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Abstract. A worthy cryptographic protocol specification has to be human-readable (declara-
tive and concise), executable and formally verified in a sound model. Keeping in mind these
requirements, we present a protocol message definition notation named CMN.1, which is
based on an abstraction named cryptographic stack machine. The paper presents the syntax
and semantics of CMN.1 and the principles of implementation of the CMN.1-based executa-
ble protocol specification language. The core language library (the engine) performs all the
message processing, whereas a specification should only provide the declarative definitions
of the messages. If an outcoming message must be formed, the engine takes the CMN.1 defi-
nition as input and produces the binary data in consistency with it. When an incoming mes-
sage is received, the engine verifies the binary data with respect to the given CMN.1 defini-
tion memorizing all the information needed in the further actions. The verification is com-
plete: the engine decrypts the ciphertexts, checks the message authentication codes and signa-
tures, etc. Currently, the author's proof-of-concept implementation of the language (embedded
in Haskell) can translate a CMN.1-based specifications both to the interoperable implementa-
tions and to the programs for the ProVerif protocol analyzer. The excerpts from the
CMN.1-based TLS protocol specification and corresponding automatically generated ProVer-
if program are provided as an illustration.
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1. Introduction

The establishment of good soundness relations between cryptographic protocol
implementations and their formal models is a popular research area. The existing
approaches differ by the starting point of development (implementation first [1-6] or
formal model first [7-9]), by the degree of cryptographic soundness of the models
(symbolic [10] or computational [9]), by the presence of the formal proof of the
soundness of the model-to-implementation (or vice verse) translation procedure, by
implementation usability area and by other aspects.
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Our aim is to soundly tie not two (implementation and formal model) but three
elements of the protocol development process: implementation, formal model and
specification. By the latter, we mean a human-readable protocol description that is
usually placed in RFC. The models' languages, which are based on logics or special
versions of general-purpose programming languages, are not quite suitable for this
task: they are either not convenient for capturing the low-level details or are firmly
imperative.

Therefore, our goal is a declarative specification language that could be directly
used in the RFCs to considerably enhance the degree of formalization of these
documents. Yet, the specification must be automatically translatable both to the
interoperable implementation and to the programs for the state-of-the-art protocol
model analyzers such as ProVerif [10] and Tamarin [11].

2. Related work

There exist many formal notations for data structures: ASN.1, JSON, etc. These
notations are often provided with the engines, which can automatically generate the
binary data using the provided data structure definition and, in the opposite
direction, automatically unpack the binary data in accordance with the definition.
Such projects as CSN.1 [12], TSN.1 [13], BinPAC [14], NetPDL [15] are targeted
specifically at the network protocols.

While the readability of some of these notations can be suitable, their
expressiveness (in the domain of cryptographic protocols) does not. We need to
have behind the notation not simply a message generator/parser waiting to be
embedded to some bigger program, but a generic cryptographic protocol
implementation waiting for (semi-)declarative specification to adjust to specific
case. Therefore, the primary challenge is to find such powerful underlying
abstraction, whereas the notation would have to be naturally emerged from it.

3 Cryptographic Stack Machine Notation One

We propose an abstraction named cryptographic stack machine (abbreviated as
CSM), which is a stack machine specifically tailored to the needs of cryptographic
protocols. Within the proposed approach, the message definition is in fact a
sequence of the CSM instructions. The instructions set is divided into "bare-metal"
and "sugared" parts. The "sugared" instructions make the message definitions
(which in their essence are imperative) looking declarative. The instructions set may
be expanded if needed.

To reflect the fact that the declarative style of the protocol message definitions is
one of the main targets, we name our notation «Cryptographic Stack Machine
Notation One» (abbreviated as CMN.1) adopting the naming style of the ASN.1,
CSN.1 and TSN.I notations.
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3.1 CMN.1 syntax

Below, the terms 'String', 'Integer’, 'Int', "Word8' denote the sets of strings, unlimited
integers, integers ranged from 0 to 2°2-1 and integers ranged from 0 to 2°-1,
respectively. The curled brackets mean repetition, the square ones — optionality. The
symbol ', means comma itself, not concatenation.

