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Abstract. Over the last few decades buffer overflow remains one of the main sources of 

program errors and vulnerabilities. Among other solutions several static analysis techniques 

were developed to mitigate such program defects. We analyzed different approaches and 

tools that address this issue to discern common practices and types of detected errors. Also, 

we explored some popular sets of synthetic tests (Juliet Test Suite, Toyota ITC benchmark) 

and set of buggy code snippets extracted from real applications to define types of defects that 

a static analyzer is expected to uncover.  Both sources are essential to understand the design 

goals of a production quality static analyzer. Test suites expose a set of features to support 

that is easy to understand, classify, and check. On the other hand, they don’t provide a real 

picture of a production code. Inspecting vulnerabilities is useful but provides an exploitation-

biased sample. Besides, it does not include defects eliminated during the development 

process (probably with the help of some static analyzer). Our research has shown that 

interprocedural analysis, path-sensitivity and loop handling are essential. An analysis can 

really benefit from tracking affine relations between variables and modeling C-style strings as 

a very important case of buffers. Our goal is to use this knowledge to enhance our own buffer 

overrun detector. Now it can perform interprocedural context- and path-sensitive analysis to 

detect buffer overflow mainly for static and stack objects with approximately 65% true 

positive ratio. We think that promising directions are improving string manipulations 

handling and combining taint analysis with our approaches. 
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1. Introduction 

Buffer overflow is a type of program defect caused by buffer access with index that 

exceeds buffer’s bounds. This can lead to a program crash or even to a security 

vulnerability. Defects of such kind are still common, despite all efforts made to 
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eliminate them. There are several techniques one can apply to detect buffer 

overflows. One approach is to employ testing and dynamic analysis. These methods 

don’t suffer from false positives, but in most cases, it’s impossible to check all 

execution paths, so some defects can remain undetected. Another approach is to 

analyze program code without executing it. In this way, one can find a defect on any 

path, even rarely executed. In this paper, we will focus on the latter approach known 

as static analysis. 

We are interested in building a buffer overflow detector that is applicable to large 

C/C++ programs with millions of lines of code while producing decent analysis 

performance and quality. Basic properties of the algorithms constituting such a 

detector are well-known and include among others interprocedural analysis, path 

sensitivity, and loop handling. However, after initial support for these features has 

been made and the quality goals achieved, it is unclear which direction to choose for 

the further improvement. The usual development pace that comes from the customer 

feedback and own code analysis may be not enough. In the following chapters, we’ll 

overview possible sources of inspiration for the buffer overflow detector 

development, present our short survey that is based on the buffer overflow-related 

vulnerabilities sample from the CVE database, then briefly describe our experience 

of developing an overrun detector as a part of the Svace tool, and present our 

conclusions from tools and vulnerabilities analysis. 

2. Buffer overflow detection techniques and tools 

There exist many static analysis tools that can detect buffer overflows. In this 

section, we conduct a brief survey on the most popular methods. 

Some buffer overflows can be detected during the process of lexical analysis, like in 

the ITS4 tool [1]. Most common errors and bad patterns can be found at this level. 

This technique can work really fast and, as it doesn’t involve compilation, can be 

easily applied to any code, even if it is not complete. As a result, such analysis can 

be performed “on-the-fly” during the process of code development with IDE, so that 

erroneous patterns are eliminated on the very early coding stage. Of course, such a 

lightweight method is far from being sound, i.e. it misses many defects. Even 

changing the name of a variable can prevent such tools from detecting a defect. 

To detect more defects a deeper analysis of code is needed. To achieve this, many 

tools use the idea of abstract interpretation [2]. Some tools chose different numerical 

abstract domains to implement the analysis of integer index values, buffer sizes, and 

string lengths. These domains include intervals, zones, octagons, affine equalities, 

interval linear equalities, convex polyhedra, tropical polyhedra, etc. [3]. Tools based 

on these approaches derive sound relationship between integer values listed above 

in varying degrees of precision. Soundness is a major advantage of such tools, but 

less precise domains produce large number of false positives, while analysis with 

more precise domains doesn’t scale on many real-world programs. 

Another popular approach is symbolic execution. The main idea of this method is 

performing analysis by traversing all paths in a function separately. This approach 
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can be used to build a path-sensitive detector i.e. that can find errors that, at the 

same time, occur only on a certain feasible function path and are not inevitable for 

any single point from this path alone. While processing a particular path, the 

analyzer keeps track of variables values and relationships and computes a path 

predicate, i.e. a conjunction of all corresponding branch conditions that are taken 

along this path. This information is used to prune infeasible paths and check buffer 

access instructions. Analyzing all paths in a function can be a challenging task due 

to the path explosion, so a number of techniques are proposed to reduce this 

problem. A simple, but often effective approach is to abandon the idea of full path 

coverage and just to stop the analysis after some threshold or time limit reached. 

