Configurable system call tracer in QEMU
emulator

A.V. Ivanov <alexey.ivanov@ispras.ru>
P.M. Dovgaluk <pavel.dovgaluk@ispras.ru=
V.A. Makarov <vladimir.makarov@ispras.ru>
Yaroslav-the-Wise Novgorod State University,
41, Great St. Petersburg st., Velikiiy Novgorod, 173003, Russia

Abstract. Sometimes programmers face the task of analyzing the work of a compiled
program. To do this, there are many different tools for debugging and tracing written
programs. One of these tools is the analysis of the application through system calls. With a
detailed study of the mechanism of system calls, you can find a lot of nuances that you have
to deal with when developing a program analyzer using system calls. This paper discusses the
implementation of a tracer that allows you to analyze programs based on system calls. In
addition, the paper describes the problems that | had to face in its design and development.
Now there are a lot of different operating systems and for each operating system must be
developed its own approach to implementing the debugger. The same problem arises with the
architecture of the processor, under which the operating system is running. For each
architecture, the analyzer must change its behavior and adjust to it. As a solution to this
problem, the paper proposes to describe the operating system model, which we analyze. The
model description is a configuration file that can be changed depending on the needs of the
operating systems. When a system call is detected the plugin collects the information
downloaded from the configuration file. In a configuration file, arguments are expressions, so
we need to implement a parser that needs to recognize input expressions and calculate their
values. After calculating the values of all expressions, the tracer formalizes the collected data
and outputs it to the log file.

Keywords: QEMU; configurable system calls; debugging; plugin; system calls; tracing.
DOI: 10.15514/1ISPRAS-2018-30(3)-7

For citation: lvanov A.V., Dovgaluk P.M., Makarov V.A. Configurable system call tracer in
QEMU emulator. Trudy ISP RAN/Proc. ISP RAS, Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 3, 2018, pp. 93-98. DOI: 10.15514/ISPRAS-2018-30(3)-7

1. Introduction

Sometimes programmers face the task of analyzing the work of a compiled program
to find its flaws, defects, and even search for malicious code in it. To analyze the
work of such applications, we have to study their binary code or try to decompile
the code, which is a laborious task. In order to simplify the analysis of applications,

93

Ilvanov A.V., Dovgaluk P.M., Makarov V.A. Configurable system call tracer in QEMU emulator. Trudy ISP RAN/Proc.
ISP RAS, Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 93-98

we can use the system calls of this application. System calls provide an essential
interface between a program and the operating system. It is possible to track which
system calls the application makes, and draw conclusions about the behavior of the
program. This method allows us to debug the application without delving into the
level of instructions and architecture features, thereby reducing the time required to
find the problem.

Debugging applications using system tracing can be done inside the operating
system, but still a number of problems arise:

o strong dependence of the debugger on the operating system;
o impossibility to run several debuggers at the same time;
e inaccessibility to the privileged execution;

e necessity to secure the operating system when analyzing programs that
have harmful effects.
To solve these problems, we can use the virtual machine tools. In this way, we can
debug applications in a wide range of different operating systems running under
different processor architectures.

2. Approach and uniqueness

To date, several debuggers allow us to trace an application using system calls. All
these debuggers have a drawback - they do not provide enough portability of the
debugger within different operating systems and processor architectures. We offer a
new approach to implementing the debugger through system calls, by loading all the
information necessary for tracing from the configuration file. The configuration files
will allow us to easily configure and change the parameters needed for debugging,
and to simplify the addition of support for new operating systems and architectures
without recompiling the program and learning the debugger code.

It was decided to implement the debugger under the virtual machine QEMU [1],
using the plugin mechanism. QEMU is an open source virtual machine that
emulates the hardware of various platforms. This virtual machine supports the
emulation of a large number of processor architectures such as x86, PowerPC,
ARM, MIPS, SPARC, m68k. In addition, this simulator supports the launch of a
large number of different operating systems.

Now, there is a plugin mechanism for QEMU implemented by ISP RAS [2], which
allows us to connect developed plugins to a virtual machine during its both startup
and operation. The implementation of the plugin mechanism enables each additional
translation of the instruction to be substituted by an additional code for execution,
when this instruction is called. This mechanism is suitable for debugging through
system calls, so it was decided to use it.

In addition, various mechanisms of the system call play an important role. The
classical way of implementation is the use of interrupts. With the help of interrupts,
control is transferred to the kernel of the operating system, with the application

94

HMBanoB A.B., losramok I1.M., MakapoB B.A. Kondurypupyemplii TpacCHPOBIIHK CHCTEMHBIX BBI30BOB B OMYJIATOPE
QEMU. Tpyow: UCII PAH, 2018, Tom 30, BeIm. 3, 2018 1., cTp. 93-98

having to enter the number of the system call and the necessary arguments into the
corresponding registers of the processor.

