Stuck-At-Faults Tester as a Web-Service

N.A. Shalyapina <nat.shalyapina@gmail.com>
AA. Zaytsev <z.sania@mail.ru>
S.V. Batratskiy <pride080993@gmail.com>
M.L. Gromov <maxim.leo.gromov@gmail.com>
Tomsk State University,
634050, Russia, Tomsk, Lenin av., 36

Abstract. In this paper, we tell about a web-service we would like to develop. There are two
goals we aim at, when developing this service. The first one is to give researchers a platform,
where they could conduct preliminary experiments with different methods of test generation
for digital circuits, in order to check different ideas. The second one is an opportunity to share
implementations of new developed methods “on-the-fly”. The web-service development
procedure was splitted into three stages: the architecture design, a light version
implementation and the actual implementation. This paper tells about first two stages. There
are two types of web-service architectures — with monolithic kernel and with microkernel —
and our architecture has the properties of both types. The intention was to have monolithic
kernel, since the desired functionality is not that hard to implement. However, the property of
being extensible by implementations of new methods implies that part of the functions
(namely the methods implementations) should be designed as separate sub-services. The light
version implementation was done for the only method: method of fault domain enumeration
for the stuck-at-faults fault model. It proved that the designed architecture is viable. However,
some issues with the architecture were discovered. A mechanism of on-the-fly deployment of
a new method is unclear, since it is not obvious, how to satisfy possible dependences of the
implementation. Also, the architecture does not follow the classical web-service design: the
service has states, that should not be, if a service is intended to be the classical one. The
resolution of these issues is left for the future.

Keywords. Stuck-At-Faults, Combinational Logical Circuit, Web Service, Test.
DOI: 10.15514/ISPRAS-2018-30(1)-3

For citation: Shalyapina N.A., Zaytsev A.A., Batratskiy S.V. Gromov M.L. Stuck-At-Faults
Tester as a Web-Service. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 41-54.
DOI: 10.15514/ISPRAS-2018-30(1)-3

41

Shalyapina N.A., Zaytsev A.A., Batratskiy S.V., Gromov M.L. Stuck-At-Faults Tester as a Web-Service. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 41-54

1. Introduction

The modern world is hard to imagine without a variety of digital circuits. Even if a
device does an analogue job, say, play music, most probably somewhere inside this
device there is a digital circuit. Like any other utilitarian objects, each digital circuit
is expected to perform particular work. Therefore, a problem, if this work is done
correctly, is an actual problem. This problem appears in almost all stages of a
circuit’s life cycle: development, production and use.

There are many aspects of doing a work right by a circuit: correct functions are
implemented, the circuit works quickly enough to be used, the circuit consumes
limited amount of energy, etc. For example, when it comes to the correct
implementation of desired functions, they usually talk about functional testing of a
circuit [1, 2].

There are many different methods for test generation [1], and every day new ones
appear (see, for example, [2]). In addition, new fault models for circuits are being
developed, that can describe faults, which occur in real life, in some sense better. In
such a situation, at least two questions arise. Is a new method better or worse than
already existing methods? Can existing methods detect faults, introduced by a new
fault model? Experiments can answer these questions. To conduct at least the
preliminary experiments, a researcher should have a “rapid” access to already
existing methods of test generation for digital circuits, as well as the opportunity to
share with other researchers his or her new method.

Apparently, a web-service can provide such an access. However, for the best of our
knowledge, a web-service that provides resources to construct tests for digital
circuits using different methods does not exist. Therefore, in our research group
under the leadership of Nina Yevtushenko, within the RSF project Ne 16-49-03012,
it was decided to implement such a service.

We splitted the development of the service into several stages. The first stage is to
design architecture of the service. The second one is to implement a light version of
the service, to see on practice, what hardships we shall meet during the main
implementation, what decisions we shall need to do and what white spots there are
in the architecture. And the final stage is the actual implementation of the service.
This paper describes the first two stages of the development: architecture design and
a light version implementation of the service. For the light version of the service, we
have chosen a classical fault model — stuck-at-faults [1] — and a classical method of
test derivation — fault domain enumeration [1]. The stuck-at-faults fault model
supposes that the only faults that can occur in the circuits are shorts to the ground or
to the power wire. The fault domain enumeration is the method when every possible
implementation of the circuit (defined by the fault model) is enumerated and input
stimuli are searched, which can show the difference between the right circuit (the
specification) and the enumerated one.