Prog ::="["{Instr, } *[Instr]"]"

Instr ::= BareMetal | Sugared

BareMetal ::= Const Word8List | Var VarName Role VarType | V VarName |
SEnc' SEncAlg | Enco' EncoAlg | Xor' Int | ModAdd' | ModMult' | ModInv' |
Add' Integer | Rev RFun | Hash' HashAlg | Pad' Int Word8List | Mod' | ModExp' |
Take' IntList | Split' IntList | SplitE' Int | ECMult' | ECAdd' | C' | CE' | Len' LenHdr |
InsertTo Int | PickFrom Int | Dup Int | Free Int | Elem Int Prog | Map' Prog Int Int |
Sort' Int Int | SA' Int Int Prog | Select' CaseList | M Prog | L Int Inst

Sugared ::= C Prog | CE Prog | Hash HashAlg Prog | SEnc SEncAlg Prog |
Enco EncoAlg Prog | Mod Prog | ModAdd Prog | ModMult Prog | ModExp Prog |
ModInv Prog | ECMult Prog | ECAdd Prog | Len LenHdr Prog | Xor Prog |
Add Integer Prog | Take IntList Prog | Split IntList Prog | SplitE Int Prog |
Pad Int Word8List Prog | Map Prog Int Prog | Sort Int Prog | Select Inst CaseList |
SA Prog | WithLen LenHdr Prog | VarL Int VarName Role VarType |
VL Int VarName | SelectV VarName CaseList

VarName ::="["{String, } *String"]"

VarType ::= Plain Int | Primary Int | Modulo Inst | UTC | ECx Inst | Sublist Prog |
Choice Prog | Subset Prog | Is Prog

Word8List ::="["{Word8, } *[ Word8]"]"

IntList ::="["{Int,} *Int"]"

IntegerList ::= "[" {Integer, } *Integer"]"

SEncAlg ::= AES128CBC | AES256CBC ...

HashAlg ::= SHA1 | SHA256 ...

EncoAlg ::= SSLPad Int | B2DERInt | B2DERBits ...

LenHdr ::= BE Int | LE Int | DER

CaseTy ::= Case Word8List Prog | Cases "["{Word8List,}*Word8List "]" Prog |
Case' Condition Prog | Otherwise Prog | CaseUndef Prog

CaseList ::="["{CaseTy,} *CaseTy"]"

Condition ::= Bytes Word8List | Equal Integer | Less Integer | More Integer |
LessOrEq Integer | MoreOrEq Integer | OneOf IntegerList |Otherwise'

Role ::=Clnt | Serv |A|B|S|CA|RA|TTP...

3.2 CMN.1 semantics

CSM has one main stack and varying number of temporary stacks, random-number
generator, real-time clock, the storage S_var containing the values of the protocol
variables (actually they don’t vary in CSM) and the register S_rol containing the
identifier of the protocol role (fig. 1).
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Fig. 1. Cryptographic stack machine

The language of the CSM instructions extends the line of the stack-oriented
languages. It supports branching but doesn't support looping or recursing (table 1).

Table 1. CSM instructions semantics

Instruction ‘ CSM actions

Const bs

"Bare-metal" instructions

‘ CSM pushes the byte string bs onto the stack.

Varsrt

If the storage S_var contains the variable named s, then CSM pushes this
variable value onto the stack. Otherwise, if » /= s_rol, CSM returns an error.
Otherwise, it generates a new element of type ¢, stores its value under the
name s in the S_var storage and puts this value in the stack.

The currently defined variable types: Plain n — random » bytes; Primary n —
random primary integer of n-bit length; Modulo is — random integer modulo
n, where n is the big-endian value of the result of the instruction is execution;
ECx is — random point on the curve curve_id, where curve_id is the value of
the result of the instruction is execution; UTC — the time and date in standard
UNIX 32-bit format; Sublistp (Choice p, Subset p) — random sublist
(element, subset) of the list comprised of resulting elements of the program p
execution; Is p — equivalent to Choice [C p].

If the storage s_var contains the variable with name s, then CSM pushes the
value of this variable onto the stack. Otherwise, it returns an error.

SENc' alg

CSM takes the top 3 elements of the stack as arguments: a, b, ¢. CSM
encrypts a with b as initial vector and ¢ as the key using symmetric
encryption algorithm alg.

Here and after: 1) if the stack is underflowed, CSM returns an error; 2) the
last argument in the argument list is located at the top of the stack; 3) the
arguments of the function are removed from the stack; 4) the result is pushed
to the stack.

Enco' alg

Encoding of a using algorithm alg. List of arguments: a.
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Xor' n ‘ Exclusive OR. Arguments: the top # elements of the stack.

ModAdd', Addition (multiplication) of @ and » modulo m. List of arguments: a, b, m.

ModMult' Here and after: the byte strings are interpreted as integers basing on the ‘big
endian’ agreement.

ModInv' ‘ Inverse of @ under modulo m. List of arguments: a, m.

Add' n Let a is the top element of the stack. CSM adds n to @ modulo 2"(8*k),
where k is the length of a in bytes.

Rev fin The function that is reverse to the function fun, where fun must be one of:
Enco’ alg, SEnc' alg, Xor' n, ModMult', ModAdd', ModInv', Add' n.

Mod' ‘ Modulo operation. List of arguments: a.

ModExp' ‘ Modular exponentiation: b mod m. List of arguments: a,b,m.

Hash' alg ‘ CSM calculates the hash of a using algorithm alg. List of arguments: a.