For many RISC processors, this method is the only one; however, the CISC
architecture has additional methods. The two mechanisms developed by AMD and
Intel are independent of each other, but, in fact, perform the same functions. These
are SYSCALL / SYSRET or SYSENTER / SYSEXIT statements. They allow us to
transfer control to the operating system without interrupts.

Each operating system supports values returned from the system call, which are
passed as reference types when the system call handler is called. During the
execution of the system call, the service procedure records the required values if
necessary by the available links, after which the system call is exited.

One of the main tasks that we had to face was the task of supporting the plugin of
different operating systems and processor architectures. The solution to this problem
was the interface with the configuration file. The configuration file makes the
debugger more flexible and customizable. With its help, we can disconnect a certain
mechanism of system calls from the trace or disable unnecessary system calls. In
addition, such a mechanism makes it easier to add support for new operating
systems and processor architectures.

To implement the interface with the configuration file, it was necessary to study a
wide range of different operating systems and processor architectures. After
gathering the necessary information, we can determine the information necessary
for debugging: what type of system call is supported by SYSCALL / SYSRET or
SYSENTER / SYSEXIT and their opcodes; location of system call arguments; a list
of system calls, with the name of each system call, its code, and the list of
arguments. Thus, by developing an interface for debugger and configuration file
interfacing, we can add support for operating systems without going into the
debugger code.

When implementing the debugger interaction interface with the configuration file, it
became necessary to recognize the various expressions read from the file. For this
task, we used the generator of the bison parser and developed the corresponding
grammar [3].

3. Background and related work

Now, there are several debuggers to solve existing problems. Nitro [4] allows us to
trace system calls, but it works only under Intel x86 architecture. Another debugger
— Panda [5], can also trace system calls, supporting such operating systems as
Linux, Windows 7, Windows XP and two architectures of the i386 processor and
ARM. The description of all system calls is found in the code of this debugger,
because of which this approach makes it difficult to add support for new operating
systems and processor architectures, and worsens the flexibility in configuring the
plugin, since the system debugger settings mechanism is not provided.

95

Ilvanov A.V., Dovgaluk P.M., Makarov V.A. Configurable system call tracer in QEMU emulator. Trudy ISP RAN/Proc.
ISP RAS, Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 93-98

4. Conclusion and discussion

Based on the results of the work done, the plugin was developed in the QEMU
virtual machine, with which we can trace and debug an application using system
calls. As input to the plugin, the configuration file corresponding to the operating
system running in the QEMU virtual machine and corresponding to the selected
processor architecture is used.

The structure of the configuration file consists of 4 parts. The first part provides
information about the operating system, its name and bit capacity. The second part
is responsible for the supported mechanisms of system calls. The next part contains
the location of the system call arguments. The last part includes a list of all available
system calls and service information about the arguments of the system calls.

Because of the plugin’s work, a log file containing all the system calls that the
plugin has intercepted is created. Each system call displays detailed information: the
name and value of each system call argument, the number of the thread of execution
from which this system call was made and the value that returned the system call
after execution. Fig. 1 presents a small fragment of the output file that was created
by the implementation of the plugin launched in the windows XP operating system
and the i386 processor architecture.

0x3e84000 entr: Ox114: NtWriteRequestData

0x3e84000 exit: ©x114: NtWriteRequestData
return: @xe

0x3e84000 entr: Oxc4: NtReplyWaitReceivePortEx

0x3e84000 entr: Ox112: NtWriteFile

arg 0: 0x2a4 (HANDLE FileHandle)

arg 1: 0x@ (HANDLE Event)

arg 2: 0xe (PIO_APC_ROUTINE ApcRoutine)

arg 3: 0x0 (PVOID ApcContext)

arg 4: 0x8ff6d8 (PIO STATUS BLOCK IoStatusBlock)
arg 5: 0x9059f8 (PVOID Buffer)

arg 6: Oxbc (ULONG Length)

arg 7: ox8ff6ed (PLARGE INTEGER ByteOffset)

arg 8: ox@ (PULONG Key)

