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Abstract. Device emulation is a common necessity that arises at various steps of the 
development cycle, hardware migration, or reverse-engineering. While implementing the 
algorithms behind the device may be a nontrivial task by itself, connecting the emulator to an 
existing environment, such as drivers intended to work with the actual hardware, may be no 
less complex. Devices relying on memory-mapped input/output are of a particular interest, 

because unlike port-mapped input/output there is much less of a chance that the target platform 
provides a direct interface to intercept the transmissions. A well-known approach used in 
various virtual machine software is to put the entire operating system under a hypervisor and 
build the emulator externally. This may not be desirable for reasons like hypervisor complexity, 
performance loss, and additional requirements for the host hardware. In this paper we extend 
this approach to the kernel and explain how it may be possible to build the emulator by relying 
on the existing interfaces provided by an operating system. Given the common availability of 
an MMU unit as well as memory protection mechanisms, allowing the handling of page or 
segment traps at read or write access, we presume that a suggested technique of intercepting 

memory-mapped input/output could be implemented in a broad number of target platforms. To 
illustrate the specifics and show potential issues we provide the ways to simplify the 
implementation and optimize it in speed depending on the target capabilities, the protocol 
emulated, and the project requirements. As a working proof we created a SMC emulator for an 
x86 target, which makes use of this approach. 
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1. Introduction 

One of the common engineering demands is device emulation. It may arise during the 

software development cycle, for example, in testing or driver verification, at hardware 

migration, when there is no easy way to rewrite the existing software. Other than that, 

in the world of proprietary hardware and software it is not rare that the only way to 

understand and document the device abilities is to reverse-engineer it, and the ability 

to dynamically debug or reverse-engineer the code could be the key in security 

analysis or adding the device support to a virtual machine.  

Speaking of virtual machines, or rather hypervisors, building the entire virtual stack 

for a single device one needs to emulate is often an overkill due to performance 

reasons, although it could be partially mitigated by hardware-assisted virtualization 

and software compatibility. The latter may involve working on completely unrelated 

parts of the driver stack and result in unnecessary costs for continuous support.  

However, while the development of full platform emulators is a considerably 

common topic with abundance of existing papers and products like qemu, bochs, iOS 
simulator, etc., peripheral emulation is much less widespread. In some cases, virtual 

machine guest tools do try to mimic certain hardware, but even that is usually 

implemented as a part of a full scale platform emulation. The problem with the 

peripherals is not just in implementing the algorithms behind the device, which may 

be a nontrivial task by itself, but also connecting the emulator to an existing 

environment, such as other drivers above in the stack intended to work with the real 

hardware.  

Since one of the important aspects of using any peripherals is the ability for the CPU 

to communicate to them, the common demand for a device emulator is to provide a 

way to do it. Presently there are two common low-level approaches to perform input 

and output operations: port-mapped I/O (PMIO) and memory-mapped I/O (MMIO). 

While there are other ways such as involving some dedicated hardware, they are 

relatively less widespread. High-level communications operating on a packet basis 

(like USB bus) usually go through the dedicated abstraction layer, and thus may be 
implemented with the standard APIs offered by the operating system without any 

special effort.  

It is fairly easy to implement communication protocols with a hypervisor, the standard 
approach is to ensure that accessing certain memory exits the virtual machine context 

(vmexit), which is later handled by the implementation. However, as we mentioned 

previously, the use of a hypervisor may be impractical, and we have to look for other 

means of intercepting memory access. Since direct memory access is very common, 

yet quite problematic to intercept, in this paper we explain how one could implement 

a considerably portable MMIO emulator in the kernel and cover the details of 

emulating device communication protocols on common platforms.  
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2. State of the art 

We admit to not being the first to experiment with peripheral device emulation. Every 

single year several published papers in the field of hardware virtualisation cover this 

topic to a certain level. Articles published by VMware Inc. researchers [1] [2] provide 

an in-depth coverage of x86- compatible hardware emulation. They explain the 

existing obstacles and necessary actions to be taken to implement a complete virtual 

stack from the CPU to network adapters. In their works they pay a lot of attention to 

performance optimization, hardware-assisted virtualization and show a visible 

performance penalty reduction over the new CPU generations in Virtualization 

nanobenchmarks section of the first referenced paper.  

As a result of continuous contribution from different parties and competitive product 

development, the general hypervisor performance has dramatically improved. While 
GPU emulation is out of the scope of this paper, it should be admitted that there are 

several works which do manage to provide a complete GPU emulation at a reasonable 

performance [3] [4]. These works feature an open GPUvm platform in the Xen 

hypervisor.  