Pad' n ws Padding of a using the bytes ws until the length of the result reaches n (n
must be equal or greater than length of ). List of arguments: a.

Take' ns Here ns is the list of numbers. If the length of the top element of the stack is
less than the sum of the elements of ns, then CSM returns the specification
error. Otherwise, CSM cuts the top element of the stack into n parts
considering the numbers from the ns list as lengths of elements and pushes
(from left to right) the resulting » elements onto the stack, where » is the
length of the ns list. The remainder of the top element is dropped (if any).

Split' ns The same as the instruction Take' ns, except that the length of the top
element of the stack must be exactly equal to the sum of the numbers from
the ns list.

SplitE' n [s equivalent to the instruction Split' [k.k...k], where k = len / n, where len is

the length of the top element of the stack (/en must be dividable by »).

ECMult' Elliptic curve scalar multiplication. List of arguments: curve id (curve
identifier), x (x-coordinate), y (y-coordinate), k (the scalar). Instruction
produces 2 elements of the stack: x-coordinate and y-coordinate.

ECAdd' Elliptic curve addition of points (x/,y/) and (x2,y2). List of arguments:
curve_id (curve identifier), x/, yI, x2, y2. Instruction produces 2 elements
of the stack: x-coordinate and y-coordinate.

C'n ‘ Concatenation. Arguments: the top n elements of the stack.
CE'n ‘ Concatenation of the equal-sized arguments.
Len'e ‘ The length of the top element of the stack written in e format, where e can be
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one of: BE n (packing into n big-endian bytes), LE n (packing into » little-
endian bytes), DER (packing using ASN.1 DER format).

Insert i ‘ CSM moves the top element of the stack to the i-th position.

Pick i, CSM moves (for Pick) or copies (for Dup) the i-th element of the stack to
Dup i the top position.

Free i ‘ CSM removes the i-th element from the stack.

Elemip CSM executes the program p using temporary empty stack and then puts in

the current working stack the i-th element of temporary stack.

SA'nkp CSM copies n elements from the current working stack to temporary stack,
executes the program p using a new temporary stack and then inserts the
resulting elements between the (k+17)-th and k-th elements of the current
working stack.

Map'p in The stack must contain at least i*n elements. CSM executes the program p n
times using at each iteration a new temporary stack to which the next i
elements from the current working stack are moved (beginning from the
depths of the stack). At each iteration the elements containing in temporary
stack after execution of p are moved to the current working stack.

Sort' i n CSM considers the top i*n elements of the stack as a list of n elements,
where each element, in turn, is a list of i elements. CSM sorts this list of
elements comparing their first (from the depths of the stack) elements.

Select' ¢s CSM converts the list of the cases cs into the form:

[Case'¢; p;,...,Case' ¢, p,l.

If CSM finds in the list ¢s (from left to right) the condition ¢; to which the
top element of the stack satisfies, then it removes the top element from the
stack and executes the program p;. Otherwise, it returns an error.

Mp Macro instruction: CSM simply executes the program p.

Lnp Macro instruction supplemented by the total length of the resulting elements
of p execution (parameter n).

"Sugared" instructions

Cp, CE p, Xor | CSM executes the program p using temporary empty stack and copies
p, SEnc al p, the resulting m elements onto the current working stack. Then it

Mod p, executes the "bare-metal" counterpart of the "sugared" instruction: C' m,
ModMuilt p, CE' m, Xor' m, SEnc' al, Mod', ModMult', ModAdd', ModEXxp',
ModAdd p, ModInv', ECMult' or ECAdd'. In the end, CSM moves the resulting
ModExp p, elements (two elements in the case of the ECMult' or ECAdd'

ModlInv p, instruction and one element in the other cases) to the current working
ECMult p, stack.

ECAdd p
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Mapgnp CSM executes the program p using temporary empty stack. If m mod »

Sortnp /=0, CSM returns an error (where m is the number of elements of
temporary stack after execution of p). Otherwise, it copies the resulting
m elements onto the current working stack executes the "bare-metal"
counterpart: Map' ¢ i n or Sort' i n, where i = m / n.

Hash al p, CSM executes the program [C p] using temporary empty stack and

Enco al p, Add
np,

Pad n bs p, Len
ep, Take Ist p,

copies the resulting element onto the current working stack. After that,
CSM executes the "bare-metal" counterpart of the "sugared" instruction:
Hash' al, Enco' al, Add' n, Pad' n bs, Len' ¢, Take' Is, Split' Is or
SplitE' .

Split Ist p,

SplitE n p

Select is cs CSM tries to execute the program [C [is]] using temporary empty stack.
If the program was successfully executed, CSM copies the resulting
element onto the current working stack and executes the instruction
Select' ¢s. If the execution failed (due to unknown variable), CSM
checks if the list ¢s does contain the element CaseUnkno p. If so, CSM
executes the program p, otherwise it returns an error.

