Stealth debugging of programs in Qemu
emulator with WinDbg debugger

M.A. Abakumov <mikhail.abakumov@ispras.ru>
P.M. Dovgalyuk <dovgaluk@ispras.ru>
Yaroslav-the-Wise Novgorod State University,
41, Great St. Petersburg st., Velikiiy Novgorod, 173003, Russia

Abstract. When programs are analyzed for the presence of vulnerabilities and malicious
code, there is a need for a quality isolation of the analysis tools. There are two reasons for
this. At first, the program can influence the tool environment. This problem is solved by
using the emulator. At second, the tool environment can influence behavior of the analyzed
program. So, the programmer will think that the program is harmless, but in fact it is not. This
problem is solved by the mechanism of stealth debugging. The WinDbg debugger has the
possibility of connecting to a remote debug service (Kdsrv.exe) in the Windows kernel.
Therefore, it is possible to connect to the guest system running in the QEMU emulator.
Interaction between WinDbg client and server occurs through packets by protocol KDCOM.
However, kernel debugging is possible only with the enabled debugging mode in boot
settings. And it reveals the debugging process. We developed special module of WinDbg
debugger for Qemu emulator. It is an alternative of the remote debugging service in the
kernel. Thus, the debugger client tries to connect to the WinDbg server, but module intercepts
all packets, generates all the necessary information from the Qemu emulator and sends
response to the client. Module completely simulates the behavior of the server, so the client
does not notice the spoofing and perfectly interacts with it. At the same time for debugging
there is no need to enable debugging mode in the kernel. This leads to stealth debugging. Our
module supports all features of WinDbg regarding remote debugging, besides interception of
events and exceptions.

Keywords: WinDbg; Qemu; Windows; remote debugging; stealth debugging

DOI: 10.15514/ISPRAS-2018-30(3)-6

For citation: Abakumov M.A., Dovgalyuk P.M. Stealth debugging of programs in Qemu
emulator with WinDbg debugger. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018. pp.
87-92. DOI: 10.15514/ISPRAS-2018-30(3)-6

1. Introduction

When performing a dynamic analysis of binary (executable) code, the problem
arises of qualitatively isolating the code and the instrumentation on which this

87

Abakumov M.A., Dovgalyuk P.M. Stealth debugging of programs in Qemu emulator with WinDbg debugger. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 87-92

analysis is performed. The need for isolation is dual. On the one hand, it is
necessary to limit the impact of the code being studied, since it is able to affect the
state of the instrument machine, which is especially important in the study of
malicious software. On the other hand, analysis tools can indirectly change the
behavior of the program being studied. The most indicative are the situations when
errors in working with dynamic memory and race conditions cease to appear in the
debugging mode.

The search for undocumented features in a binary code encounters a similar
problem. Various techniques and techniques are known [1], with the help of which
malware reveals that its execution takes place in a controlled environment, and does
not fulfill its objective functions. To find the debugger to be connected, check the
int 3 handler and hardware debug registers, evaluate the behavior of certain API
functions, and track the progress of the system time.

It is possible to divide potential sources of information, which makes it possible to
identify the fact of working in a controlled environment into three disjoint groups.
The first is the interaction with external, uncontrolled components, the program
being studied, such as remote servers. To the same category, it is necessary to
include speed checks. Successful struggle with such sources allows the mechanism
of deterministic reproduction [2]. If you write the progress of the system in advance,
when debugging and analyzing it during playback, there will be no effect on the
guest's state because all time characteristics are fixed during recording. The second
group of sources is the discrepancy in the behavior of the equipment [3]. The
implementation of virtual equipment in software emulators is not always ideal.
Known inaccuracies can be used to determine the emulator in which the program
runs. The third group is the analysis tools present in the runtime. This kind of
facility occurs even when the debugger is running in conjunction with a virtual
machine.

2. Related work

In the Qemu emulator at the moment there is only a module of the GDB debugger,
which allows debugging the kernel of the system, but in itself it has relatively small
functionality and does not have a GUI. You can use IDA Pro Disassembler [4] ore
to connect to the emulator via the GDB interface, but this will not extend the range
of the GDB's features, but will only increase the ease of use. In addition, there is a
utility called Winbagility [5], which allows the debugger WinDbg to connect to the
kernel without debugging mode of the operating system. It is utility for the
VirtualBox emulator and is the intermediary between the debugger and the
emulator. There is the FDP protocol between Winbagility and the emulator - the
introspection API for VirtualBox. It is a minus in this implementation, since the
number of provided functions limits the interface.

