Static dependency analysis for semantic
data validation

D.V. llyin <denis.ilyin@ispras.ru>
N.Yu. Fokina <nfokina@ispras.ru>
V.A. Semenov <sem@ispras.ru>
Ivannikov Institute for Systems Programming of the RAS,
25, Alexander Solzhenitsyn Str., Moscow, 109004, Russia

Abstract. Modern information systems manipulate data models containing millions of items,
and the tendency is to make these models even more complex. One of the most crucial
aspects of modern concurrent engineering environments is their reliability. The principles of
ACID (atomicity, consistency, isolation, durability) are aimed at providing it, but directly
following them leads to serious performance drawbacks on large-scale models, since it is
necessary to control the correctness of every performed transaction. In the paper, a method
for incremental validation of object-oriented data is presented. Assuming that a submitted
transaction is applied to originally consistent data, it is guaranteed that the final data
representation is also consistent if only the spot rules are satisfied. To identify data items
subject to spot rule validation, a bipartite data-rule dependency graph is formed. To
automatically build the dependency graph a static analysis of the model specifications is
proposed to apply. In the case of complex object-oriented models defining hundreds and
thousands of data types and semantic rules, the static analysis seems to be the only way to
realize the incremental validation and to make possible to manage the data in accordance with
the ACID principles.

Keywords: information systems; ACID; data consistency management; EXPRESS
DOI: 10.15514/1ISPRAS-2018-30(3)-19

For citation: Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for
semantic data validation. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 271-284.
DOI: 10.15514/ISPRAS-2018-30(3)-19

1. Introduction

Management of semantically complex data is one of the challenging problems
tightly connected with emerging information systems such as concurrent
engineering environments and product data management systems [1-4]. Although
transactional guarantees ACID (Atomicity, Consistency, Isolation, and Durability)
are widely recognized and recommended for any information system, it is difficult
to maintain the consistency and integrity of data driven by complex object-oriented

271

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

models. Often such models are specified in EXPRESS language being part of the
STEP standard on industrial automation systems and integration (ISO 10303). To be
unambiguously interpretable by different systems the data must satisfy numerous
semantic rules imposed by formal models. Maintaining data consistency and
ensuring system interoperability become a serious computational problem. Full
semantic validation requires extremely high costs, often exceeding the processing
time of individual transactions. Periodic validation is possible, but at a high risk of
violating rules and losing actual data.

The paper presents an effective method for incremental validation of object-oriented
data. An idea of incremental checks is well-understood and was successfully
implemented for the validation of such specific data as UML charts, XML
documents, deductive databases [5-7]. Unlike the aforementioned results, the
proposed method can be applied to semantically complex data driven by arbitrary
object-oriented models.

Assuming that a submitted transaction is applied to originally consistent data, it is
guaranteed that the final data representation is also consistent if only the spot rules
are satisfied. To identify data items subject to spot rule validation, a bipartite data-
rule dependency graph is formed. To automatically build the dependency graph a
static analysis of the model specifications is proposed to apply. In the case of large-
scale models defining hundreds and thousands of data types and semantic rules,
static analysis seems to be the only way to realize the incremental validation and to
make possible to effectively manage the data in accordance with the ACID
principles.

The structure of the paper is as follows. In section 2, we will shortly overview
EXPRESS language with an emphasis on the data types and the rule categories
admitted by the language. Formal definitions of model-driven data, rules and
transactions are also provided. In section 3, we will present a complete validation
routine and then explain how an incremental validation can be arranged using the
proposed dependency graph. This is accompanied by an example of the model
specification. In conclusion, we summarise benefits of the proposed validation
method and outdraw future efforts.

2. Product data and transactions

2.1 EXPRESS language

Product data models and, particularly, semantic rules can be specified formally in
EXPRESS (ISO 2004) language [8]. This object-oriented modeling language
provides a wide range of declarative and imperative constructs to define both data
types and constraints imposed upon them. The supported data types can be
subdivided into the following groups: simple types (character, string, integer, float,
double, Boolean, logical, binary), aggregate types (set, multi-set, sequence, array),
selects, enumerations, and entity types.