VarLnsrt Is equivalent to: L n (Var s r ¢)

VLins Is equivalent to: L n (V s)

SAp Is equivalent to: SA' 7 0 p

WithLen ep Is equivalent to: M [C p, SA' I I [Len' ¢]]

SelectV s cs Is equivalent to: Select (V s) cs

4. Simple CMN.1-based specification language

The language presented below is simple in the sense that it doesn't capture the
protocol automata in full. A specification consists of the CMN.1-based message
definitions and a sequence of protocol actions with simple branching support (table

2).
Table 2. Protocol actions
Action Description

roles rlist | The action sets the roles participating in the protocol. Each role runs its own
CSM instance.

msg src The message with the CMN.1 definition p is transferred from the role src to the

dstp role dst.

set r wiist | Here wiist is the list of pairs of type (V name, is). For each pair, the action
executes the CSM instruction is and includes the pair (name, val) in a storage
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s_var belonging to the CSM instance of the role », where val is concatenation
of the resulting elements of the execution of is.

select »is | This action provides a branching support in the same manner as the CSM
acs instruction Select is ¢s does. The difference between the lists ¢s and acs is that
cs consists of elements Case value p, where p is a CSM program, whereas acs
consist of elements Case value a, where a is a sequence of protocol actions.

trusted » | This action takes from a trusted storage the binary data stored under the name
idp id and processes these data using CMN.1 definition p and the CSM instance of
the role r.

connect » | If this action is present, the specification turns into the client implementation
port addr | acting as the protocol role role. The action carries out the connection to a third-
party server implementation listening on the port port of the IP-address addr.

accept The specification turns into the server implementation acting as role and
role port | listening on the port port.

printPV Both actions generate the ProVerif program corresponding to the protocol
printPV' | events that took place at the time of the call. The first action generates a full
program, the second one ignores the lengths fields of messages and related
events as non-essential in order to make this program more concise and
productive.

Bearing in mind the elegant and concise syntax of the Haskell language and
advantages of embedded domain-specific languages, we integrate our CMN.1-based
specification language in Haskell.

As an illustration, we present an excerpt from the CMN.1-based specification of the
TLS protocol (fig. 2; note that the order of declarations can be arbitrary in the
Haskell language). A specification, which serves as source for this excerpt,
comprises about 500 lines (the total for client and server) covering substantial part
of the TLS v.1.2 protocol including four ciphersuites and X.509 certificates support
and excluding extensions and renegotiations. The specification turned into the
implementation (see the actions connect and accept in the table 2) was successfully
tested for interoperability with the OpenSSL v.1.0.20 tool (both in the client and
server roles).
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1tlsMsg m src =

[VL 1 ["contentType",m],
SelectV ["version", "clntHello"]
[CaseUnkno [VarL 2 ["version",m] src
(Choice [Const [0x03,0x03], Const [Ox03,0x02],
Const [0x03,0x01]]1)1,
otherwise [V ["version","clntHello"11],
WithLen (BE 2)
[SelectV ["CCS",show src]
[CaseUnkno [payload],
Otherwise [payloadProtected]]]]
where
payload =
SelectV ["contentType",m]
[Case [0x14] [VarL 1 ["CCS",show src] src (Is [Const [0x01]])],
Case [0x15] [VL 1 ["alertLevel",m],
VL 1 ["alertDescr",m]],
Case [0x16] [Var ["hshkMsg",m] src (Is hshkMsg)],
Case [0x17] [V ["dataContent",m]]]
where
hshkMsg =
[VL 1 ["hshKkType",m],
WithLen (BE 3}
[SelectV ["hshkType",m]
[Case [0xO1] clntHello,
Case [0x02] servHello,
Case [0x0b] servCert,
Case [0x0c] servKeyExch,
L1
where
clntHello =
[VarL 2 ["version","clntHello"] Clnt
(Choice [Const [0x03,0x03], Const [0x03,0x02],
Const [0x03,0x01]]),
random Clnt,
Const [0],
WithLen (BE 2) [Var ["suites","clntHello"] Clnt
(Subset [Const [0x00,0x38], Const [0x00,0x32],
Const [0xc@,0xBa), Const [0xcO,0x09]]1)1,
WithLen (BE 1) [Const [0]],
Var ["helloExt","clntHello"] Clnt (Choice [Const []])}]

servHello =
[VarL 2 ["version","servHello"] Serv
(Is [V ["version","clntHello"]]),
random Serv,
WithLen (BE 1) [Var ["sessId","servHello"] Serv (Plain 32)],
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a7 Var ["suite","servHello"] Serv

48 (Choice [SpLitE 2 [V ["suites","clntHello"]]]),

49 VarL 1 ["compressAlg","servHello"] Serv

50 (Choice [Const [0x6011)]

51 servCert = ...