Another related direction involves security analysis or reverse-engineering. While 

less frequently found in academic writing, there are several products, tools, and 

patches for Linux intended to log execution details from the Linux kernel for later 

analysis. One of the most well-known toolsets is Linux Trace Toolkit, and one of the 

most prominent cases of applying the approach in practice is for Nouveau driver 

development for NVIDIA GPUs. Enabling OS Research by Inferring Interactions in 

the Black-Box GPU Stack by Konstantinos Menychtas, Kai Shen, and Michael L. 

Scott [5] provides a good coverage in detail.  

3. Basic I/O Introduction  

Port-mapped I/O is usually more demanding to the CPU instruction architecture and 

requires a number of so-called ports the devices will be mapped to, and perhaps a 

dedicated instruction set to access these ports as well. Because the device memory is 

accessed indirectly, another name for PMIO is detached I/O.  

As an example, one of the most popular architectures to implement PMIO is x86. It 

can be utilized by means of two dedicated instructions: in and out, which enable one 

to receive and send 8, 16, or 32 bits of data to a port from 0 to 65535. Since there are 
faster ways to perform I/O on x86 and PMIO is not recommended for use nowadays, 

in some literature it may be referred to as legacy I/O. This may not be the case for 

other architectures found in micro-controllers, but in general MMIO support is 

increasing.  

Memory-mapped I/O involves direct mapping of the device memory to the host 

memory, enabling the software to access the device just like a normal chunk of 

noncacheable RAM with the use of the native instruction set. Since MMIO 

implementation is often faster than PMIO and sometimes simpler to use, it will be the 

one to opt for when implementing a device communication protocol. For example, on 
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x86 various devices installed as PCI extension cards or system management 

controllers make a use of it.  

Virtual devices are not supposed to be functionally different from real hardware. For 

this reason, emulators have difficulties supporting I/O communication protocols. The 

taken approach varies depending on the demands and available resources, but usually 

one of the following is used: 

 Custom device development   

 Driver reimplementation  

 Building a hypervisor  

Sadly, each of these has serious limitations, and most of them create obstacles for 

generic peripheral emulation, as observed in Table. 1.  

Table 1. Pros and cons summary 

 Device Driver Hypervisor 

Software independency + - ± 

Low costs - ± + 

Legal issues + - - 

Infrastructure dependency - + - 

Forward compatibility + - - 

Performance + ± ± 

Other device support + + - 

Developing a new device by extending a microcontroller to offer a required interface 

or creating an entire chip mostly works for very simple devices when a single copy is 

going to be used for some kind of deep debugging or instrumentation. A good 

example could be removable BIOS chips for debugging or HDMI to VGA adapters 
with HDCP decoding. While this solution is very reliable for creating a test device, 

the results of mass-producing a customised device will likely be not worth the effort. 

It will be either more expensive or worse in quality. In addition, it is important to have 

the legal part of the question in mind and avoid patent infringement. However, this 

method could be most reliable when it comes to stability.  

Reimplementing the driver to support another communication interface for the virtual 

device is very useful when working with performance-critical hardware such as 

GPUs. For them each extra communication layer may heavily affect the performance 

due to high bandwidth usage, and that is why virtualization software implements 

extended GPU support (like DirectX or OpenGL) in such a way. However, in our case 

it defeats the entire purpose of creating a virtual device. If the point is to test the 

driver, it will no longer stay the same. If the reason is to support a proprietary driver, 

one will have to reverse-engineer it and have issues every time it gets updated.  

Bringing in a virtual machine with a hypervisor is a way to overdo it. While a decent 

virtual machine has a wide range of supported hardware, it adds a lot of downsides as 

well. In particular there will always be potential performance issues, even with 

hardware-assisted virtualization support. More than that, compatibility issues will 
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likely become a blocker if the rest of the environment is not generic and well-known. 

It is unfortunate, but even the mainstream operating systems may be unwilling to 

expose new interfaces for virtual machines (like most of the graphical stack on Apple 

macOS).  

4. Intercepting the I/O 

As a result I/O interception comes out as a pragmatic way to achieve the goal. Despite 

not being very common, software and hardware have enough capabilities to intercept 

raw device communication without touching the higher-level drivers themselves.  