272

Wneun 1.B., ®okuna H.1O., CemenoB B.A. CraTudeckuii aHau3 3aBUCUMOCTEH 11 CEMaHTHYECKOW BaJlJalluKl
naHHbIX. Tpyoet UCIT PAH, tom 30, Beim. 3, 2018 1., ctp. 271-284

Depending on the definition context, three basic sorts of constraints are
distinguished in the modeling language: rules for simple user-defined data types,
local rules for object types, and global rules for object type extents. Depending on
the evaluation context these imply the following semantic checks:

o attribute type compliance (R,);

¢ limited widths of strings and binaries (R4, R,);

e size of aggregates (R5);

o multiplicity of direct and inverse associations in objects (R,, Rs);
e uniqueness of elements in sets, unique lists and arrays (Rg);

e mandatory attributes in objects (R;);

e mandatory elements in aggregates excluding sparse arrays (Rg);
¢ value domains for primitive data types (Ro);

o value domains restricting and interrelating the states of separate attributes
within objects (R, or so-called local rules);

e uniqueness of attribute values (optionally, their groups) on object type
extents (R, or uniqueness rules);

e value domains restricting and interrelating the states of whole object
populations (R, or so-called global rules). Value domains can be specified
in a general algebraic form by means of all the variety of imperative
constructs available in the language (control statements, functions,
procedures, etc.).

Certainly, each product model defines own data types and rules. Therefore,
semantic validation methods and tools should be developed in a model-driven
paradigm allowing their application for any data whose model is formally specified
in EXPRESS language. For a more detailed description refer to the mentioned
above standard family which regulates the language.

2.2 Formalization of models, data and transactions

An object-oriented data model M can be formally considered as a triple M =
(T U< UR), where the types T ={C US U AU ...} are classes C, simple types S,
aggregates A and other constructed structures allowed by EXPRESS.
Generalization/specialization relations < are defined among these types. Each class
¢ € C defines a set of attributes in the form c.a: C — T. The attributes c.a: C - C,
c.a:C » aggregate(C) are single and multiple associations which play role of
object references. The rules R ={R,UR; UR, U ..UR,,} define the value
domains of typed data in an algebraic way in accordance with EXPRESS. The rules
are subdivided into 12 categories enumerated above. Let us define the key concepts
that are used in further consideration.

273

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

An object-oriented dataset x = {0, 0,,...} is said to be driven by the model
M(T, <, R) if all the objects belong to its classes: V o € x — typeof(0) € C c T.
Let a dataset x is driven by the model M(T, <, R). All the objects {0*} c x such that
subtypeof (0*) = ¢ € C c T are called an extent of the class ¢ on the dataset x. A
query returning the class extent ¢ on the dataset x is called the extent query and is
designated as Qxten: (X, €).

Let a dataset x is driven by the model M(T,<,R). An object set {o*} c x,
typeof(0*) =c* € Cc T is said to be interlinked with the objects {o} c x,
typeof(o) =c€ C cT along the association c.a if Vo € {0},0.a c {0*},
Vo* € {0*} — 30 € {0}: 0* € 0.a. We will denote that as {0} 3 {o*}.

Let a dataset x is driven by the model M(T,<,R). An object set {o*} c x,
typeof(0*) =c*€ Cc T is said to be interlinked with the objects {o} c x,
typeof (o) = c € C c T along the route {c.a} if 3 {0’} c x,{0"} c x, ..., so that

01510715 0% S0 A query returning the objects {o*} interlinked
with a given set {0} along the route {c. a} is called the route query and is designated
as Qroute (x, {0}, {c. a}). A query returning the objects {0} by a given object set {o*}
is called the reverse route query and is designated as Q,oyz. (x, {0*}, rev {c.a}).