52 servKkeyExch =

53 [keyExchParams,

54 VarL 1 ["sigHashAlg","servKeyExch"] Serv

55 (Is [SelectV ["suite","servHello"]

56 [Cases [[0x00,0x32],[0x00,0x38],

57 [0xc@,0x09], [6xc0,0x0a]] [Const [0x02]1]1),
58 VarL 1 ["sigAlg","servkeyExch"] Serv

59 (Is [SelectV ["suite","servHello"]

60 [Cases [[0x00,0x32],[0x00,0x38]] [Const [0x02]],
61 Cases [[0xc0,0x891,[0xc0,0x0al] [Const [0x031111),
62 WithLen (BE 2)

63 [mDER 0x30 [mDER ©x02 [sigPart 1],

64 mDER 0xE2 [sigPart 211]]

65 where

66 keyExchParams =

67 SelectV ["suite","servHello"]

68 [Cases [[Gx00,0x32],[0x00,0x38]] dh,

69 Cases [[0xc0,0x09],[0xcO,0x0a]] ecdh]

70 where

71 dh = [withLen (BE 2) [dhP],

72 WithLen (BE 2) [dhG],

73 withLen (BE 2) [dhPubk Serv "servKeyExch"]

74 ecdh = ...

75 sigPart i =

76 SelectV ["sigAlg","servKeyExch"]

77 [Case [0x02] [Elem i sig dsa],

78 Case [0x03] [Elem i sig ecdsa]]

79 where

80 sig dsa = mSigDSA [hash,p,q.q.X,k] where

81 [p.9.,9,x] = [V [x,"servCert"] | x <- ["dsaP","dsaQ",
82 "dsaG", "dsax"]]
83 K = Var ["dsaK","servCert"] Serv (Modulo p)

84 sig ecdsa = ...

85 hash = ...

86 .

87 random src =

88 C [Var ["time",show src] src UTC,

89 Var ["salt",show src] src (Plain 28)]

jelo]

a1 dhP = Var ["dhP","servKeyExch"] Serv (Primary 256)
92 dhG = Var ["dhG","servKeyExch"] Serv (Modulo dhP}
a3 dhX src a = Var ["dhX",a] src (Modulo dhP)
94 dhPubk src a = ModExp [dhG, dhX src a, dhP]
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96 payloadProtected = ...
a7
98mDER t p = € [Const [t], WithLen DER (f t)] where

99 f 0x02 = [Enco B2DERInt p]
100 f Ox03 [Enco B2DERBits p]
101 f =p

162...

103 mSigDSA [e,p,q,d9,%x,k] = [r,s] where
104 r = Mod [ModExp [g, k., pl, gl
185 s = ModMult [ModAdd [ModMult [r, x, gl, e, gl,

166 ModInv [k, ql, q]
107 main =

108 roles [Clnt,Serv] >>=

109 -- connect Clnt 4433 0 >>= -- accept Serv 4433 >>= --
110 sendHandsh Clnt Serv [0x01] 1 »>»=
111 sendHandsh Serv Clnt [0x02] 2 >>=
112 P

113 sendHandsh Serv Clnt [0x0c] 4 >>=
114

115 printPV'

116

117 sendHandsh src dst htype 1 ss =

118 set src [(V ["contentType",show 1], Const [0x16]),
119 (V ["hshkType", show i], Const htype)] ss >>=
120 msg src dst [tlsMsg (show 1) src]

Fig. 2. CMN.I-based specification of the TLS protocol (an excerpt)

5. Translation to the ProVerif program

The ProVerif program presented in the fig. 3 was generated automatically from the
above specification (it is a console output of the call printPV'; see the line 115 in the
fig. 2). This program corresponds to the protocol trace based on the ciphersuite
TLS-DHE-DSS-WITH-AES-256-CBC-SHA. The program passed the ProVerif
compiler checks without warnings. The events and queries of interest have to be
inserted manually because CMN.1-based specifications do not contain such

information.

1free c: channel.

2...

3 fun ModExp(bitstring,bitstring,bitstring): bitstring.
4 const dhG servkeyExch: bitstring [data].

5 const dhP_servKkeyExch: bitstring [data].

6 equation forall x:bitstring,y:bitstring;

7 ModExp (ModExp(dhG_servKeyExch,x,dhP_servKeyExch),y,dhP servKeyExch} =

8 ModExp (ModExp(dhG servKeyExch,y,dhP_servKeyExch),x,dhP_servKeyExch).

9 fun ModAdd(bitstring,bitstring,bitstring):bitstring.

