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Abstract. Over the last few decades buffer overflow remains one of the main sources of
program errors and vulnerabilities. Among other solutions several static analysis techniques
were developed to mitigate such program defects. We analyzed different approaches and
tools that address this issue to discern common practices and types of detected errors. Also,
we explored some popular sets of synthetic tests (Juliet Test Suite, Toyota ITC benchmark)
and set of buggy code snippets extracted from real applications to define types of defects that
a static analyzer is expected to uncover. Both sources are essential to understand the design
goals of a production quality static analyzer. Test suites expose a set of features to support
that is easy to understand, classify, and check. On the other hand, they don’t provide a real
picture of a production code. Inspecting vulnerabilities is useful but provides an exploitation-
biased sample. Besides, it does not include defects eliminated during the development
process (probably with the help of some static analyzer). Our research has shown that
interprocedural analysis, path-sensitivity and loop handling are essential. An analysis can
really benefit from tracking affine relations between variables and modeling C-style strings as
a very important case of buffers. Our goal is to use this knowledge to enhance our own buffer
overrun detector. Now it can perform interprocedural context- and path-sensitive analysis to
detect buffer overflow mainly for static and stack objects with approximately 65% true
positive ratio. We think that promising directions are improving string manipulations
handling and combining taint analysis with our approaches.
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1. Introduction

Buffer overflow is a type of program defect caused by buffer access with index that
exceeds buffer’s bounds. This can lead to a program crash or even to a security
vulnerability. Defects of such kind are still common, despite all efforts made to
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eliminate them. There are several techniques one can apply to detect buffer
overflows. One approach is to employ testing and dynamic analysis. These methods
don’t suffer from false positives, but in most cases, it’s impossible to check all
execution paths, so some defects can remain undetected. Another approach is to
analyze program code without executing it. In this way, one can find a defect on any
path, even rarely executed. In this paper, we will focus on the latter approach known
as static analysis.

We are interested in building a buffer overflow detector that is applicable to large
C/C++ programs with millions of lines of code while producing decent analysis
performance and quality. Basic properties of the algorithms constituting such a
detector are well-known and include among others interprocedural analysis, path
sensitivity, and loop handling. However, after initial support for these features has
been made and the quality goals achieved, it is unclear which direction to choose for
the further improvement. The usual development pace that comes from the customer
feedback and own code analysis may be not enough. In the following chapters, we’ll
overview possible sources of inspiration for the buffer overflow detector
development, present our short survey that is based on the buffer overflow-related
vulnerabilities sample from the CVE database, then briefly describe our experience
of developing an overrun detector as a part of the Svace tool, and present our
conclusions from tools and vulnerabilities analysis.

2. Buffer overflow detection techniques and tools

There exist many static analysis tools that can detect buffer overflows. In this
section, we conduct a brief survey on the most popular methods.

Some buffer overflows can be detected during the process of lexical analysis, like in
the 1TS4 tool [1]. Most common errors and bad patterns can be found at this level.
This technique can work really fast and, as it doesn’t involve compilation, can be
easily applied to any code, even if it is not complete. As a result, such analysis can
be performed “on-the-fly” during the process of code development with IDE, so that
erroneous patterns are eliminated on the very early coding stage. Of course, such a
lightweight method is far from being sound, i.e. it misses many defects. Even
changing the name of a variable can prevent such tools from detecting a defect.

To detect more defects a deeper analysis of code is needed. To achieve this, many
tools use the idea of abstract interpretation [2]. Some tools chose different numerical
abstract domains to implement the analysis of integer index values, buffer sizes, and
string lengths. These domains include intervals, zones, octagons, affine equalities,
interval linear equalities, convex polyhedra, tropical polyhedra, etc. [3]. Tools based
on these approaches derive sound relationship between integer values listed above
in varying degrees of precision. Soundness is a major advantage of such tools, but
less precise domains produce large number of false positives, while analysis with
more precise domains doesn’t scale on many real-world programs.