The rest of the paper is organized as follows. In Section 2, the description of the
designed architecture of the web-service is given. Section 3 is devoted to the light

42

Mananuua H.A., 3aitues A.A., barpaukuii C.B., I'pomos M.JI. TecTbl Ha KOHCTaHTHbIC HEUCIIPABHOCTH Kak BeO-
cepsuc. Tpyost UCII PAH, Tom 30, Beim. 1, 2018 1., cTp. 41-54

version of the service implementation; it includes the short description of the
enumeration of the fault domain method for the single stuck-at-faults fault domain.
Section 4 concludes the paper. In Section 5, we provide acknowledgements for the
paper support.

2. The Architecture of the Web-Service for Tests Derivation

When designing a web-service one should make two main choices: monolithic
kernel or microkernel and SOAP [4] or REST [5].

2.1. Monolithic Kernel vs Microkernel

A monolithic kernel supposes, that all logics of a service are implemented as a
single application, which has outside only data sources (databases). This approach
promises fast and easy deployment procedure together with better performance.

On the other hand, microkernel has always been considered as a more flexible
solution: each function of the big service is implemented as a stand-alone micro-
service. This approach provides natural mechanisms of functionality extensions and
updates (including security updates).

For our case, we have chosen somewhat hybrid approach (Fig. 1). We cannot use a
monolithic kernel, since we would like to implement a possibility of on-the-fly
functionality extension (adding new test generation methods on-the-fly). However,
the microkernel approach is not an option either. First, rapid analysis showed, that
apart of test generation methods implementations, the rest of the functionality is not
that large, to be splitted into different micro-services. Second, we would not like to
provide a separate database or an HTTP-server for each of micro-services.

2.2. SOAP or REST

SOAP (Simple Object Access Protocol) [4] and REST (Representational State
Transfer) [5] are two possible ways, how to organize interaction between a server
and a client of a web-service.

SOAP, being a protocol, works on top of HTTP and specifies how calls of remote
functions should be done and how the result should be returned. It is based on XML
and is able to process very complicated messages (for example, when a function
returns an object, containing lists of other objects etc.). But of course, for such a
flexibility there is a price: increased traffic and a need of an XML parser at both
ends of the communication channel.

In the same time REST is not a protocol, it is basically a prescription, how to
perform HTTP requests and how these requests should be understood at the server
side. It does not require such amount of traffic or special parser as SOAP does, and
it is much easier to implement. However, it is usually considered as less safe and it
definitely is not that flexible as SOAP is (example with an object containing lists of
objects is very tricky for REST).

43

Shalyapina N.A., Zaytsev A.A., Batratskiy S.V., Gromov M.L. Stuck-At-Faults Tester as a Web-Service. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 41-54

At present, we have chosen REST as a way of server-client communication, but
when the service grows, we suppose to introduce SOAP.

2.3. The Architecture

When all the choices are done, we are ready to present the architecture of our web-
service (Fig. 1). The service consists of the following parts. The engine, which
implements the main functionality of the service. HTTP server, which provides
HTTP transport and the rest of HTTP functionality. A PHP program that provides
Web API of the service. A small Simple PHP client, available via an Internet
browser. The database, which keeps information about users (username, password),
running jobs (process ID, start date-time, stop date-time) and existing
implementations of test generation methods (ID, path-to-run). And of course a
bunch of test generation methods implementations, available as Tool scripts.

The functionality of each element is clear from its description above, but the service
engine. The engine can be implemented either as a stand-alone program or as a PHP
program, combining Web API. The functions, which we consider the basic ones for

our service, are as follows.
HTTPserver || — — — —~ : -
1
> Web APl [« Service .
t/ ‘ﬁk—l engine \‘I\
S?:P 1---- ! Tool

scripts

A client

Internet
py)
m
w
=
»a

Simple PHP ¢
+ client !) .
7 1 A file with
kl 1 results

1

User

Browser

Y

HTTP

Fig. 1. The web-service architecture

1. The authentication. A user is asked to provide a username and a password.
This function is always available; the rest functions are available only for
successfully authenticated users.

2. Ajob request. A user send a request to run specific tool to build a test.

3. Arequest for a list of running jobs. A test generation is a long-term job, it
takes a lot of time. For that reason, a user should have a mechanism to see,
which of his/her job requests are finished, and which are not.