88

AbakymoB M.A., Jlosramok IL.M. Ckpsitas oTnazaka nporpamm oriagunkom WinDbg B smynsitope Qemu. Tpyost
HUCII PAH, tom 30, Beim. 3, 2018 r,, ctp. 87-92

3. WinDbg

The WinDbg debugger is one of the most advanced debuggers for Windows
operating systems. WinDbg is claimed by developers, because it extracts symbolic
information from applications and libraries, displays the contents of internal
Windows data structures, performs remote debugging of a physical or virtual
machine. WinDbg can be used for debugging user applications, device drivers, the
operating system itself in kernel mode, to analyze memory dumps in kernel mode
created after the so-called Blue Screen of Death, which occurs when an error is
issued. It can also be used for debugging custom mode crash dumps. WinDbg
supports several debugging modes: debugging the local process, debugging the
kernel, and remote debugging.

Target applications can easily detects local debugging process. Remote debugging
requires enabled debugging mode in kernel. In this mode kernel uses the debugging
server (KdSrv.exe) for interacting with remotely client. But It is also reveals system
control (Fig. 1).

QEMU

Windows : WinDbg
CPU+RAM kernel <:: Client

Fig. 1. Direct kernel debugging

4. Stealth debugging

We developed a mechanism for stealth debugging for the QEMU emulator, which
allows WinDbg to be remotely connected. The mechanism is an analysis module
built into the emulator, and turns out to be an external tool in relation to the guest
system. The needs of the KdSrv service in the kernel of the debugging system is not
required - the analysis module itself extracts the necessary data from the system and
transfers it to the remote client debugger (Fig. 2). The programs running in the guest
system cannot track the presence of the connected debugger through functions such
as IsDebuggerPresent or through the state of the hardware registers.

One way to remotely kernel debugging using the WinDbg debugger is to debug
through the COM port. Interaction between the computers takes place via a private
KDCOM protocol, the specification of which has been restored. One of the
computers in this case is represented by a virtual machine. The second is an
instrumental computer with Windows OS where this machine is started. Running

89

Abakumov M.A., Dovgalyuk P.M. Stealth debugging of programs in Qemu emulator with WinDbg debugger. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 87-92

WinDbg client connects to the emulator via a named pipe, through which the COM-
port of the virtual machine is forwarded.

The developed module for the emulator fully implements the KDCOM protocol,
within the framework of the restored specification, so the debugger WinDbg
interacts with it, as with the debugging module of the Windows kernel, without
noticing the substitution. It should be noted that the use of the QEMU emulator as a
runtime opens the possibility of debugging during deterministic playback of the
virtual machine. The recorded scenarios can be debugged many times in the
emulator, which would not be possible if the Windows debug module running inside
the guest system were used.

QEMU
CPU + RAM -
d WinDbg WinDbg
i module Client
Windows P
kernel
D

Fig. 2. Kernel debugging through the special module

5. Results and contributons

The developed module supports almost all features of WinDbg regarding remote
debugging, besides interception of events and exceptions. It is open source project
placed in: github.com/ispras/gemu/tree/windbg. The official community recognized
the module as useful. In addition, patches have already been prepared for inclusion
in the official repository.

6. Acknowledment

The work was supported by the Ministry of Education and Science of Russia,
research project No. 2.6146.2017/8.9.

90

AbakymoB M.A., Jlosramok IL.M. Ckpsitas oTnazaka nporpamm oriagunkom WinDbg B smynsitope Qemu. Tpyost
HUCII PAH, tom 30, Beim. 3, 2018 r,, ctp. 87-92

References

[1]. Timothy Vidas and Nicolas Christin. Evading android runtime analysis via sandbox
detection. In Proceedings of the 9th ACM Symposium on Information, Computer and
Communications Security, 2014, pp. 447- 458.

[2]. P. Dovgalyuk. Deterministic Replay of System's Execution with Multi-target QEMU
Simulator for Dynamic Analysis and Reverse Debugging. In Proceedings of the 2012
16th European Conference on Software Maintenance and Reengineering, 2012, pp. 553-
556.

[3]. Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi. A
fistful of red-pills: how to automatically generate procedures to detect CPU emulators.
In Proceedings of the 3rd USENIX conference on Offensive technologies (WOOT'09).
2009.

[4]. IDA ProDisassembler. Available at: https://www.hex-
rays.com/products/ida/index.shtml, accessed 19.06.2018.

[5]- Winbagility. Available at: https://winbagility.github.io/, accessed 19.06.2018.

CkpbiTaa otnagka nporpamm otnagymkom WinDbg B
amynaTtope Qemu

M.A. Abaxymos <mikhail.abakumov@ispras.ru>
II.M. Jloszanok <dovgaluk@ispras.ru>
Hoseopoocxkuii cocyoapcmeennwiti ynugepcumem umenu SApociasa Myopoeo,
173003, Poccus, Benuxuii Hogeopoo, bonvwas Canxkm-Ilemepoypeckas, o. 41