Another popular approach is symbolic execution. The main idea of this method is
performing analysis by traversing all paths in a function separately. This approach
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can be used to build a path-sensitive detector i.e. that can find errors that, at the
same time, occur only on a certain feasible function path and are not inevitable for
any single point from this path alone. While processing a particular path, the
analyzer keeps track of variables values and relationships and computes a path
predicate, i.e. a conjunction of all corresponding branch conditions that are taken
along this path. This information is used to prune infeasible paths and check buffer
access instructions. Analyzing all paths in a function can be a challenging task due
to the path explosion, so a number of techniques are proposed to reduce this
problem. A simple, but often effective approach is to abandon the idea of full path
coverage and just to stop the analysis after some threshold or time limit reached.
Another approach is to merge symbolic states at join points, preserving path-
sensitivity of analysis by providing guard conditions for joined states. Third
approach, first introduced in Marple, is employing demand-driven analysis [4], [5],
i.e. reducing the set of analyzed paths by focusing only on those that end with
buffers access.

One of the main obstacles for all mentioned symbolic execution-based approaches is
handling loops. Typical solution is to implement some heuristics to handle the most
simple and common loops and ignore other loops. However, there are methods
proposed to handle loops with multiple paths inside and summarize their effect on
program values [6].

Many buffer overflow errors are caused by violations of function contracts. This can
happen when a caller of a library or a user function provides unexpected data to a
function, or, on the contrary, a function is not able to correctly handle all input cases
implied by the contract. Interprocedural analysis is needed to detect such
inconsistencies.

On the lexical analysis level, formal and actual arguments matching can be based on
similar variables names and usually happens only for the well-known library callees
like memcpy. For more rigorous scan some tools analyze the whole program as a
unified inter-procedural graph. The monomorphic analysis merges information for
every call-site — efficient, but imprecise approach. The polymorphic analysis treats
each call site individually, so this approach provides context-sensitivity but scales
poorly.

An alternative approach is using some approximation of a function’s behavior when
analyzing its caller. These approximations can be provided in user’s annotations, but
they are not always available. A tool can use its own findings obtained by the callee
analysis as an approximation. This approached is called summary-based. By
choosing the right function order, a tool can minimize the number of missing
summaries, but handling recursion still requires additional tricks, e.g. making
several analysis passes over strongly connected components of the call graph.

3. Buffer overflow detection tools benchmarking

For the past twenty years several studies have been published on evaluating and
testing buffer overflow detectors. In addition, there exist different test suites, which
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provide sets of synthetic buggy and correct code snippets to test the abilities and
false positive rate of static analysis tools.

One of the biggest and probably the most popular benchmark is Juliet Test Suite
C/C++, created by NSA’s Center for Assured Software (CAS) [7]. For C/C++ code
it contains 64,099 test cases tagged by CWE entries. Groups corresponding to buffer
overflow defects are CWE 121 — “Stackbased Buffer Overflow” (4,968 tests),
CWE 122 — “Heapbased Buffer Overflow” (5,922 tests), CWE 124 — “Buffer
Underwrite” (2,048 tests), CWE 126 — “Buffer Over-read” (1,452 tests), and CWE
127 — “Buffer Under-read” (2048 tests). Tests in this suite are also tagged with a
number called “flow variant” that represents the complexity of control and data flow
in a particular test case.

Control  flow variants cover different types of conditionals (e.g.
STATIC CONST FIVE==5, globalReturnsTrueOrFalse(), etc.) and
different control statements (switch, while, etc.). Data flow variants describe
many types of intraprocedural data flow and interprocedural interaction, e.g. data
passing through function arguments (via pointer, C++ reference, array, container,
etc.), return value, global variable, etc. There are many flow variants that represent
C++-specific features and not applicable to C-tests.

We noticed that the distribution of the flow variants is close to uniform in groups of
our interest. Another observation is large number of tests involving wide characters.
Many tests contain library function usage, e.g. memcpy-like functions, string
manipulations, format string processing, etc.

Toyota ITC Benchmark is a test suite created by Toyota InfoTechnology Center
aimed at the static analysis tool evaluation [8]. It contains 1,276 simple tests (638
erroneous and 638 correct) divided into 9 types and 51 sub-types. Our interest is in
the following tests: sub-types “static buffer overrun” (54 cases), “static buffer
underrun” (13 cases) from the “static memory” type and sub-types “dynamic buffer
overflow” (32 cases), “dynamic buffer underrun” (39 cases) from the “dynamic
memory” type. Each case is represented by a pair of a buggy test and a fixed test.
These samples cover following features in varying combinations: (i) static, stack
and heap buffers; (ii) different element types (char, int, £loat, struct, etc.);
(iii) index calculations (constant, linear and non-linear expressions, passed as an
argument or returned from a function, loop variables and array elements); (iv)
obtaining buffer address (local/global variable, function argument, pointer
arithmetic including loop variables and aliases); (v) buffer size (heap buffers only
with constant sizes, pointer casting); (vi) access types (via index, pointer
dereference, in a library function, in a string function).