4. A request for a list of available methods. Since it is supposed, that the
service will be expanded on-the-fly, the number of method may change and
a user should be able to see the change.

5. A request for a generated test. When a job is done and the test is ready, a
user should be able to get the result.

44

Mananuua H.A., 3aitues A.A., barpaukuii C.B., I'pomos M.JI. TecTbl Ha KOHCTaHTHbIC HEUCIIPABHOCTH Kak BeO-
cepsuc. Tpyost UCII PAH, Tom 30, Beim. 1, 2018 1., cTp. 41-54

6. A request for a new method deployment. A user provides a program, which
implements a method for a test generation he or she would like to share and
the service deploys it at its side.

7. Jobs sanitization. A test generation is a long-term job; it can take days or
even more. We suppose, that the service is not the production one rather
than for a research. We limited the time of the job to complete to 24 hours.
Also, a host, which runs the server, may lose the power supply. In this
case, all running jobs are lost, but no records are done about this fact in the
database, and the lost jobs will be marked as “in progress” forever. The
jobs sanitization mechanism resolves both issues. It searches for the jobs,
which are running for too long, and stops them, and looks for the lost jobs
and makes certain record about this fact to the database.

Among all the functions, the deployment function seems to be the trickiest function
of the service engine. The problem is that a researcher’s implementation of a new
method may have some dependences which may not be satisfied on the host
machine, and for now we do not see, how to overcome this issue.

2.4. The Web-Service Which is not A Web-Server

One can notice that the service we describe here is not a classical web-service. It
happens because a test generation procedure is a long-term process. When a user
requests to build a test, the server-side may not be blocked by the request, it should
stay responsive for this particular user and other users. Therefore, the server-side
changes its state from “ready for requests” to “ready for requests and running one
job in the background”. Then ... two jobs in the background”, then “... two jobs in
the background, but another ones, and those two are ready”. And so on. The
classical approach supposes that the server-side is stateless [6].

However, apart from the described issue, the rest of our design follows the classical
web-service design and therefore we tend to call it a web-service. In the future, we
would like to rethink on this issue.

3. Light Version of the Web-Service

In this Section, we describe an implementation of a light version of the web-service.
First, we describe the simplifications made. Then we describe the stuck-at-fault fault
model and the fault domain enumeration method, which we have chosen for the
implementation. And at last we give some implementation details.

3.1. Simplifications

We decided to implement only a part of the service engine functions, namely: “The
authentication”, “A job request”, “A request for a list of running jobs”, “A request
for a generated test”, and partly “Jobs sanitization” (only the time to complete
restriction).

45

Shalyapina N.A., Zaytsev A.A., Batratskiy S.V., Gromov M.L. Stuck-At-Faults Tester as a Web-Service. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 41-54

The web API is abandon. The engine and the simple PHP client should be
implemented as one PHP program. However, the “Jobs sanitization” and “A job
request” are shared between the engine and the tool script. And the tool script is a
shell-script which implements the fault domain enumeration method. In the light
version it is the only method implemented, that is why instead of several tool scripts
we have only one.

According to the selected engine functions, the database needs only two tables
(entities): the user information table and the job information table.

3.2. The Fault Model and the Method

3.2.1. Logical Circuits

There are two main classes of digital circuits: combinational circuits and sequential
circuits. The first ones are usually referred as memoryless circuit without feedbacks
and the second ones are the rest circuits [1, 7]. A digital circuit can be seen from
different perspectives (behavioural, structural and physical) and at different level of
abstraction (system, register, logical, schematic) [1, 7]. From the point of view of
the service that we design, it does not matter, which kind of a digital circuit or from
what perspective and at what level is given, everything depends on a test generation
method implementation (a tool script) being called, whether it can or not to handle
the call. For the light version of the service, we have chosen combinational circuits,
considered from the behavioural and structural perspectives at the logical level,
tested against the stuck-at-faults fault model using the fault domain enumeration
method.

3.2.2. Behaviour and Structure of a Digital Circuit

Behavioural model at the logical level of a combinational digital circuit with n input
pins and m output pins is defined as an ordered system of m Boolean functions,
mapping Boolean vectors of the length n into the Boolean set[1, 2, 7]: fi(xy,..,
Xn) €{B" — B}, where B = {0, 1} is the Boolean set, i € {1, ..., m}. Later on in this
paper, we shall omit the word “ordered”, but will always mean that, if the opposite
is not specially denoted.