10 equation forall a@:bitstring,al:bitstring;

11 ModAdd(a@,al,dhP servkeyExch) = ModAdd(al,a@,dhP servKkeyExch).
12 equation forall a@:bitstring,al:bitstring;

13 ModAdd(ad,al,dsaP servCert) = ModAdd(al,ab,dsaP servCert).
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14 reduc forall a0:bitstring,al:bitstring,a2:bitstring;

15 RevOModAdd (ModAdd(a0,al,a2),al,a2) = a0.

16 reduc forall a@:bitstring,al:bitstring,a2:bitstring;

17 Rev1ModAdd(a®,ModAdd (a0,al,a2) ,a2) = al.

18 fun ModInv(bitstring,bitstring):bitstring.

19 reduc forall a@:bitstring,al:bitstring; Rev@ModInv(ModInv(a@,al),al) = a@.
20 fun HashSHAl(bitstring):bitstring.

21 fun Mod(bitstring,bitstring):bitstring.

22 fun EncoB2DERInt(bitstring):bitstring.

23 reduc forall a@:bitstring; Rev@EncoB2DERInt(EncoB2DERINnt(a@)) = a@.
24 const xnull: bitstring [datal.

25 const x0038: bitstring [data].

26...

27 let processClnt =

28 new time Clnt: bitstring;

29 new salt Clnt: bitstring;

30 let v17 = (time_Clnt,salt_Clnt) in

31 new suites clntHello: bitstring;

32 let v25 = (x0303,v17,x00,suites clntHello,x€0,xnull) in
33 let hshkMsg 1 = (x01,v25) in

34 let vlil = (x16,x0303,hshkMsg_1) in

35 out(c,vll);

36 in(c,v37:bitstring);

37 let (=x16,=x0303,hshkMsg_2:hitstring) = v37 in

38 let (=x02,v48:bitstring) = hshkMsg 2 in

39 let (=x@303,v42:bitstring,sessId servHello:bitstring,

40 =x0038, compressAlg servHello:bitstring) = v48 in
41 let (time Serv:bitstring,salt Serv:bitstring) = v42 in
42

43 in(c,v180:bitstring);

44 let (=x16,=x0303,hshkMsg_4:bitstring) = v18@ in

45 let (=x0c,v217:bitstring) = hshkMsg 4 in

46 let (v193:bitstring,=x02,=x02,v214:bitstring) = v217 in
47 let (=dhP_servKeyExch,=dhG servKeyExch,v190:bitstring) = v193 in
48  let (=x30,v21l:bitstring) = v214 1n

49 et (v206:bitstring,v210@:bitstring) = v211 in

50 let (=x02,v203:bitstring) = v206 in

51 let v196 = RevBEncoB2DERInt(v203) in

52 let (=x02,v207:bitstring) = v210 in

53 let v202 = Rev@FncoB2DERINt(v2A7) in

54 let v198 = (v17,v42,v193) in

55 let v199 = HashSHA1(v198) in

56 let v223 = ModInv(v202,dsaQ servCert) in

57 let v224 = ModMult(v199,v223,dsaQ servCert) in

58 let v226 = ModExp(dsaG servCert,v224,dsaP servCert) 1in
59 let v225 = ModMult(v196,v223,dsaQ servCert) in

60 let v227 = ModExp(v132,v225,dsaP servCert) in

61 let v230 = ModMult(v226,v227,dsaP_servCert) in

62 1if v196 = Mod(v230,dsaQ servCert) then
63 din(c,v237:bitstring);

64 ...

65 let processServ =

66 in(c,vl@:bitstring);
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69 let (=x€303,v14:bitstring,=x00,suites clntHello:bitstring,
70 =x00, helloExt clntHello:bitstring) = v22 in

71 let (time Clnt:bitstring,salt Clnt:bitstring) = v14 in

72 new time Serv: bitstring;

73 new salt Serv: bitstring;

74 let v38 = (time_Serv,salt_Serv) in

75 new sessId servHello: bitstring;

76 if x0038 = Split2 2 2 2 1(suites clntHello) then

77 let v44 = (x0303,v38,sessId servHello,x0038,x00) in

78 let hshkMsg 2 = (x02,v44) in

79 let v34 = (x16,x0303,hshkMsg 2) 1n

80 out(c,v34);

81 ...

82 new dhX servkeyExch: bitstring;

83 let v203 = ModExp(dhG_servKeyExch,dhX servKeyExch,dhP servKeyExch) in
84 let v206 = (dhP_servKeyExch,dhG_servKeyExch,v203) in

85 new dsaK servCert: bitstring;

86 let v21@ = ModExp(dsaG servCert,dsaK servCert,dsaP servCert) in
87 let v211 = Mod(v210,dsaQ servCert) in

88 let v218 = EncoB2DERInt(v21l) in

89 let v221 = (x02,v218) in

90 let v212 = ModMult(v2l1ll,dsaX servCert,dsaQ servCert) in
91 let v213 = (v14,v38,v206) in

92 let v214 = HashSHA1(v213) in

93 let v215 = ModAdd(v212,v214,dsaQ servCert) in

94 let v216 = ModInv(dsaK servCert,dsaQ servCert) in

95 let v217 = ModMult(v215,v216,dsaQ servCert) in

96 let v222 = EncoB2DERInt(v217) in

97 let v225 = (x02,v222) in

98 let v226 = (v221,v225) in

99 let v22¢ =

(
(x30,v226) in
100 let v232 = (v206,x02,x02,v229) in
101 let hshkMsg 4 = (x0c,v232) in

162 let v194 = (x16,x0303,hshkMsg 4) in
103 out(c,v194);

104 ...