For example, for the past 8 years the recent x86 firmwares contain a dedicated UEFI 

System Management Mode [6] protocol to intercept PMIO. This protocol originally 

existed as a EFI_SMM_IO_TRAP_DISPATCH_PROTOCOL protocol1, but later on 

was extended with an additional IO_TRAP_EX_DISPATCH_PROTOCOL 
protocol2. Both protocols allow you to create direct handlers to intercept the 

portmapped access. By design, the management mode affects the operating system 

code as well, so it works throughout the boot process and is fully transparent to the 

higher level software implementations like OS kernel or drivers. However, aside from 

not being very well documented, third-party code execution in the System 

Management Mode is generally prohibited. So even if one is to reimplement the SMI 

handler similar to what Intel offers with the open source platform code, it will be of 

no use for anyone but UEFI firmware developers.  

Fortunately, most of PMIO interface code is usually well abstracted in the kernel, and 

when it comes to intercepting you could just replace the underlying low level function 

implementation within the emulator context. However, devices relying on MMIO are 

of a particular interest, because unlike PMIO there is a much less chance that the 

target platform provides a direct interface to intercept the transmissions.  

For embedded devices it may well be sufficient to statically analyze the firmware, 

find the instructions responsible for I/O, and either dynamically or statically overwrite 

them to jump to prepared thunks that will handle them accordingly. This approach is 

common for security analysis especially when very little is known not only about the 
explored peripherals but the whole controller. However, since the firmware or the 

driver may receive updates in the future, this approach is not very effective outside of 

security or code coverage analysis, and the like.  

One of the first ideas that comes to mind due to the nature of MMIO writes is relying 

on CPU debug registers. These registers (e.g. DR on Intel or BP_CTRL/BP_COM on 

ARM Cortex) allow you to implement hardware breakpoints or rather watchpoints, 

which may trap read and write access. However, these registers are very few, and 

their scope area is small (i.e. a 32-bit or 64-bit word). Other than that, the kernel, 

                                                        
1 GUID: 58DC368D-7BFA-4E77-ABBC-0E29418DF930 
2 GUID: 5B48E913-707B-4F9D-AF2E-EE035BCE395D 
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debuggers, or other software may use these registers for their own needs, which leads 

to them being simply impractical for this kind of work.  

In general-purpose operating systems with defined kernel APIs there are much better 

ways, such as a page protection mechanism, which is used to implement watchpoints 

in software. While this is suitable for doing MMIO emulation, most of the known 

works relying on this technique either use it for tracing or just for debugging 

backends. The notable example is MMIO trace in Linux, which was originally  

developed to reverse-engineer proprietary NVIDIA drivers by tracing the register 

access [7]. Other than that, there are very few examples of how it can be utilized for 

device I/O emulation.  

5. Proposed approach 

The idea of general purpose I/O interception is very simple: catch reads and writes, 

make sure that the values read are correct, and the values written are accounted for. 

To apply it to MMIO we could limit page protection of the target area, and trap the 

faults as they happen. Due to bandwidth limitations and architecture simplicity the 
I/O sequences are generally serialized, even if they happen from different threads. It 

may not be the case for GPUs, yet GPUs likely will not need this kind of emulation 

due to performance reasons. Still, in general if serialized I/O is not guaranteed even 

within a single memory page (which is rare) one could always implement it manually 

by utilizing the synchronization primitives.  

Therefore, the most obvious approach will be:  

1. mark the relevant page as neither writable nor readable (not present in x86 

terms);  

2. catch a fault and decode the fault address and the direction (in or out);  

3. disassemble the instruction that caused the fault and obtain its operands from 

the frame;  

4. handle the operands for the emulation;  

5. update the destination registers or memory for the reads as necessary; 

6. return to the location after the instruction, which caused the fault.  

While it indeed solves the problem and looks very straightforward, the 

implementation itself could be very convoluted. While the saved context is likely to 

contain the fault and return addresses, bringing a full-scale disassembling framework 

to the kernel is inflexible due to extra architecture dependencies and considerable 

amounts of code required for instruction emulation. Even more, it may impose 

additional performance penalties, which are already tough enough.  

For these reasons we tried to alter the algorithm in a way that would be simpler, less 

platform-dependent, and similarly performant. After examining several real-world 

examples, we consider the following model of a MMIO-based I/O protocol, which 

could be applied to quite a number of devices:  

1. host ensures that the target is ready for an I/O operation; 
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2. host performs the I/O operation (by reading or writing at a defined address 

space);  

3. host ensures that the operation is complete and repeats the process.  