Two ordered system of Boolean functions fi(xy,.., X,) and f'i(X,.., X,), i € {1, ..., m},
are equivalent, if for each i e {1, ..., m} it holds, that fi= f'; (corresponding
Boolean functions are equivalent).

A structural model at the logical level of a combinational digital circuit is called a
logical combinational circuit. A logical combinational circuit (or just a circuit) for
a combinational digital circuit with n input pins and m output pins is a directed
acyclic graph [2] G =(V, E), where V — is non-empty, finite set of nodes, Ec V xV
— is a set of ordered pairs (vy, v,) called edges, and every node v € V is either an
input pole or a gate or an output pole. Poles correspond to the pins of the digital
combinational circuit. There should be exactly n input poles and m output poles. An

46

Mananuua H.A., 3aitues A.A., barpaukuii C.B., I'pomos M.JI. TecTbl Ha KOHCTaHTHbIC HEUCIIPABHOCTH Kak BeO-
cepsuc. Tpyost UCII PAH, Tom 30, Beim. 1, 2018 1., cTp. 41-54

input pole has no ingoing edges, and at least one outgoing edge. An output pole has
no outgoing edges and exactly one ingoing edge. A gate has at least one ingoing and
at least one outgoing edge and is associated with some Boolean function g: B — B,
where arity k equals to the number of ingoing edges for this gate.

A logical circuit with n input poles and m output poles maps Boolean vectors of
length n into m Boolean values. This mapping is computed as follows. Let there is a
vector {a;...0,) € B" (an input vector). Before start, if there are any mappings of the
circuit’s edges and vertices, drop these mappings. When a node is mapped to some
Boolean value, its outgoing edges are also mapped to this very value. For each
j=1,...,n the input pole j is mapped to the value ;. When every ingoing edge of a
gate is mapped to some value vy,, the node becomes mapped to the value g(ys, ..., Y,
where g is the function associated with the gate. Due to our definition of the logical
circuit, each output pole i eventually is mapped to some Boolean value ;. So, at
some point we are able to collect an output vector

<B1Bm> = <f1((11, e (ln), ceny fm((ll, ey an)> e B"

The fact, that the circuit G maps vector (a;...a,) to the vector (B;...Bn) we shall
denote as G({oy...0n)) = (P1-..Pm)-

Therefore, every logical circuit is associated with a system of Boolean functions
fi(Xy,.., Xn), 1€ {1, ..., m}. This system is a behavioural model of the underlying
digital circuit. Apparently, that every logical circuit has the only corresponding
system of Boolean functions, and we say that the logical circuit implements the
system of the Boolean functions. However, every system of Boolean functions may
have several corresponding logical circuits (structural implementations).

3.2.3. Tests and Fault Models

Two logical circuits G and F are equivalent if they implement the same system of
Boolean functions. This fact we shall note as G = F. The non-equivalence of two
circuits G and F we shall denote as G £ F .

Let a logical circuit be given. They say, that there is stuck-at-zero (stuck-at-one)
fault [1] at the edge e =(v;, v,) if this edge is constantly mapped to zero (one),
regardless from the any other mappings. Stuck-at-zero (stuck-at-one) fault means,
that node v, is virtually associated with Boolean function g(X, ..., Xi_1, 0, Xj+1,...,
Xn) (with function g(X, ..., Xi_1, 1, X{+1,..., X)), Where | is the index of the edge e
and g(xy, ..., Xn) is the Boolean function actually associated with the node v,. One
can consider the case, when several edges are faulty in the circuit, but for the
purpose of this paper, we consider only single stuck-at-faults.

A fault model is a triple (S, =, Q), where S — is a logical circuit (usually called a
specification), describing a correct behaviour of a system; Q — is a set (usually
called a fault domain), containing logical circuits, which are considered as possible
(correct and incorrect) implementations of the system of Boolean functions defined
by S; and = — is the equivalence relation. Every circuit from Q has the same
numbers of input and output poles as S does.

47

Shalyapina N.A., Zaytsev A.A., Batratskiy S.V., Gromov M.L. Stuck-At-Faults Tester as a Web-Service. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 41-54

A test case t for the fault model (S, =, Q) is a Boolean vector {a;...a,) € B", where n
— is the number of the input poles of the circuit S. A test T for the fault model (S, =,
Q) is a finite set of test cases for the fault model (S, =, Q). A test T for the fault
model (S, =, Q) is called sound if for each circuit G € Q such that G =S and for
each t e T it holds, that G(t) = S(t). A test T for the fault model (S, =, Q) is called
complete if for each circuit G € Q such that G S there exists t € T such that
G(t) = S(t). A test T for the fault model (S, =, Q) is called exhaustive if it is sound
and complete.