0x3e84000 exit: 0Ox112: NtWriteFile
return: exe
0x3e84000 entr: 0x74: NtOpenFile

arg 0: ox8ffeca (PHANDLE FileHandle)

arg 1: 0x100100 (ACCESS_MASK DesiredAccess)

arg 2: oxa8ffeae (POBJECT_ATTRIBUTES ObjectAttributes)
arg 3: 0x8ff6ad (PIO_STATUS BLOCK IoStatusBlock)

arg 4: ox7 (ULONG ShareAccess)

arg 5: 0x204020 (ULONG OpenOptions)

9
0x3e84000 exit: 0x74: NtOpenFile
return: oxe
0x3e84000 entr: Oxe@: NtSetInformationFile
arg ©: 0x3lc (HANDLE FileHandle)
arg 1: oxa8ff6ad (PIO_STATUS BLOCK IoStatusBlock)
arg 2: oxsffess (PvOID FileInformation)
arg 3: ox2s (ULONG Length)
arg 4: 0x4 (FILE_INFORMATION_CLASS FileInformationClass)
0x3e84000 exit: Oxe@: NtSetInformationFile
return: @xe
0x3e84000 entr: ©x19: NtClose
arg 0: 0x3lc (HANDLE Handle)
0x3e84000 exit: 0x19: NtClose
return: @xe

Fig. 1. Part of the output file of the plugin

Upon the information gathered in the log file, we can analyze the operation of the
debugged application running inside the virtual machine. The operating system load

96

HMBanoB A.B., losramok I1.M., MakapoB B.A. Kondurypupyemplii TpacCHPOBIIHK CHCTEMHBIX BBI30BOB B OMYJIATOPE
QEMU. Tpyow: UCII PAH, 2018, Tom 30, BeIm. 3, 2018 1., cTp. 93-98

time when using the developed plugin is increased 20% slowdown compared to the
time of the operating system loading without this plugin.

Acknowledgments

The work was supported by the Russian Foundation of Basic Research (research
grant 18-07-00900 A)

References

[1]. F. Bellard. QEMU, a fast and portable dynamic translator. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference, 2005.

[2]. Vasiliev LLA., Fursova N.l., Dovgaluk P.M., Klimushenkova M.A., Makarov V.A.
Modules for instrumenting the executable code in QEMU. Problemy informacionnoj
bezopasnosti. Komp'juternye sistemy [Journal of Information Security Problems.
Computer Systems], no. 4, 2015, pp. 195-203 (in Russian).

[3]. GNU Bison [HTML] (https://www.gnu.org/software/bison/)

[4]. Nitro [HTML] (http://nitro.pfoh.net/index.html)

[5]. Panda. Plugin: syscalls2. [HTML] (https://github.com/panda-
re/panda/blob/master/panda/plugins/syscalls2/USAGE.md)

KoHdurypupyembiii TpacCMpOBLUMK CUCTEMHbIX BbI3OBOB
B amynsitope QEMU

A.B. Hsanos <alexey.ivanov@ispras.ru>
II.M. /loszanox <pavel.dovgaluk@ispras.ru>
B.A. Makapoe <vladimir.makarov@ispras.ru>
Hoeszopoocxkuii cocydapemeennvitl uncmumym umenu fApocrasa Myopoeo,
173003, Poccus, e. Benuxuii Hoseopoo, ya. B. Canxkm-Ilemepbypeckas, 0. 41

