order to describe the set of all homing sequences for a nondeterministic
possibly partial FSM we again use the procedure (with slight modifications) for
deriving an appropriate automaton in [23].

For a nondeterministic FSM S=(S,1,0,h), S = {s1, Sy, ..., Sn}, We derive an
automaton S?.me such that the set of (all) synchronizing sequences of this automaton
coincides with the set of (all) homing sequences of FSM S, i.e.,, Lnome(S) =
Lsynch(szhome). The derivation of this automaton is very close to S?4ist; We do not care
if for some 0 e O, the io-successors of states s; and s, coincide.

Differently from complete nondeterministic FSMs, the automaton S%ome Can be
partial and nondeterministic. Similar to [32], it can be shown that the set of
synchronizing sequences of the automaton S%me coincides with the set of all
homing sequences of the FSM S.

Proposition 8. An input sequence o is a homing sequence for the FSM S if and only
if a is a synchronizing sequence for Szhome.

The length of a shortest homing sequence for a complete observable FSM with n
states is known to reach 2"* — 1 [8]. This means that the complexity of checking the
existence of a homing sequence for nondeterministic observable FSMs cannot be in
NP. Therefore, taking into account the complexity of the existence check for the
synchronizing sequences, we conclude the following.
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Proposition 9. The problem of checking the existence of a homing sequence is
PSPACE-complete for observable complete and partial nondeterministic FSMs.

For complete FSMs the complexity of checking the existence of a homing test case
is in P [8]. For partial deterministic FSMs it was shown that the problem is
PSPACE-complete [14], i.e., the partiality destroys the polynomial complexity for
adaptive homing sequences. The impact of adaptivity and partiality on homing
experiments for nondeterministic FSMs is shown in Fig. 5.

Sequence

length Nondeterministic FSMs
I Homing Experiments
0(2") ¥ P

i Adaptivity

I

B E Existence check

complexity

PSPACE
@ Complete ( Partial

Fig. 5. How partiality and adaptivity affect the complexity of homing experiments
for nondeterministic FSMs

4.3 Synchronizing experiments

As the problem of checking the existence of a homing sequence for complete and
partial nondeterministic FSMs is PSPACE-complete, the problem of checking the
existence of a synchronizing sequence for complete and partial nondeterministic
FSMs is not easier, but it is known to have the same complexity.

For adaptive experiments, it was shown that for complete nondeterministic FSMs
the existence check of an adaptive synchronizing sequence/test case is in P [12].

Sequence
fonath Nondeterministic FSMs
Synchronizing Experiments

Adaptivity
.

E Existence check

complexity

PSPACE
@Complete  (_ Partial

Fig. 6. How partiality and adaptivity affect the complexity of synchronizing
experiments for nondeterministic FSMs

19



Yenigun H., Yevtushenko N., Kushik N., Lopez J. The effect of partiality and adaptivity on the complexity of FSM state
identification problems. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 7-24

The problem of checking the existence of an adaptive homing sequence for
deterministic partial FSMs is PSPACE-complete, and thus, the existence check of
an adaptive synchronizing sequence for nondeterministic observable partial FSMs is
PSPACE-hard. The impact of adaptivity and partiality on synchronizing
experiments for nondeterministic FSMs is shown in Fig. 6.

5. Conclusions

In this paper, we have considered the problems of checking the existence of homing,
synchronizing, and distinguishing experiments for various FSM types, namely, for
complete and partial, deterministic and nondeterministic FSMs. We studied how the
adaptivity and partiality influence the complexity of the existence check for such
experiments as well as the length of the corresponding sequences. As a conclusion,
we can say that in general, for distinguishing experiments the partiality does not
increase the complexity but it is not the case for homing/synchronizing sequences.
For the sake of simplicity, we visualized the obtained complexity results via
appropriate figures. Thus, there are the following contributions. A new problem has
been introduced of studying the dependencies how partiality and adaptivity
influence the complexity issues of “gedanken” experiments for FSMs. We also
close some open issues in the area; in particular, we show that differently from
deterministic machines the adaptivity does not help to reduce the complexity of
adaptive distinguishing experiments for nondeterministic FSMs (even for 2-input
FSMs). All the known results have been collected together and the complexity
issues have been visualized via appropriate figures. A simple, yet important
conclusion from this study is that the partiality and adaptivity work in opposite
directions on the complexity of the state identification problems. When we consider
partiality and adaptivity together, in some cases partiality is more dominant and it
makes the problem more complex, and in some cases, adaptivity is more dominant
and it makes the problem easier. It is interesting to study what are the characteristics
of the problem in order to be able to decide which force, adaptivity or partiality,
wins, and why.