In this work, we consider a fault domain, which contains S and every possible
circuit got from S by introduction every possible single stuck-at-zero or stuck-at-one
fault. The fault model with this fault domain is called the stuck-at-faults fault model.
Since S is finite graph with finite number of edges, the fault domain in this case is
finite. Namely, the number of circuits in fault domain equals to 2:-|E|, where E is the
set of edges.

3.2.4. Miter

Given two (ordered) systems of Boolean functions fi(xy,.., x,) and f'i(Xy,.., X), i € {1,
..., m}. A miter for them is the following function

fu = (f1(X) ® (X)) v ... v (fa(X) ® (X)),
where X =(X; ...,X,) is the vector of arguments. Note, that the order of the functions
in the systems is important.
Proposition. Two systems of Boolean functions fi(xy,.., X,) and f'i(x,.., X,), i € {1,
..., m} are not equivalent if and only if there exists such a vector a € B" that
fu(a) = 1, where fy, — is the miter for the give systems.
If there exists such a vector a € B" that fyy(a) = 1, then the miter is called satisfiable
and a is called satisfying vector. In contrary, if for any a € B" fy(a) = 0, then the
miter is called unsatisfiable.
Of course, a miter can be built for logical combinational circuits as well. A miter for
logical circuits G and G’ — is a circuit M, which we get by matching input poles of G
to corresponding input poles of G’ (v, to V'y, v, to V', etc.), so we have n input poles.
Then we combine every output pole u; of G with corresponding output pole u’; of G’
by XOR gate, and then combine all outgoing edges of those XOR gates by
disjunction gate. And at last outgoing edge of the disjunction gate comes to only
output pole u of M. Now, if we compute mapping, done by the structural miter we
shall get the same function fy.

3.2.5. The Method of Fault Domain Enumeration

The idea of the method is quite simple. Let the stuck-at-faults fault model (S, =, Q)
be given. Since for the case of stuck-at-faults fault model the set Q is finite, and its
cardinality is polynomial on the edges number of S, we can enumerate it. At the
beginning, a test under construction T is empty. Get the next circuit G from Q.
48

Mananuua H.A., 3aitues A.A., barpaukuii C.B., I'pomos M.JI. TecTbl Ha KOHCTaHTHbIC HEUCIIPABHOCTH Kak BeO-
cepsuc. Tpyost UCII PAH, Tom 30, Beim. 1, 2018 1., cTp. 41-54

Check, whether T contains such a vector t that G(t) = S(t). If it does, take the next
circuit from Q and repeat. If it does not, build a miter for G and S and check,
whether it is unsatisfiable. If it is not (i.e., satisfiable), then take a counter example
for unsatisfiability as a test case and put itin T.

Proposition. The above procedure provides an exhaustive test.

There are some notes to the procedure above. First, it does not guarantee that the
resulting test is minimal on number of test cases. But for the goals of this work we
do not aim at getting optimal tests. Second, the problem of unsatisfiability check is
not an easy task by itself [8]. It is known to be NP-complete and may bring a lot of
headache in general case. Fortunately, this problem is quite popular among
researches and many powerful tools were developed to solve it, which perform well
in most real life cases. For example, see works on MiniSAT [9].

3.3. Implementation Details

3.3.1. Operating System, HTTP Server, DBMS, and the Engine

The available to us host machine, where we can deploy the service, runs under
FreeBSD operating system. It has MySQL database management system and
Apache HTTP server with the support of PHP installed. Therefore, we had no need
of choosing the right environment for our web-service. The triple
Apache+MySQL+PHP proved to be the reliable basis for any project of any level of
complexity.

The engine of the light version of the web-service was implemented in PHP. As it
was noted earlier, we abandon the web API, and the small PHP client was
implemented together with the engine as one program.

3.3.2. The Method Implementation

To implement the method of fault domain enumeration for the stuck-at-faults fault
model as a tool, we use the tool called ABC [10]. This tool has built-in instruments
for a miter construction and checking the miter for being unsatisfiable. If the miter
is not unsatisfiable, ABC provides a counter example.