165 process

106 ((!processClnt) | (!processserv))

Fig. 3. The corresponding ProVerif program (an excerpt)

6. Engine implementation details

The engine implements the functionality that is significantly more powerful than the
CSM machine presented in the section 3. The engine does not execute the CMN.1-
notated programs as straightforward as CSM does. It executes the programs
symbolically: the elements of the stack are not byte strings but symbolic
expressions. This well-known technique allows the engine to fully take over the task
of verification of the incoming messages using the same CMN.1-definitions that are
used in the direct task of message generation. The verification is complete: the
engine decrypts the ciphertexts, checks MACs and signatures, etc. Throughout a
protocol execution, the engine accumulates the generated symbolic expressions,
their values, lengths and types. It uses this information to generate or verify the
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protocol messages in the future. In addition, the engine logs such events as
calculations of the values of the symbolic expressions and applications of the
rewriting rules. This information can be used by the engine's environment to extract
symbolic traces and convert them to the programs for symbolic verifiers, e.g.
ProVerif (as was presented in the previous section).
The scheme of the verification is as follows. Let the byte string bs is considered by
the engine as a protocol message with the CMN.1 definition p. Let EQ is a set
variable containing equations, i.e. pairs of type (symbolic expression, byte string).
The engine implements the verification procedure as follows.
Step 1. The engine executes the program p symbolically resulting the
symbolic expression exp. EQ is initialized with the equation (exp,bs).
Step 2. For every new equation (exp,bs) from EQ, until neither of Step 2.1
or Step 2.2 can be applied anymore:
Step 2.1. The engine tries to apply a rewriting rule to this
equation. This rule can be a simple inversion (for Enco, SEnc,
Xor, ModMult, ModAdd, Modinv or Add functions) or be a
complex group operation taking into account other equations from
EQ (e.g. for Split). The application of the rule produces one or
several new equations, which are inserted in EQ. If some rule was
applied, the engine returns to the beginning of the Step 2.
Otherwise, it goes to the Step 2.2.
Step 2.2. If the values of all the arguments of the top operation of
the symbolic expression exp are known, the engine calculates the
value of exp. If this value is equal to bs, the engine removes the
equation from EQ. Otherwise, it returns the message verification
error.
The engine knows about the equality (a°)° = (a%)" and analogous equality for the
elliptic curve scalar multiplication, so Diffie-Hellman key exchange and ElGamal
asymmetric encryption do not ask for special treatment. Yet the engine uses specific
rewrites for expressions relevant to the DSA and ECDSA algorithms or to their
relatives.
The calls exported by the engine are presented below.
1. cSymExec p — The engine executes the program p symbolically and
returns the descriptor of the generated symbolic expression.
2. cCalc d — The engine calculates the value of the symbolic expression with
descriptor d.
3. cGetVal d — The engine returns the value of the symbolic expression with
descriptor d.
4. cSetVal d bs — The engine assigns the value bs to the symbolic expression
with descriptor d.
5. cVerify d bs — The engine verifies the byte string bs with respect to the
symbolic expression with descriptor d. If verification has failed, it returns
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an error, otherwise, it returns the superfluous remainder of the byte string
bs (if present).

6. cEvent ev — The engine logs the event ev (i.e. the environment can insert
additional events into the engine log).

7. cGetlLog — The engine returns content of its log.

7. Conclusion

We presented cryptographic protocol message notation (named CMN.1) based on
the instruction set of a stack machine specifically tailored to the needs of
cryptographic protocols (named cryptographic stack machine, or CSM). The
principles of implementation of the protocol specification language based on this
notation also presented. Within such an approach, specifications are executable and
also translatable to the programs for symbolic verifiers, such as ProVerif. The
readability of CMN.1-notated specifications is brought in the court of public
opinion.