AnHotamms. Ilpy aHanmse mporpaMM Ha Hajlu4Me YSI3BUMOCTEH M BPEIOHOCHOTO KoOJa
ObIBAIOT CUTyallMM, B KOTOPBIX BO3HHMKAaeT HEOOXOAMMOCTh KadeCTBEHHOW M30JIALUU
HMHCTPYMEHTOB aHaju3a. DTOMY €CTh JIB€ IIPUUUHBI. Bo-TIepBbIX, aHANM3UpyeMas IporpaMma
MOXXET BJIMATH Ha MHCTPYMEHTAJBHYIO Ccpely. DJTa mpoliema pelaercs HCIOJIb30BaHHEM
sMynsTopa. BoO-BTOpBIX, MHCTPYMEHTHI aHaNMM3a MOTYT BIMATh Ha IpOrpaMMmy. Tak,
TIPOTPaMMICT MOXET II0{yMaTh, YTO IIporpaMma 0e30IMacHa, XOTsl Ha CaMOM JIeJIe 9TO MOKET
OBITH He Tak. DTa MpobiIeMa MOXKET OBITh pelIeHa MEXaHU3MOM CKPBITOH oTiaaaku. OTiagank
WinDbg umeer QyHKIHIO MOAKIIOYCHUS K YIAJICHHOMY OTJIaJjouHOMy cepBepy (Kdsrv.exe),
3amymeHHoMy B siape Windows. ITo3ToMy e€cTh BO3MOXKHOCTH MOIKIIOUUTHCS K TOCTEBOH
cucreme, 3amyuieHHol B amyssaTope QEMU. KimeHT B3anMonelcTBYeT ¢ cepBepoM udepes
naketsl 1o nporokonry KDCOM. OpHako OTIaXHBaTh SAPO MOXKHO JIMIIb C BKIIOYECHHBIM
PSKUMOM OTJAJKH B HACTPOMKax 3allycka, YTO pAacKpbIBaeT Ipolecc OTIagkd. Mbl
pa3paboTany crenuambHEI Moxynab orTiaamunka WinDbg mmst QEMU, xoTopslil siBisercs
IBTEPHATHBON yJaJeHHOMY OTJIaIOYHOMY CEPBHCY B siape. MoIyib mepexBaThIBaeT MaKeThl
Ipu B3aMMOJACHCTBMM KJIMEHTa ommamgunka WinDbg c¢ cepBepoM, CaMOCTOSATEIBHO
TEHEPHPYET BCIO HEOOXOMUMYIO OTJIAJOYHYI0 HH(OPMAIMIO, HCIIOIb3YS BO3MOXKHOCTH
sMysaTopa Qemu, u OTHpaBiIAeT OTBET KIMEHTY. MOyJIb HOJHOCTBIO SIMYJIUPYET ITOBEICHNE
OTJIaIOYHOTO CEPBEPa, TO3TOMY KIIHEHT Ha 3aMeYaeT MOAMEHBI U YCIIEITHO B3aUMOEHCTBYET
c HuM. Ilpu 3ToM oTmagaeT HEOOXOJMMOCTH B OTJIQJOYHOM pEXHMME siipa. TeM caMbiM
MPOUCXOAUT CKpbITasg oOTnaaka. IIpu ucHons3oBaHUM MOIyNs pPabOTOCHOCOOHBI BCE

91

Abakumov M.A., Dovgalyuk P.M. Stealth debugging of programs in Qemu emulator with WinDbg debugger. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 87-92

BO3MOXHOCTH WinDbg, KoTOpble OH MpEeACTaBIsIeT A yOaJeHHOM OTJIAAKH, KpoMme
nepexBaTa COOBITUH U UCKITIOUEHUM.

Kumouessie ciosa: WinDbg; Qemu; Windows; yraneHHast OTlIaJIKa; CKPBITas OTJIaKa

DOI: 10.15514/ISPRAS-2018-30(3)-6

Jas uurnpoBanmsi: AbakymoB M.A., [losramox II.M. Ckpbltas oTiagka HporpamMm
otmagankoM WinDbg B smymsitope Qemu. Tpyast UCIT PAH, tom 30, Bem. 3, 2018 r., c1p.
87-92 (ua anrmuiickom s3bike). DOI: 10.15514/ISPRAS-2018-30(3)-6

Cnucok nutepatypbl

[1]. Timothy Vidas and Nicolas Christin. Evading android runtime analysis via sandbox
detection. In Proceedings of the 9th ACM Symposium on Information, Computer and
Communications Security, 2014, pp. 447- 458.

[2]. P. Dovgalyuk. Deterministic Replay of System's Execution with Multi-target QEMU
Simulator for Dynamic Analysis and Reverse Debugging. In Proceedings of the 2012
16th European Conference on Software Maintenance and Reengineering, 2012, pp. 553-
556.

[3]. Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi. A
fistful of red-pills: how to automatically generate procedures to detect CPU emulators.
In Proceedings of the 3rd USENIX conference on Offensive technologies (WOOT'09).
20009.

[4]. IDA Pro Disassembler. Pexum nocryma: https://www.hex-
rays.com/products/ida/index.shtml, nata o6pamenus 19.06.2018.

[5]. Winbagility. Pexum mocryma: https://winbagility.github.io/, mata o6pamenus
19.06.2018.

92