The only thing we implemented in addition to ABC is an instrument for faulty
circuit’s enumeration. This instrument is implemented as a stand-alone program,
which takes a logical circuit (specification) and a folder to store the result as an
input and saves files with faulty logical circuits in the designated folder.

Since the chosen fault model describes faults in the structural terms (in terms of
logical circuits), the method implementation requires digital circuits under test be
given as logical circuits. ABC understands logical circuits in ISCAS’89 format (also
known as .bench format). This format simply describes directed graph. For
example, a code like this

INPUT (x1)

49

Shalyapina N.A., Zaytsev A.A., Batratskiy S.V., Gromov M.L. Stuck-At-Faults Tester as a Web-Service. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 41-54

INPUT (x2)
OUTPUT (y)
y = AND(x1l, x2)

states, that there are two input poles, named x1 and x2, one output pole, named vy,
and one gate associated with the conjunction (AND), but without a name. Let call
this gate g. Then the edges are (x1, @), {x2, g) and (g, v).

To finish the method implementation, the faults enumerator and ABC should be
called in the right order with the right parameters. This is done by a shell-script,
which in terms of the architecture of the web-service we call the tool script.

3.3.3. Jobs sanitization

The most of the functions implemented in the engine of the light version of the web-
service are quite straightforward and we shall not describe them. However, the
implemented part of the “Jobs sanitization” (namely, the time to complete
restriction) and “A job request” functions are worthy of mention and description.
When the engine gets the request from a user to start a new job of test derivation, it
runs the script and delegates all interactions with the database to the script. The
script makes all necessary records in the database: the date-time of the script start,
the ID of the user, who requested this job, process ID of the job. When the script
finishes the task, it again makes necessary records about that: the task was normally
finished, when the task was finished.

The implementation of the time to complete restriction is done with the use of
timeout utility built into FreeBSD [11]. This utility starts the specified program,
waits for specified amount of time and if the program is still running, it sends to the
program the termination signal. The script catches this signal and before
termination, it makes a record into the database, that certain task was artificially
stopped. That is the engine does not run the script directly, it runs the timeout
utility, specifying that the script should be run and should finish within 24 hours.
The rest is done by the t imeout utility.

This approach to implementation of the “A job request” and “Jobs sanitization”
functions helped to guarantee the responsiveness of the web-service whilst the
requested jobs are run in the background and successfully sanitized.

4. Conclusion

In this paper, we presented architecture of the web-service we would like to
develop. The main goal of the web-service is to give for researchers a platform,
where they can do preliminary rapid experiments with different test generation
methods for digital circuits. And, as the second feature of the web-service,
researchers can share an implementation of a new method they developed.

The architecture has properties of both a microkernel service and a monolithic
kernel services. Also, the analysis of the architecture shows, that in its current state

50

Mananuua H.A., 3aitues A.A., barpaukuii C.B., I'pomos M.JI. TecTbl Ha KOHCTaHTHbIC HEUCIIPABHOCTH Kak BeO-
cepsuc. Tpyost UCII PAH, Tom 30, Beim. 1, 2018 1., cTp. 41-54

it is not the classical architecture of a web-service, because web-services are
supposed to be stateless, and our service by design has states. This issue needs some
further research.

Another issue that needs to be resolved in the future is the deployment of new
methods implementations on the service. For now, it is not clear, how to guarantee
possible dependences.

As the second stage of the development of the web-service, we implemented the
light version of the service. We took only minimal necessary functionality, and the
only test generation method — the fault domain enumeration method for the stuck-at-
faults fault model for combinational logical circuits. This implementation proved
that the designed architecture is viable. In addition, the implementation showed, that
some functions of the service engine (like the “Jobs sanitization™), probably, are
better be moved away from the engine.

Acknowledgements

This work is partially supported by the grant of the Russian Science Foundation
Ne 16-49-03012. The authors would like to thank Andrey Laputenko for presenting
the result of the paper at the ESRCT 2017 workshop. In addition, the authors would
like to thank the reviewer of the paper, whose constructive comments helped to
make this paper better.