Another approach is to merge symbolic states at join points, preserving path-

sensitivity of analysis by providing guard conditions for joined states. Third 

approach, first introduced in Marple, is employing demand-driven analysis [4], [5], 

i.e. reducing the set of analyzed paths by focusing only on those that end with 

buffers access. 

One of the main obstacles for all mentioned symbolic execution-based approaches is 

handling loops. Typical solution is to implement some heuristics to handle the most 

simple and common loops and ignore other loops. However, there are methods 

proposed to handle loops with multiple paths inside and summarize their effect on 

program values [6]. 

Many buffer overflow errors are caused by violations of function contracts. This can 

happen when a caller of a library or a user function provides unexpected data to a 

function, or, on the contrary, a function is not able to correctly handle all input cases 

implied by the contract. Interprocedural analysis is needed to detect such 

inconsistencies. 

On the lexical analysis level, formal and actual arguments matching can be based on 

similar variables names and usually happens only for the well-known library callees 

like memcpy. For more rigorous scan some tools analyze the whole program as a 

unified inter-procedural graph. The monomorphic analysis merges information for 

every call-site — efficient, but imprecise approach. The polymorphic analysis treats 

each call site individually, so this approach provides context-sensitivity but scales 

poorly. 

An alternative approach is using some approximation of a function’s behavior when 

analyzing its caller. These approximations can be provided in user’s annotations, but 

they are not always available. A tool can use its own findings obtained by the callee 

analysis as an approximation. This approached is called summary-based. By 

choosing the right function order, a tool can minimize the number of missing 

summaries, but handling recursion still requires additional tricks, e.g. making 

several analysis passes over strongly connected components of the call graph. 

3. Buffer overflow detection tools benchmarking 

For the past twenty years several studies have been published on evaluating and 

testing buffer overflow detectors. In addition, there exist different test suites, which 



Dudina I.A. Buffer Overflow Detection via Static Analysis: Expectations vs. Reality. Trudy ISP RAN /Proc. ISP RAS, 

vol. 30, issue 3, 2018, pp. 21-30 

24 

provide sets of synthetic buggy and correct code snippets to test the abilities and 

false positive rate of static analysis tools. 

One of the biggest and probably the most popular benchmark is Juliet Test Suite 

C/C++, created by NSA’s Center for Assured Software (CAS) [7]. For C/C++ code 

it contains 64,099 test cases tagged by CWE entries. Groups corresponding to buffer 

overflow defects are CWE 121 — “Stackbased Buffer Overflow” (4,968 tests), 

CWE 122 — “Heapbased Buffer Overflow” (5,922 tests), CWE 124 — “Buffer 

Underwrite” (2,048 tests), CWE 126 — “Buffer Over-read” (1,452 tests), and CWE 

127 — “Buffer Under-read” (2048 tests). Tests in this suite are also tagged with a 

number called “flow variant” that represents the complexity of control and data flow 

in a particular test case. 

Control flow variants cover different types of conditionals (e.g. 

STATIC_CONST_FIVE==5, globalReturnsTrueOrFalse(), etc.) and 

different control statements (switch, while, etc.). Data flow variants describe 

many types of intraprocedural data flow and interprocedural interaction, e.g. data 

passing through function arguments (via pointer, C++ reference, array, container, 

etc.), return value, global variable, etc. There are many flow variants that represent 

C++-specific features and not applicable to C-tests. 

We noticed that the distribution of the flow variants is close to uniform in groups of 

our interest. Another observation is large number of tests involving wide characters. 

Many tests contain library function usage, e.g. memcpy-like functions, string 

manipulations, format string processing, etc. 

Toyota ITC Benchmark is a test suite created by Toyota InfoTechnology Center 

aimed at the static analysis tool evaluation [8]. It contains 1,276 simple tests (638 

erroneous and 638 correct) divided into 9 types and 51 sub-types. Our interest is in 

the following tests: sub-types “static buffer overrun” (54 cases), “static buffer 

underrun” (13 cases) from the “static memory” type and sub-types “dynamic buffer 

overflow” (32 cases), “dynamic buffer underrun” (39 cases) from the “dynamic 

memory” type. Each case is represented by a pair of a buggy test and a fixed test. 

These samples cover following features in varying combinations: (i) static, stack 

and heap buffers; (ii) different element types (char, int, float, struct, etc.); 

(iii) index calculations (constant, linear and non-linear expressions, passed as an 

argument or returned from a function, loop variables and array elements); (iv) 

obtaining buffer address (local/global variable, function argument, pointer 

arithmetic including loop variables and aliases); (v) buffer size (heap buffers only 

with constant sizes, pointer casting); (vi) access types (via index, pointer 

dereference, in a library function, in a string function). 