The 1st and 3rd steps are usually implemented as a write-and-poll, a write-and-

interrupt or just as a poll. Another advantage comes out from common differences in 

frequencies between the host and the peripheral. Since communications usually 

happen between the devices with different clock bases, most of the protocols are 

synchronous, and the host generally does not overwrite the areas it has just written to 
without making a read to confirm it was successful. Even more, most of the protocols 

are stateful, and it is uncommon to see subsequent reads from the same place 

expecting the value to change more than once. A write operation will most likely 

appear in-between.  

Under these assumptions we use a simple satisfactory transaction model as an 

example:  

1. write operation type (read or write);  

2. read acknowledge status until status ready;  

3. handle the values:  

3.1. read the value for read operations;  

3.2. write the value for write operations and read acknowledge status until 

status ready.  

5.1 With write-only page support 

If write-only pages are supported, in a number of cases one may implement a flip-

flop approach that will switch page protection from read-only to write-only and 

backwards as the process goes.  

To emulate the proposed transaction we could start the communication process with 

the page marked as read-only, which will then trap on operation type. Here we will 

initiate the transaction and switch the protection to write-only. After the operation is 

written the trap on the status read will trigger, where we will read the written operation 

type, update the value for read operations and set its status. Afterwards the page 

protection is returned to read-only and the control is transferred back to the driver. 

For read operations that is all of it, for write operations the driver will read the status 
and attempt to perform the actual write, which should trigger the trap again. From 

there on one could repeat the process as described for the operation type. In the end 

for both reads and writes page protection returns back to read-only, eliminating any 

platform-specific disassembling and relying on generic approach.  

Expectedly one does not have any easy access to write-only pages on popular 

architectures such as ARM [8] or x86. Perhaps, if these architectures were originally 

designed at present, when the demand for better memory protection management is 

much higher and when features like WˆX memory and execute-only memory have 

already become commonplace, we would have had finer memory management that 

would support write-only pages. However, nowadays write-only pages are not very 
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common in both hardware and software implementations. Certain PowerPC 

implementations [9] or processor extensions may provide access to them, so it 

remains a good idea to check CPU manuals before abandoning the try. For example, 

Intel x86 processors starting from Nehalem technically support write-only memory 

via EPT (Extended Page Tables [10]), yet it can hardly be used for anything but 

virtualization.  

5.2 Without write-only page support 

When write-only pages are not available, we may still be able to work out a simpler 

approach, and this is where memory patching comes in hand. The idea is to let the 
original instruction perform the I/O just as normal, but to encode a jump-back 

instruction right afterwards to ensure that page protection is limited again to trap the 

next I/O operation. Initially this approach may appear to have too many issues to be 

considered in practice, however, they could all be solved with enough effort, and 

some of them could even be turned into benefits.  

The first issue to solve is the length of the faulted instruction. A number of 

architectures provide fixed-length instruction sets, so the next instruction address to 

encode our jumpback instruction could be calculated even without knowing anything 

about the current instruction. For others one could write or find simple instruction 

fetchers, to only decode the length without operand or operation details. Such 

software may also go under the name of length disassemblers, and various 

implementations exist for popular platforms [11]. It may become a little more 

involved when the I/O instruction results in non-linear control flow, but in general 

I/O and branching instructions belong to separate classes and are not mixed together.  

The second issue occurs when the device memory is mapped to userspace and the 

communication happens in userspace as well. In this case a direct jump to protection 

restoration code is not possible, and a breakpoint or similar instruction will have to 
be encoded to trigger the context switch, return to the kernel and pass the control to 

our handler.  

The third and probably the most serious issue happens when I/O operations are 
performed through shared code. By assuming serialized I/O we consider no cases of 

simultaneous code execution from the same area (unless there are multiple devices). 

Therefore, we could safely patch it. However, nothing prohibits the driver from 

utilizing generic memory primitives like memcpy or memset to bulk-write or read the 

dedicated area. These primitives generally have no effect on the I/O itself, and we do 

not need to intercept every byte they touch. To avoid the issue one could examine the 

stack trace and modify the instruction at the return address. Not only this does not 

require disassembling but also reduces the penalty from trapping extra I/O operations, 

so a quick stack unwinding that can often be implemented with compiler intrinsics 

easily pays off.  