References

[1]. Skobcov Yu.A., Skobcov V.Yu. Logical modeling and testing of digital devices.
Doneck: IAMM NAS of Ukraine, DonNTU, 2005. 436 p. (in Russian)

[2]. Zakrevskij A.D., Pottosin Yu. V., Cheremisinova L.D. Fundamentals of logic design.
Minsk: UIIP NAN of Belorus, 2006. 254 p. (in Russian)

[3]. Chernov A.V., Sergeeva E.A. Autocorrelational testing of digital combinational circuits.
Sovremennye problemy nauki i obrazovaniya [Modern problems of science and
education], 2013, Ne 6 (in Russian)

[4]. SOAP Version 12 Part 1: Messaging Framework (Second Edition).
https://www.w3.0rg/TR/soap12/, 05.02.2018.

[5]. Wilde E., Pautasso C. REST: From Research to Practice. Springer Science & Business
Media, 2011. 528 p.

[6]. Fielding R.T. Architectural Styles and the Design of Network-based Software
Avrchitectures. Chapter 5.
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm, 05.02.2018.

[7]. Harris D., Harris S. Digital Design and Computer Architecture. Morgan Kaufmann,
2012, 712 p.

[8]. SilvaL.G. e, SilveiraL.M. and Marques-Silva J.P. Algorithms for Solving Boolean
Satisfiability in Combinational Circuits. In Proceedings of DATE’99, 1999, pp. 526-530.

[9]. Niklas Eén, Niklas S6rensson. The MiniSAT. http://minisat.se/Main.html, 16.10.2017.

[10]. ABC: A System for Sequential Synthesis and Verification.
https://people.eecs.berkeley.edu/~alanmi/abc/, 16.10.2017.

[11]. FreeBSD Manual Pages. timeout.
https://www.freebsd.org/cgi/man.cgi?query=timeout&sektion=1, 05.02.2018.

51

Shalyapina N.A., Zaytsev A.A., Batratskiy S.V., Gromov M.L. Stuck-At-Faults Tester as a Web-Service. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 41-54

TecTbl Ha KOHCTaAHTHbIE HEMCNPABHOCTU Kak Be6-cepBUC

H.A. Hlananuna <nat.shalyapina@gmail.com>
A.A. 3atiyes <z.sania@mail.ru>
C.B. bampayxuii <pride080993@gmail.com>
M.JI. Tpomos <maxim.leo.gromov@gmail.com>
Tomckuil 2ocyoapcmeenHblil yHugepcumen,
634050, Poccus, Tomck, np. Jlenuna, 36.

AHHoTammsi. B 370l craThe pacckasbiBaeTcs O pa3pabaTbIBaeMOM HaMH BeO-CEpBHCE.
PaspabatbiBasi 3TOT cepBHC, MbI IIpecieayeM pBe uenu. llepBas — IpeIIOKHUTH
HCCIIeIoBaTesIM IUIATGOpMy, TA€ OHM MOIJHM OBl TIPOBOAWTH IIpEiBapHUTENIbHEIC
SKCIIEPUMEHTBI C PAa3JIMYHBIMH METOJaMH T'€HEepaliH TEeCTOB U1 LU(PPOBBIX CXeM, IS
MIPOBEPKU Pa3NMYHBIX uaeH. BTopas — BO3MOXXHOCTh «HA JETY» IOACIUTHCS PeaTn3alisiMy
HOBBIX MeTooB. [Ipomemypa paspaboTku BeO-cepBuca ObUTa pasfeieHa Ha TpU dTama:
II3aifH apXUTEKTYpHI, peanu3anus o01eryéHHol Bepcun U GakTuieckas peanmsanus. B aToi
CTaThe pacCKa3bIBAeTCA O MEPBBIX JBYX 3Tamax. ECTh 1Ba THIIA apXUTEKTyp BeO-CEpBUCOB — C
MOHOJIUTHBIM SIIPOM U MHKPOSIPOM — ¥ Hallla apXUTEKTypa o0jamaeT cBoWCTBaMH 00OMX
TUNOB. MBI CTPEMHJINCH K TOMY, YTOOBI IIOJy9UTh MOHOJMTHOE SIJIPO, IIOCKOJIBKY JKelaemMast
(YHKIMOHATIBHOCTh HE TaK YK TpPymHO peannzoBaTb. OIHAKO — pacIIMPsIEMOCTb
peanu3anusiMU HOBEIX METOJIOB ITO/Ipa3yMeBaeT, 4To 4acTh QYHKIHH (2 UMEHHO, peasT3aliy
METOJIOB) JOJDKHBI OBITH Pa3pabOTaHBI KaK OTAENbHBIE IOMA-CEePBHUCHL. Peammsamus jerkoi
Bepcud Oblla BBIIOJIHEHA MUl E€IWHCTBEHHOTO MeEToAa: MeTojaa mepebopa obmacTa
HEHCTPaBHOCTM OIS MOJETM KOHCTAaHTHBIX HencrnpaBHocTed. OHa TOKa3an, dTO
pa3paboTaHHas apXHUTEKTypa XHu3HecrnocoOHa. OnHako ObBUTM OOHApPYKEHBI HEKOTOPHIE
npoOseMsl ¢ Heil. MexaHu3M pa3BepThIBaHUs H00ABISIEMOTO «Ha JIETY» METOJa HEesICeH, TaK
KaK HEsICHO, KaK YJOBJICTBOPHTH BO3MOXKHBIE 3aBHCHMOCTH peaim3anmu. Kpome Toro,
apXMTEKTypa HE COOTBETCTBYET KJIACCHYECKOMY JAHW3aiiHy BeO-cepBHCa: y CepBHCa €CTb
COCTOSIHUSI, KOTOPBIX HE JOJDKHO OBITh, €CIIM CEPBHC KJIACCH(UIMPOBAH KaK KJIACCHYECKUIL.
Pemrenne 3tux BompocoB ocraercst Ha Oyylee.