4. Survey on overflow-related CVEs

We believe that although evaluating with a test suite could give a good insight in a
particular tool’s abilities, any test suite alone cannot perfectly represent the whole
populations of buffer overflow defects in real code. One (but not the only one) noble
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goal for static analyzers is to prevent security vulnerabilities to sneak in the project
source code. We wanted a better understanding of the features of a static analyzer
that are more or less important for achieving this goal. Our survey technique was
inspired by [9] and we mostly followed in their footsteps to produce a set of
vulnerabilities to classify.

We have to note that detection of exploitable vulnerabilities is not the only goal of a
static analyzer. Still there are some types of defects that don’t lead to vulnerabilities
or may not be exploited with ease, but it is undesirable to have those in the source
code. Besides, we believe that nowadays developers more intensively use different
(static and/or dynamic) analysis tools before releasing the product. For this reason,
many simple defects are eliminated during the development process and don’t
appear in the vulnerability databases. Consequently, we think that analysis of the
vulnerabilities can reveal the weakest sides of modern static analysis and show
potential improvement directions.

First of all, we have randomly picked 100 entries from the “overflow” category
from the CVE database [10]. For 25 of them we could find a source code of the
vulnerable version to inspect. For each defect, we have studied its causes in the code
and then classified the defect by several attributes. Our set of attributes is based on
the taxonomy provided in [11] with some changes.

Our first insight is that there are some trends in our sample that can be explained by
the source of this sample (vulnerability database): (i) most of the overflows from
our sample (72%) happened on write memory access, only few on read access; (ii)
only the upper bounds of buffers are exceeded in the defects from our sample; (iii)
almost all defects (92%) occurred when tainted data (unbounded data from network,
file read, input parameters etc.) overflowed some buffer.

We also noticed that simple errors (e.g. using unsafe functions like strcpy) are
present in the old code (before 2010), but rarely in the late entries. We believe that
this can be partially explained by the usage of code analysis tools.

In our sample about a half of overflowed buffers (48%) reside on a stack, other half
(48%) is allocated on a heap, and just a few are global variables.

40% of all defects have overflowed buffer accessed via index (e.g. buf [i]), 12%
via pointer dereference, 44% via library calls, 24% of which are string functions.
The latter requires C-strings modeling to properly analyze such patterns. When
buffer is accessed in a library call, we think of size/limit argument as an index
(when it’s reasonable) for further investigation.

According to our data, 48% of all vulnerable buffers have constant size (all stack
and static buffers and a few buffers on the heap). Another 16% have a size that is
calculated as a linear combination of other variables. As a result, almost half of all
inspected defects require deep analysis of integer variables relationship to detect
them.

Another feature that we have evaluated for every entry is whether buffer allocation
is global or resides in the same function with buffer access. We have found that this
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is true only for 24% of defects. On the other hand, all index calculations are in the
same function with the access in 32% of defects. Both properties are true for 12% of
defects. It follows from the foregoing that interprocedural analysis is essential for
buffer overflow detection.

Last thing that we have checked is whether there exists a program point that any
path through this point will lead to a corresponding error. If there is no such point,
then we assume that path-sensitive analysis is needed to detect this defect. Our
sample contains only 28% of defects, for which such a program point exists. This
means that path-sensitivity will provide the real advantage for a static analysis tool.

5. Svace buffer overrun detector

Svace is a static analysis tool that is designed to find as many defects of different
types as possible with few false positives and acceptable analysis time [12]. The
purpose of this work is to improve the Svace buffer overflow detector with the most
needed features. Our detector implements the interprocedural path-sensitive
detection algorithm based on symbolic execution with state merging [13]. For now,
the analysis scope is limited to detection overflows of buffers with compile-time-
known size. Our detector looks for faulty paths in a function, i.e. it reports a
warning if it finds a path that for any input values is either infeasible or produces an
error. Such a strict defect definition is chosen to prevent many false positives caused
by unknown function preconditions.