With all the pieces put together it creates a solid approach for a large chunk of I/O 

protocols. In addition to these general improvements platform-specific optimizations 

could be applied. For example, extra page protection changes may be avoided for 
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write operations, if the hardware may ignore interrupts caused by write protection 

violation (CR0 WP bit on x86). It should be noted that one is to pay extra attention to 

the scheduler (e.g. disable preemption) not to let it switch the task to another core, 

where write protection is on.  

6. Evaluation 

To apply the proposed solution in practice we created a software-based emulator for 

the 2nd generation Apple SMC in a form of a kernel extension for Apple macOS. 

System Management Controller (SMC) is a chip commonly found in Intel-based 

Apple Macintosh computers or certain Google Chromebooks. This chip is responsible 
for computer power management, display backlight control, HDD monitoring, 

thermal control, hybrid sleep and hibernation support, external device current 

regulation (AirPort, USB, FireWire), charging the battery, trackpad controls, screen 

mirroring, etc. This chip is not essential for computer functioning, and could be 

viewed as a convenience feature for a vendor to rely on to centralize and simplify 

hardware management.  

There are two main generations of SMC controllers in Apple computers. The 1st 

generation was built on a 16-bit Renesas H8S/2117 controller and exposed port-

mapped I/O interfaces to communicate with the operating system. The 2nd and 

subsequent generations are based on 32-bit ARMv7-A processors, and expose 

memory-mapped and port-mapped I/O interfaces. Both approaches are used to 

implement the same functionality within a single synchronous stateful protocol. 

Initially the communication happens via the PMIO protocol, and then a switch to 

MMIO protocol happens if the device supports it. The whole communication process 
happens within the kernel and the existing drivers for the 2nd generation hardware are 

closed-source. Fortunately, due to side researchers the communication protocols are 

mostly documented [12].  

The reasons for taking this particular device into consideration was not only because 

it is a challenging task compared to devices with open specifications and decent 

documentation, but also for the importance of having better control of the hardware 

you use. Apple SMC has complete access to every device in the system and could 

monitor the bus communications. Other than that it stores temporary encryption keys 

for hibernation images or user action free restarts (authenticated restarts), when full 

disk encryption is enabled. Apple SMC drivers expose a dedicated protocol to 

userspace. This protocol provides a way to obtain SMC data and configure both SMC 

and onboard devices. Given its direct connection to the hardware, it may be possible 

to inflict damage on the computer by overheating or causing power surges. Moreover, 

previous researches discovered that it was very easy to modify SMC firmware, which 

is also a very serious concern [13].  

The actual implementation follows the proposed approach without write-only page 

support with all the suggested optimizations and certain platform-specific 
adjustments. SMC MMIO protocol covers a 64 KB area, which we split into pages 
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with the dedicated handlers based on the page index. Since the access to each page is 

serialized, no additional I/O wrapping is necessary.  

In the XNU kernel, which powers all modern Apple hardware including Macs, Intel 

CPU exceptions are routed through a dedicated kernel_trap function. To let the driver 

communicate with the emulated device we added a SMC nub via the standard I/O Kit 

APIs with mapped memory regions with restricted protection and extended the 

kernel_trap function in EXC_I386_PGFLT handling code specifically for our 

memory.  

A simplified version of this code is shown in Listing 1. ioRegionStart and 

ioRegionEnd locate the emulated I/O area starting and ending addresses, 

appleSmcStart and appleSmcEnd point to the AppleSMC driver address range. 
instrSize function calculates the instruction length at the return address to later write 

the jump-back code via writeTrampoline function, which not only writes the 

trampoline code (by disabling the WP bit and interrupts) but additionally disables 

CPU preemption to avoid the scheduler switch.  

auto faultAddr = state->cr2; 

if (faultAddr >= ioRegionStart && 

    faultAddr < ioRegionEnd) { 

  auto retAddr = state->rip; 

  if (retAddr >= appleSmcStart && 

      retAddr < appleSmcEnd) { 

    // Simple case (from AppleSMC) 

    retAddr += instrSize(retAddr, 1); 

  } else { 

    // Complex case (from e.g. memcpy) 

    retAddr = unwindToSMC(state->rsp); 

  } 

 

  auto faultType = FaultTypeRead; 

  if (state->err & T_PF_WRITE) { 

    faultType = FaultTypeWrite; 

  } 

  updateProtection(faultType, faultAddr); 

  saveOrgCode(retAddr, TrampolineSize); 

  writeTrampoline(faultType, faultAddr); 

  return; 

} 

 

Listing 1. Sample code 

To transfer the control flow to the protocol emulator updateProtection is performing 
the actual protection upgrade of the emulated I/O area and invokes the read access 

handler. It should be noted that a dedicated procedure may be needed for platforms 

with delayed physical mapping update. For example, with XNU it is necessary to 

trigger virtual memory fault twice when the page is not present. Similarly, the 
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protection restoration routine invoked from the trampoline preserves the registers and 

calls the write handler.  