In addition, the validation of the proposed notation on a wider spectrum of
cryptographic protocols is needed. The validation will certainly cause minor
additions to the notation (at least regarding cryptographic key types) without
affecting currently defined CSM instructions. Taking into account the fact that the
author's proof-of-concept implementation of the core language library (the engine)
comprises only 700 lines of the Haskell code (excluding cryptographic primitives),
it seems logical to provide in the future a formal description of the engine's
algorithm and, basing on it, a proof of the soundness of the ProVerif-translation
procedure.
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HoTauusa kpuntorpacgpmuyeckom CTeKOBOW MallMHbI BepCcuUmn
oaVH

C.E. Ilpoxonves <s.e.pr@mail.ru>
2. Mockesa

AnHoTamus. Xopomras crenu(uKanus KPHUITOTpagHUIecKoro INPOTOKOJIA JOJDKHA JIETKO
BOCIIPHMHUMAThCSI YEJIOBEKOM (OBITh JIEKJIApaTHBHON W JIAKOHMYHOI), OBITh MCIIOMHUMOH U
npodTH mpouenypy QopmanbHOl BepudUKAlMM B HEKOTOPOIl aJeKBaTHOM MOJEH.
HauenuBasich Ha 3T TpeOOBaHuUs, B cTaThe npeaioxkena Hotauuss CMN. 1, npeana3HayeHHas
JUIL  ONHUCAHHWSA COOOMEHWH KpHUNTOrpaguYecKHX MPOTOKOJIOB W OCHOBAaHHAas Ha
BEIYHCIIUTENFHON aOCTPAaKIMK TIOJ HA3BaHUEM KPUNMoepaguueckas cmeKo8as MauuHd
(CSM). Crarps ommceiBaeT cuHTakcuc M ceMaHTHKy CMN.1, a Takke mpencTaBiser
pe3ynbraTtel  pa3pabOTKM  s3bIKa  CHEHUUKAMH  KPUNTOTpadUIECKUX  MPOTOKOJNIOB,
MOCTPOEHHOTO HAa OCHOBE JaHHOW HOTalWHM M BCTpoeHHOro B s3bik Haskell. B aBropckoii
peanu3anuy Bcst 06paboTka COOOLICHNI HHKATICYIMPOBaHa BHYTPpU 0a30BOro OMOIMOTEYHOTO
MOZyJIsl, B TO BpeMsl Kak crenuduKaiys J0MKHA JIHIIb JaTh JEKIapaTUBHbBIC ONpPEAEICHUS
9THX coobuieHui. [Ipu GpopmMupoBaHNUH UCXOASAIIEr0 COOOLICHHS NPOTOKOIa 0A30BbIil MOIYIIH
Oeper ommcanue gaHHOro coodmenus B HoTarumu CMN.1 u Bo3Bpamaer (pparMeHT HaHHBIX,
CTCHEPHPOBAHHBIA 110 3TOMy omucanuio. IIpn oOpaboTke BXomsIiero cooOIIeHUs Ga30BbIi
MOIyNb OepeT NMOCTYNMBIIMH (parMeHT AAHHBIX W OINMCAaHHE OXKUAAEMOTO COOOIIEHHS B
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Horanun CMN.1 n Bo3Bpamaer BEpAUKT 00 MX COOTBETCTBHHU APYT IpPYry, U3BIEKas U
3alOMHHAsl I[IPU 3TOM BCE COAEpKalHecs B COOONIEHHM JaHHBIE, HEOOXOOUMBIC IS
¢dopmupoBaHUS WM BepH(QUKAIMM CIEAYIOIIHX COOOIIeHMH mportokona. Ilpormecc
BepuUKaLMK SBIACTCS IOJHBIM: 0a30BBIl MOZAYIb OCYIIECTBISIET pacuIuppOBaHHUE,
MPOBEPKY KOJOB ayTEeHTU(PHKAIUU COOOIIEeHNH M 3HayeHWi LuQpoBOH mHoxmHCH WU T.1.
Texymass peanuzauus s3bIKa BKIHOYaeT (YHKIMM TpaHCIAUMM —crnenuduKauuid B
UCIIONHSEMBIH KOJ, COBMECTUMBIH C CYIIECTBYIOIIUMHU IPOTPAMMHBIMH pPealH3alHIMI
MIPOTOKOJIOB, a Takke (YHKIMM KOHBEPTalWH CHEeNU(UKamUi B NPOTpaMMBI Ha BXOJHOM
SI3bIKE aHAIN3aTopa MpoToKoIoB ProVerif. B kauecTBe minmocTpanuy MpUBOASTCS BEIIEPIKKH
w3 CMN.l-cnenmdpukanun mpotokona TLS ® cooTBeTCTByIOmIEH el  aBTOMATHYECKH
CreHepHpOBaHHOM nporpammbl 1uist Pro Verif.

KiroueBble cJjioBa: s3bIK  crenuuKanuii KpUnTorpadpuyeckux MPOTOKOJIOB; HOTALHS
COOOIICHUI KPUNTOrpapHUSCKUX MPOTOKOIOB; KpUNTOTpaduuecKas CTEKOBas MalllUHa;
BCTPOCHHBIE MPEMETHO-OpUeHTUpoBaHHbIe s13bIkH; Haskell; ProVerif; TLS
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