AHHOTanus. Pa3paboTuuk mporpaMM 4acTo CTaIKHBAIOTCS C MPOOJIEeMON aHaImu3a paboThI
Pa3IMYHBIX MPUIOKEHUH. [[JI 3TOro CyliecTByeT OONbIIOoe MHOKECTBO Pa3INYHBIX CPE/ICTB
OTJIaIKH, OTCJICKHUBAHUA, TPACCUPOBKHU HAITMCAHHBLIX ITPOTPaMM. O)]HHM U3 TaKuX CpEIACTB
ABJIACTCA aHAJIN3 pa60TbI MPHUI0XKEHUA YEPE3 CUCTEMHBIC BbI3OBEI. Hpn A€TaJIbHOM U3YyUYE€HUU
MEXaHN3Ma CHCTEMHBIX BBI30BOB, MOJKHO OOHApYyXHTh OOJIBIIOE KOJMYECTBO HIOAHCOB, C
KOTOPBIMH ~ TIPHXOJIUTCSL CTOJIKHYTBCSL TIpU pa3pabOTKe aHanmmM3aTopa MporpaMM C
HCTIONb30BAaHMEM CHCTEMHBIX BBI30BOB. B cTaThe paccMaTpwBaeTCsl — peaam3arys
TPacCHPOBINNKA, KOTOPHIA IMO3BOSIET aHAIM3HPOBATH IPOTPAMMEI HAa OCHOBE CHCTEMHBIX
BBI30BOB, ¥ TPOOJIEMBI, C KOTOPHIMH HPHUIUIOCH CTOJKHYTHCS TPH €r0 MPOEKTHPOBAHUH H
pa3pabotke. Ha faHHBIE MOMEHT CymlecTByeT OOJbILIOE KOJMYECTBO Pa3IMYHBIX
OTIEPAIMOHHBIX CHCTEM H IS KaXIOU OTMEPallHOHHON CHCTEMbI JAOJKEH OBITh pa3paboTaH
CBOH MOAXOJ B pealu3aluy oTiaaxdyuka. Takas ske mpoOiieMa BO3HUKAET U C apXUTEKTYpOil
Ipoueccopa, MoJ KOTOPOW 3amyleHa olepalMoHHas cucreMa. [[nd Kaxaol apXUTeKTyphl,
aHaNM3aTOp JODKEH MEHSTh CBOE IOBEACHHWE M MHOACTpaMBaThes mon Heé. B kadectBe
pelieHHst JaHHOH IpoOJIeMBI, B CTaThe IIpe[Jaraercs OMHCaTh MOJEIb OINCpalMOHHON
CHCTEMBI, KOTOpyI0O MbI aHammupyeM. Omucanue MOZeNH IpeAcTaBisier coboit
KOH(UTYpaIMOHHBIHA (haiill, KOTOPBI MOXKET OBITh H3MEHEH B 3aBUCHMOCTHU OT HOTpeOHOCTEH

97

Ilvanov A.V., Dovgaluk P.M., Makarov V.A. Configurable system call tracer in QEMU emulator. Trudy ISP RAN/Proc.
ISP RAS, Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 93-98

ONICpallMOHHBIX CHCTeM. lIpu OOHapyXeHHHM CHCTEMHOTO BEI30Ba, B €ro 00paboTIHK
NepesialoTcs apryMEeHTHl M BCS COIYTCTBYyIomas uH(oOpMarms, 3arpyKeHHas H3
KoHGurypaunoHsoro ¢aiina. M3HauanpHO, B KOH(QUTypauuoHHOM (aiine, Bce apryMEHThI
MPECTaBIISIOT COOO0H BBIPAKEHUS, IO3TOMY BO3HUKAeT HEOOXOJUMOCTh TaKKe Pean30BaTh
CHHTAKCHUYECKHH aHaIH3aTop, KOTOPOMY HEOOXOIMMO paclo3HaTh BXOAHBIE BBIPAXKEHUS U
nocuuTarh uX 3HadeHus. llocne mpocuéra 3HaueHMM BCeX BBIPAXKEHUM, TPACCHPOBIIUK
(opmanusyer coOpaHHbIE JAHHBIC U BBIBOIHUT UX B JIOT (aili.

KaroueBbie cioBa: QEMU; xoHdurypupyemble cHCTEMHBIE BBI3OBBI, HACTpanBaeMbIC
CHCTEMHbIC BBI3OBBI, OTJIA[KA, OTJIAIYHK; IUIATMH; CHCTEMHbIC BBI3OBBI, TPACCHUPOBKA;
TPACCHPOBIIUK.

DOI: 10.15514/ISPRAS-2018-30(3)-7

Jas nurupoBanusi: VeanoB A.B., Hdosramok [1.M., MakapoB B.A. Konourypupyemsrit
TPAaCCUPOBILIMK CUCTEMHBIX BbI30BOB B aMyssaTope QEMU. Tpynet UCII PAH, tom 30, BbIm.
3,2018 r., ctp. 93-98 (na anrmiickom si3bike). DOIL: 10.15514/ISPRAS-2018-30(3)-7

Cnucok nutepatypbl

[1]. F. Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference, 2005.

[2]. Bacuabses U.A., ®ypcosa H.I., Josramtok I1.M., Knumynienkosa M.A., Makapos B.A.
Moy aasi MHCTPYMEHTHPOBAHHUS HCIOJHAEMOro koma B cumysistope QEMU.
[Ipo6emsr nHbDOpManMOHHON Ge3omacHocTH. KoMmbroTepHbie cuctemsl, NO, 4, 2015r.,
ctp. 195-203

[3]. GNU Bison [HTML] (https://www.gnu.org/software/bison/)

[4]. Nitro. [HTML] (http://nitro.pfoh.net/index.html)

[5]. Panda. Plugin: syscalls2. [HTML] (https://github.com/panda-
re/panda/blob/master/panda/plugins/syscalls2/USAGE.md)

98