For a buffer access instruction, we collect a predicate that implies that there exists a
faulty path through this instruction. We use an SMT solver to search a solution for
this predicate if any. In case of this formula is satisfiable, we use its model provided
by the solver to extract a faulty path. It follows from our experience that simply
asking solver for any index value that exceeds buffer bounds in our case leads to
many false positives. Reasons for that are unknown function precondition and
symbolic path conditions being not precise enough (due to poor loop handling, calls
of unknown or complex functions, etc.).

Our interprocedural analysis is implemented using summaries. In the function
summary, we save the information about relationships between integer values on
function entry and exit points. We also save overflow conditions for those input-
dependent buffer accesses whose correctness can only be checked in the caller
context. Such facts can be propagated to the caller more than once, so the analysis
can find an overflow of a buffer allocated in a function that is far away on the call
stack from a function with the access instruction. We also implemented a heuristic
to handle simple loops that have an inductive variable iterating over an arithmetic
progression. Currently on Android 5.0.2 our detector emits 351 warnings with 65%
true-positive ratio.
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6. Conclusion

We have inspected a number of buffer overflow test suites, related CVE entries, and
the source code of large production projects that our tool regularly analyzes. All
three sources are essential to understand the design goals of a production quality
static analyzer. Test suites expose a set of features to support that is easy to
understand, classify, and check. On the other hand, they don’t provide a real picture
of a production code. Inspecting vulnerabilities is useful but provides an
exploitation-biased sample. Besides, it does not include defects eliminated during
the development process (probably with the help of some static analyzer). Finally,
while developing a static analyzer one always deals with false positives produced by
the tool and reported by customers, but getting false negative samples is much more
difficult. True positives reported by the other tools could be useful, but most of the
state-of-the-art tools are proprietary and their results are closed.

From what has been said above it follows that interprocedural analysis, path-
sensitivity and loop handling are essential. An analysis can really benefit from
tracking affine relations between variables and modeling C-style strings as a very
important case of buffers.

Our current goal is to improve the Svace buffer overflow detector to reduce the
number of false negatives while preserving the moderate level of false positives. For
the aforementioned reasons, we think that the most promising directions are
handling buffers with dynamic size, C-string modeling, and tracking tainted values.
We are working now on the extension of our detection technique described in
Section 5 by tracking string length changes happening during string operations in
much the same way as we track buffer indexes while calculating integer values. We
believe that this will be sufficient for most of cases, but there are some promising
works in the area of string solvers [14] that would additionally allow to track also
string contents.

As we have seen, static analysis detection of buffer overflows requires a number of
techniques from vastly various fields to move on the road from expectations to real
code, and there will always be a way to go.
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CTtaTtuyeckum aHanus gns novcka nepenonHeHus oydepa:
aKTyasribHble HanpaBJieHUs1 pa3BUTUA

U A. Jlyouna <eupharina@ispras.ru>
Hucmumym cucmemnozo npoepammuposanusi um. B.I1. Ueannuxosa PAH,
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AnHotamms. B mocnennme pecstuneruss nepenonHenue Oydepa octadTcs OXHHM U3
TJIABHBIX HMCTOYHMKOB TPOTPAMMHBIX OIIHOOK M SKCITyaTHPyeMbIX ys3BUMocTed. Cpeau
MpOYMX TOAXOJOB K YCTPAHEHUIO MOMOOHBIX Je()EKTOB AKTHBHOE DPAa3BUTUE MONYIHIN
pa3IMYHBIE METOJIBI CTATHYECKOTO aHaIu3a. B paboTe paccMaTpHBalOTCsl OCHOBHBIE OAXOIBI
U MHCTPYMEHTBI, HCHONb3yeMble I PELIeHHs 3TON 3ahadd, C LEeNbI0 BBIIBUTH Haubonee
TIOIYJSIPHBIE METOJBI M THIIBI OOHApYy)XMBaeMBIX OIIMOOK. Takke HcCleNOBaHBI HAOOPHI