4. Survey on overflow-related CVEs 

We believe that although evaluating with a test suite could give a good insight in a 

particular tool’s abilities, any test suite alone cannot perfectly represent the whole 

populations of buffer overflow defects in real code. One (but not the only one) noble 



Дудина И.А. Статический анализ для поиска переполнения буфера: актуальные направления развития. Труды 

ИСП РАН, том 30, вып. 3, 2018 г., стр. 21-30 

25 

goal for static analyzers is to prevent security vulnerabilities to sneak in the project 

source code. We wanted a better understanding of the features of a static analyzer 

that are more or less important for achieving this goal. Our survey technique was 

inspired by [9] and we mostly followed in their footsteps to produce a set of 

vulnerabilities to classify. 

We have to note that detection of exploitable vulnerabilities is not the only goal of a 

static analyzer. Still there are some types of defects that don’t lead to vulnerabilities 

or may not be exploited with ease, but it is undesirable to have those in the source 

code. Besides, we believe that nowadays developers more intensively use different 

(static and/or dynamic) analysis tools before releasing the product. For this reason, 

many simple defects are eliminated during the development process and don’t 

appear in the vulnerability databases. Consequently, we think that analysis of the 

vulnerabilities can reveal the weakest sides of modern static analysis and show 

potential improvement directions. 

First of all, we have randomly picked 100 entries from the “overflow” category 

from the CVE database [10]. For 25 of them we could find a source code of the 

vulnerable version to inspect. For each defect, we have studied its causes in the code 

and then classified the defect by several attributes. Our set of attributes is based on 

the taxonomy provided in [11] with some changes. 

Our first insight is that there are some trends in our sample that can be explained by 

the source of this sample (vulnerability database): (i) most of the overflows from 

our sample (72%) happened on write memory access, only few on read access; (ii) 

only the upper bounds of buffers are exceeded in the defects from our sample; (iii) 

almost all defects (92%) occurred when tainted data (unbounded data from network, 

file read, input parameters etc.) overflowed some buffer. 

We also noticed that simple errors (e.g. using unsafe functions like strcpy) are 

present in the old code (before 2010), but rarely in the late entries. We believe that 

this can be partially explained by the usage of code analysis tools. 

In our sample about a half of overflowed buffers (48%) reside on a stack, other half 

(48%) is allocated on a heap, and just a few are global variables. 

40% of all defects have overflowed buffer accessed via index (e.g. buf[i]), 12% 

via pointer dereference, 44% via library calls, 24% of which are string functions. 

The latter requires C-strings modeling to properly analyze such patterns. When 

buffer is accessed in a library call, we think of size/limit argument as an index 

(when it’s reasonable) for further investigation. 

According to our data, 48% of all vulnerable buffers have constant size (all stack 

and static buffers and a few buffers on the heap). Another 16% have a size that is 

calculated as a linear combination of other variables. As a result, almost half of all 

inspected defects require deep analysis of integer variables relationship to detect 

them. 

Another feature that we have evaluated for every entry is whether buffer allocation 

is global or resides in the same function with buffer access. We have found that this 
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is true only for 24% of defects. On the other hand, all index calculations are in the 

same function with the access in 32% of defects. Both properties are true for 12% of 

defects. It follows from the foregoing that interprocedural analysis is essential for 

buffer overflow detection. 

Last thing that we have checked is whether there exists a program point that any 

path through this point will lead to a corresponding error. If there is no such point, 

then we assume that path-sensitive analysis is needed to detect this defect. Our 

sample contains only 28% of defects, for which such a program point exists. This 

means that path-sensitivity will provide the real advantage for a static analysis tool. 

5. Svace buffer overrun detector 

Svace is a static analysis tool that is designed to find as many defects of different 

types as possible with few false positives and acceptable analysis time [12]. The 

purpose of this work is to improve the Svace buffer overflow detector with the most 

needed features. Our detector implements the interprocedural path-sensitive 

detection algorithm based on symbolic execution with state merging [13]. For now, 

the analysis scope is limited to detection overflows of buffers with compile-time-

known size. Our detector looks for faulty paths in a function, i.e. it reports a 

warning if it finds a path that for any input values is either infeasible or produces an 

error. Such a strict defect definition is chosen to prevent many false positives caused 

by unknown function preconditions. 

For a buffer access instruction, we collect a predicate that implies that there exists a 

faulty path through this instruction. We use an SMT solver to search a solution for 

this predicate if any. In case of this formula is satisfiable, we use its model provided 

by the solver to extract a faulty path. It follows from our experience that simply 

asking solver for any index value that exceeds buffer bounds in our case leads to 

many false positives. Reasons for that are unknown function precondition and 

symbolic path conditions being not precise enough (due to poor loop handling, calls 

of unknown or complex functions, etc.). 