KaroueBbie cioBa. KoHCTaHTHBIC HEMCIIPAaBHOCTH, KOMOMHAIMOHHBIE cxembl, Web cepsuc,
TIPOBEPSIOIINE TECTHI.

DOI: 10.15514/ISPRAS-2018-30(1)-3

Jost uurupoBanus: llansnuaa H.A., 3aiines A.A., batpaukuii C.B., I'pomoB M.JI. TecTsl
Ha KOHCTaHTHBIE HencnpaBHOCTH Kak BeO-cepsuc. Tpynst VICII PAH, Tom 30, Bem. 1, 2018
r., ctp. 41-54. DOI: 10.15514/ISPRAS-2018-30(1)-3

Cnucok nutepatypbl

[12]. CkobuoB 10.A., Ckobuo B.FO. Jloruueckoe MOJCIUPOBAHHE W TECTUPOBAHUE
¢ poBsIx yerpoiicts. Jonenk, UTIMM HAH Ykpaunsr, JlorHTVY, 2005,436 c.

[13]. 3akpeBckuii A L., ITortocun 10.B., Uepemucunosa JI.J[. Fundamentals of logic design.
Munck, Haunonanbnast akagemust Hayk benapycu, 2006, 254 c.

52

Mansnuua H.A., 3aiines A.A., barpankuii C.B., 'pomo M.JI. TecTbl Ha KOHCTAHTHBIC HEMCIIPABHOCTH KaK BeO-
cepsuc. Tpyost UCII PAH, Tom 30, Beim. 1, 2018 1., cTp. 41-54

[14]. YeproB A.B., CepreeBa E.A. ABTOKOpPpEISIMOHHOE TECTUPOBaHHE IH(POBBIX
KOMOMHAMOHHBIX cxeM. CoBpeMeHHbIe pobemMbl Hayku 1 oopasoBanusi, 2013, Ne 6

[15]. SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).
https://www.w3.0rg/TR/soap12/, 05.02.2018.

[16]. Wilde E., Pautasso C. REST: From Research to Practice. Springer Science & Business
Media, 2011. 528 p.

[17]. Fielding R.T. Architectural Styles and the Design of Network-based Software
Avrchitectures. Chapter 5.
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm, 05.02.2018.

[18]. Harris D., Harris S. Digital Design and Computer Architecture. Morgan Kaufmann,
2012, 712 p.

[19]. SilvaL.G. e, SilveiraL.M. and Marques-Silva J.P. Algorithms for Solving Boolean
Satisfiability in Combinational Circuits. In Proceedings of DATE’99, 1999, pp. 526-530.

[20]. Niklas Eén, Niklas Sorensson. The MiniSAT. http://minisat.se/Main.html, 16.10.2017.

[21]. ABC: A System for Sequential Synthesis and Verification.
https://people.eecs.berkeley.edu/~alanmi/abc/, 16.10.2017.

[22]. FreeBSD Manual Pages. timeout.
https://www.freebsd.org/cgi/man.cgi?query=timeout&sektion=1, 05.02.2018.

53

Shalyapina N.A., Zaytsev A.A., Batratskiy S.V., Gromov M.L. Stuck-At-Faults Tester as a Web-Service. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 41-54

54