28



Jynuna N.A. Cratiyeckuil aHau3 JUlsl IOMCKa NepernoyiHenus Oydepa: akTyanbHble HANPaBICHUs pa3BUTHSA. Tpyost
UCII PAH, tom 30, Beim. 3, 2018 r., ctp. 21-30

cunrernyeckux Tecros (Juliet Test Suite, Toyota ITC benchmark) u BeiGopka dparmeHToB
KOJla PEATbHBIX IPWIOKEHHH, COJEpKallUX OSKCIUTyaTUPYEeMyIO OIIMOKY IepeTIOoIHEHHS
Oydepa. Jnd NOHMMaHHA HANpPaBICHUH pa3BUTHA MPOMBIIUICHHOTO CTaTHYECKOTO
aHAIN3aTOpa BaXHO PAacCMAaTpUBaTh 00a 3TH UCTOYHUKA MPHMEPOB OMIUOOYHBIX MPOrPAMM.
HaGopbsl TecTOB ouepuMBalOT KPYr CHTyaluii, KOTOpbIE HEOOXOAMMO MOJJAEpPKaTbh B
aHaNU3aTope, MpU 3TOM HUX JIETKO TNOHATh, KiIaccuuuupoBaTh U HpoBeputh. C apyroi
CTOpPOHBI, OHH HE OTPAXAIOT paclpelelieHNe TaKUX CUTYallMid B pealbHOM Kone. Bribopka
YA3BUMOCTEH W3 IIPOMBIIUICHHBIX IIPOEKTOB TaKXKe IIPEJCTaBIsIeT HHTEpeC I
HCCIIE0BAHMS, HO OKa3bIBAeTCSl CMENIEHHON B CTOPOHY AKCILTYaTHPYEMBIX OIINOOK U K TOMY
JKe He BKIFOYAaeT OINMOKW, MCHpaBJICHHBIE Ha CTaIuM pa3paboTKH (BO3MOXKHO, KaK pa3 ¢
HCTIONb30BaHUEM CTAaTHUYECKOr0 aHaiamu3aTopa). [loiaydeHHBIE MaHHBIE OBUIM HCIIOIB30BaHEI
JUIL BBIACNEHHS OCHOBHBIX IIa0JIOHOB Je(EKTOB, KOTOpbIe JOJDKEH OOHapyKUBaTh
CTaTHYECKOI aHaIM3aToOp C TOYKH 3pPEHHUs IOIb30BaTels. B pesynbrare McciemoBaHHS K
Hapbollee BaXHBIM BO3MOXHOCTSIM ~ CTaTHYECKOTO — aHaIM3aTopa ObUIM  OTHECEHBI
MEXIMPOIEAYPHbIH IyTe- M KOHTEKCTHO-UyBCTBUTEIBHBIA aHaIM3, a Takke Oa3oBas
noanepkka HUKIOB. Kpome TOro, NoJe3HBIMH OKAa3bIBAIOTCS OTCIeXHBaHWE ad(OUHHBIX
OTHOIICHUH MEXAy MEepeMEHHBIMA MW MOJCIHPOBAHME CTPOK KaK BaXXHOTO CIIydast
UCIIONB30BaHHUSI MAacCHBOB. Pe3ynbTaTel JaHHOTO HCCICIOBAHUS HCIIONB3YIOTCS UL
YIy4IICHHS] IeTEKTOpa MepernoiHeHns 0ydepa, peann3oBaHHOTO B paMKax HHQPACTPYKTYpEI
CTaTHYECKOro aHamm3atopa Svace. Ha naHHbBI MOMEHT HCIOJB3YeTCs MEXKIIPOLEIyPHBII
YyBCTBUTENBHBIH K MyTIM H KOHTEKCTy aHalW3, IO3BOJAIOIINA O0OHApyXuBaTh
nepenoiHeHus Oydepa Ha CTeKe U B CTATHUECKON MaMATH C A0JIeil HCTHHHBIX cpadaThIBaHUI
65%. Ilo pesynpraTaM HCCIENOBaHUS HanOoee TEPCIEKTHBHBIMU HANpaBlIeHUIMHI
NPENCTABISIFOTCS TOJIEPKKAa CTPOKOBBIX OIEpaluii M BHEJPEHHE aHalu3a MOMEYEHHBIX
JTAHHBIX B MMEIOIIHECS TTOIXO0IBL.

KniodeBble cj10Ba: aHANIN3 IPOTPAMM,; CTaTUYECKUH aHAJIN3, IepenoHeHne Oydepa
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