Our interprocedural analysis is implemented using summaries. In the function 

summary, we save the information about relationships between integer values on 

function entry and exit points. We also save overflow conditions for those input-

dependent buffer accesses whose correctness can only be checked in the caller 

context. Such facts can be propagated to the caller more than once, so the analysis 

can find an overflow of a buffer allocated in a function that is far away on the call 

stack from a function with the access instruction. We also implemented a heuristic 

to handle simple loops that have an inductive variable iterating over an arithmetic 

progression. Currently on Android 5.0.2 our detector emits 351 warnings with 65% 

true-positive ratio. 
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6. Conclusion 

We have inspected a number of buffer overflow test suites, related CVE entries, and 

the source code of large production projects that our tool regularly analyzes. All 

three sources are essential to understand the design goals of a production quality 

static analyzer. Test suites expose a set of features to support that is easy to 

understand, classify, and check. On the other hand, they don’t provide a real picture 

of a production code. Inspecting vulnerabilities is useful but provides an 

exploitation-biased sample. Besides, it does not include defects eliminated during 

the development process (probably with the help of some static analyzer). Finally, 

while developing a static analyzer one always deals with false positives produced by 

the tool and reported by customers, but getting false negative samples is much more 

difficult. True positives reported by the other tools could be useful, but most of the 

state-of-the-art tools are proprietary and their results are closed. 

From what has been said above it follows that interprocedural analysis, path-

sensitivity and loop handling are essential. An analysis can really benefit from 

tracking affine relations between variables and modeling C-style strings as a very 

important case of buffers. 

Our current goal is to improve the Svace buffer overflow detector to reduce the 

number of false negatives while preserving the moderate level of false positives. For 

the aforementioned reasons, we think that the most promising directions are 

handling buffers with dynamic size, C-string modeling, and tracking tainted values. 

We are working now on the extension of our detection technique described in 

Section 5 by tracking string length changes happening during string operations in 

much the same way as we track buffer indexes while calculating integer values. We 

believe that this will be sufficient for most of cases, but there are some promising 

works in the area of string solvers [14] that would additionally allow to track also 

string contents. 

As we have seen, static analysis detection of buffer overflows requires a number of 

techniques from vastly various fields to move on the road from expectations to real 

code, and there will always be a way to go. 
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Аннотация. В последние десятилетия переполнение буфера остаётся одним из 

главных источников программных ошибок и эксплуатируемых уязвимостей. Среди 

прочих подходов к устранению подобных дефектов активное развитие получили 

различные методы статического анализа. В работе рассматриваются основные подходы 

и инструменты, используемые для решения этой задачи, с целью выявить наиболее 

популярные методы и типы обнаруживаемых ошибок. Также исследованы наборы 
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синтетических тестов (Juliet Test Suite, Toyota ITC benchmark) и выборка фрагментов 

кода реальных приложений, содержащих эксплуатируемую ошибку переполнения 

буфера. Для понимания направлений развития промышленного статического 

анализатора важно рассматривать оба эти источника примеров ошибочных программ. 

Наборы тестов очерчивают круг ситуаций, которые необходимо поддержать в 

анализаторе, при этом их легко понять, классифицировать и проверить. С другой 

стороны, они не отражают распределение таких ситуаций в реальном коде. Выборка 

уязвимостей из промышленных проектов также представляет интерес для 

исследования, но оказывается смещённой в сторону эксплуатируемых ошибок и к тому 

же не включает ошибки, исправленные на стадии разработки (возможно, как раз с 

использованием статического анализатора). Полученные данные были использованы 

для выделения основных шаблонов дефектов, которые должен обнаруживать 

статической анализатор с точки зрения пользователя. В результате исследования к 

наиболее важным возможностям статического анализатора были отнесены 

межпроцедурный путе- и контекстно-чувствительный анализ, а также базовая 

поддержка циклов. Кроме того, полезными оказываются отслеживание аффинных 

отношений между переменными и моделирование строк как важного случая 

использования массивов. Результаты данного исследования используются для 

улучшения детектора переполнения буфера, реализованного в рамках инфраструктуры 

статического анализатора Svace. На данный момент используется межпроцедурный 

чувствительный к путям и контексту анализ, позволяющий обнаруживать 

переполнения буфера на стеке и в статической памяти с долей истинных срабатываний 

65%. По результатам исследования наиболее перспективными направлениями 

представляются поддержка строковых операций и внедрение анализа помеченных 
данных в имеющиеся подходы. 
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