An interesting question for future research covers the complexity of deriving such
experiments for various FSM types and the tight upper bounds on the length/height
of a shortest distinguishing/homing/synchronizing experiment (if it exists).
Moreover, the complexity issues are very interesting for non-observable FSMs and
in fact, there are not many papers on this topic. We also mention that appropriate
FSM classes can be considered where the complexity goes down compared to a
general case. The issues listed above form the challenges for the nearest future
work.
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AHHOTAIUA. 3az[at1a I/IIIeHTI/I(i)I/IKaHI/H/I COCTOSIHUI B KOHEYHOM aBTOMATe ObLIa M OCTAcTCs
aKTyaanoﬁ, ITOCKOJIBKY MCIOJIB3YETCA BO MHOIUX MPUIIOKEHUAX, B YaCTHOCTH, IIpU
MOACIIMPOBAHNU U TECTUPOBAHUHN JUCKPETHBIX YIPABJIAIONIUX CUCTEM. I[JISI I/I,I[BHTI/Iq;)I/IKaIII/II/I
TCKYLIETO COCTOSTHUA CUCTCMbI CTPOATCA TaK Ha3bIBACMBIC YCTaHOBOYHBIC u
CUHXPOHU3UPYIONIUE ODKCIICPUMCHTBI € KOHCYHBIMH aBTOMaTaMHW, B TO BpPEMs KakK I
I/IZ[CHTI/I(i)I/IKaL[I/II/I Ha4aJIbHOI'O COCTOSIHUS CHCTEMbI HCIIOJB3YIOTCA AUArHOCTUYCCKUE HWIIN
pasIn4varomuye SKCIICPUMEHTHI. YCTaHOBO'-IHLIe, CUHXPOHHU3UPYIOUINE, TUATHOCTUYCCKUE WUIIU
pasian4yaromue JSKCICPUMEHTBI U3BECTHBI KaK  «YMO3PHUTCIBHBIE» OKCIEPUMEHTBI C
KOHCYHBIMU aBTOMaraMu, U MCTOJbl CHHTE3a BXOIHBIX MOCIeIOBATEIbHOCTEH I TaKuX
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JKCIICpUMEHTOB  (€clM  CYIIECTBYIOT) B  HACTOSIEE BpeMs  ONpPENENeHBl Ul
HEICTCPMUHUPOBAHHBIX U JI€TCPMUHUPOBAHHBIX, MOJHOCTBIO U YACTUYHO OINPEICICHHBIX
aBTOMATOB, OIMCBHIBAIONIMX ATAJOHHOE IOBEIEHUE CHCTEMBI. [3BecTHO, 4TO mpobiieMa
NpPOBEPKH  CYHIECTBOBAHMS UM  IIOCTPOEHMS  YCTAHOBOUHBIX, CHHXPOHH3HPYIOLIUX,
JUAaTHOCTUYECKUX WM Pa3IHYAIOMUX SKCHEPHMEHTOB CYIIECTBEHHO YCIOXKHSETCS, €CIH
STAJOHHOE TIOBEJEHHE CUCTEMBbl OIMCHIBAETCS HEIETEPMUHHPOBAHHBIM M YaCTHYHBIM
aBTOMAaTOM, YTO JOCTATOYHO YacTO CIy4aeTcs IpU OIMCAHUU CIOXHBIX COBPEMEHHBIX
cucreM. I3BecTHO Takxke, YTO B HEKOTOPBIX CIIydasX CJIO0XKHOCTh MOYKHO IIOHHU3UTH,
TIePEeKIIIOYMBIINCh HA ANANTHBHBINA (YCIOBHBIH) SKCIEPUMEHT C cucteMod. B Hacrosmiei
paboTe MBI UcCleyeM BIHMSHHE YaCTHYHOCTH aBTOMAara M aJanTHBHOCTU JKCIIEPUMEHTa Ha
CJIOKHOCTb IIPOBEPKU CYILECTBOBAHUS M IOCTPOCHUS YCTAaHOBOUHBIX, CHHXPOHU3UPYIOIIHX,
JUAaTHOCTUYECKUX U  PA3NUYaloONMX JKCIIEPHMEHTOB AN  JETCPMUHHPOBAHHBIX U
HEJCTepMUHHUPOBAHHBIX aBTOMATOB U MIUTIOCTPHUPYEM COOTBETCTBYIOIIYIO CIIOXKHOCTH C
UCIIOJIb30BAHUEM HOJXOJSAIUX PUCYHKOB.

KnrwueBrble cjioBa: KOHEYHbBIE aBTOMarThI, 3aga4da I/IZ[GHTI/I(l)I/IKaIII/II/I COCTOHHI/Iﬁ, CJIOKHOCTB.
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