As a result, it was possible to emulate all the existing SMC protocols at no issue and 

avoid the use of the original device.  

7. Conclusion 

Emulating peripheral devices within the existing operating system is not a new 

problem. Different solutions and approaches have appeared over the years. The 

industrial demand for full-stack operating system virtualization brought their 

performance to a completely different level, and the needs for better customization 

resulted in operating system developers providing more flexible interfaces with the 

possibility to create virtual hardware out of the box. Programmable microcontrollers 

made the process of building a device clone with the necessary features a much 
simpler task to accomplish.  

However, there are numerous cases, where in-kernel peripheral emulation is highly 

anticipated, such as driver development needs, testing and verification, hardware 

migration, security analysis, etc. As we stated, it is often not possible or extremely 

impractical to attempt to incorporate virtual machines due to development costs or 

performance penalties. While virtual machines succeed in emulating CPUs of the 
same architecture at almost the same speed with hardware assisted virtualization, the 

performance of other CPUs without the use of JITs, commonly used in video game 

console emulators but rarely found in generic virtualization software, is often much 

worse. And in terms of I/O emulation, which is the primary concern of this paper, the 

situation is no better.  

Furthermore, all the solutions heavily depend on the target architecture. While it was 

possible to think of x86 as the main architecture for personal computers in the 

beginning of 2000- s, today the concept of personal computers has shifted away, and 

other major players, e.g. ARM, appeared on the market. With this in mind the classical 

approach to virtualizing the whole operating system could face severe issues in the 

future.  

The idea of using page protection faults to handle device I/O events without a 

hypervisor may be known but not widespread anywhere out of I/O tracing. In this 

paper we described a way to implement a complete MMIO protocol emulator in the 

kernel with the use of a generic approach that has few dependencies on the target 

architecture and relies on platform features such as MMU and paging. We showed 

that certain target architecture capabilities and device protocol specifics may affect 

the implementation, and effectively allow or disallow a broad range of optimizations. 

We believe that a suggested device I/O protocol model is applicable to various 

hardware, and give examples on how to simplify and optimize its implementation. 

After exploring the existing hardware, we built a SMC emulator in the XNU kernel 

to illustrate the suggested approach.  
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Аннотация. Необходимость эмуляции оборудования часто возникает на различных 
стадиях цикла разработки, миграции оборудования или обратной разработки. 
Реализация алгоритмов, связанных с конкретным устройством, сама по себе является 
нетривиальной задачей, но интеграция эмулятора с существующей средой, например, 
драйверами, предназначенными для работы с реальным оборудованием, зачастую 
оказывается не менее сложной. Устройства, полагающиеся на ввод-вывод с 
отображением в оперативную память, представляют особый интерес, так как в этих 
случаях, в отличие от использования портов ввода-вывода, гораздо меньше вероятность, 

что целевая платформа предоставит интерфейс для перехвата операций. Один из 
распространённых подходов, широко используемый в ПО виртуальных машин, состоит 
в том, чтобы поместить всю операционную систему под гипервизор и создать внешний 
эмулятор. Однако это может быть нежелательно по причинам сложности гипервизора, 
потери производительности, дополнительных требований к аппаратному обеспечению 
и пр. В данной статье такой подход распространяется на ядро, и предлагается описание 
возможности построить эмулятор, прибегая лишь к существующим интерфейсам, 
предоставляемым операционной системой. Ввиду частой доступности MMU и 

механизмов защиты страниц, позволяющих перехватывать доступ записи и чтения, 
предполагается, что предлагаемый подход может быть использован на значительном 
количестве целевых платформ. В статье приводится подробное рассмотрение проблем, 
возникающих при написании конкретной реализации, и приводятся способы её 
упрощения и оптимизации в зависимости от возможностей целевой платформы, 
эмулируемого протокола и иных требований к задаче. В качестве экспериментального 
доказательства работоспособности предлагаемого подхода приводится реализация 
эмулятора SMC для платформы x86. 

Ключевые слова: эмуляция оборудования; ввод-вывод с отображением в ОЗУ; модули 
ядра 
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