The object set x = {o4, 0, ... } driven by the model M(T, <, R) is called consistent if
all the rules being instantiated and evaluated are satisfied on this data set: Vr €
R - r(x) = true.

Finally, let us introduce the concept of the delta as a specific representation of
transactions. Each delta A(x’,x) aggregates the changes happened in the dataset
x' = {o1, 04, ...} compared with its original revision x = {o,, 0,, ... }. It is assumed
that both revisions are driven by the same model and the objects have unique
identifiers that allows to uniquely map the objects and to compute delta in a formal
way as A(x’,x) = delta(x’,x). The delta can be arranged as bidirectional one and
then any of the revisions can be restored by the given other: x" = apply(x,A) and
x = apply(x’,A™).

The delta is represented as a set of elementary and compound changes A = {5},
where each change can be either the creation of an object, or its deletion or
modification designated as Snew(o) Odei(0)r Omoaoy COrrespondingly. The
modification, in turn, is represented as a change in the attributes &,,54(0) =
{6mod(o_a)} that in the case of aggregates is represented by the operations of
insertion, removal and modification of the elements
Smod(o.a) = {Simso.af) Srem(o.a) Omoaoam}- N What follows, we assume that
each creation operation in the delta representation is complemented by the
operations of initializing the attributes that are equivalent to the modification
operations. Each deletion operation is supplemented by the operations of resetting
the attributes to an undefined state, also representable by the modification
operations. Regardless of the way, the delta is structured, only elementary
operations are taken into account in the context of the studied validation problems.

274

Wneun 1.B., ®okuna H.1O., CemenoB B.A. CraTudeckuii aHau3 3aBUCUMOCTEH 11 CEMaHTHYECKOW BaJlJalluKl
naHHbIX. Tpyoet UCIT PAH, tom 30, Beim. 3, 2018 1., ctp. 271-284

3. Validation

3.1 Complete validation

The complete validation routine is provided below (see Figure 1). In a cycle on all
objects their attributes are checked against the rules of the categories R; UR, U ...U
Ry. The checks are performed individually for each attribute provided that the
corresponding rules are imposed on their types. In case of detected violations, the
error messages are logged. Rules R, are evaluated for entire objects in the same
loop. The second cycle is formed due to the need for checks of uniqueness rules
R,,. Since these rules are declared inside the class definitions, an additional cycle is
arranged on the model classes. The rules are evaluated on the class extents. Finally,
the third cycle allows to check global rules R,, which are defined directly in the
model. Such checks are performed for the corresponding class extents.
for each dbject o € x in dataset
for each attribute o.a in object
for each attribute rule ERO URL U R2 U .. U R9 defined for typeof(o.a)
check rule(o.a), log if violated
for each local rule € R10 defined for typeof(o)
check rule(o), log if violated
for each class c € C defined in model
for each uniqueness rule € R11 defined for class c
check rule(Q extent(x, rule.c)), log if violated

for each global rule € R12 defined in model
check rule(Q extent(x, rule.cl), Q extent(x, rule.c2),..), log if violated

Fig. 1. Complete validation routine

As mentioned above, complete validation of semantically complex product data is a
computationally costly task that can cause performance degradation when
processing transactions. Incremental validation makes it possible to reduce the
amount of checks to be performed.

3.2 Incremental validation

The proposed incremental validation method is based on the idea of localizing spot
rules that can be affected by a transaction and generating a set of semantic checks
that is sufficient to detect all potential violations. For this purpose, the dependency
graph is built by a given specification of the data model in EXPRESS language. For
brevity, we just explain that this structure represents and omit the details of how it
can be formed using static analysis of the specification.

The dependency graph is a bipartite graph whose nodes represent the kinds of
transaction operations and the categories of semantic rules both defined by the
underlying model. An operation node is connected with the rule nodes by directed
edges if only such operations can violate the rules being instantiated for particular
data. Usually, the semantics of the operations imply what are the data it is applied
to. Sometimes the inspected data are apriori unknown and have to be determined by

275

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

executing corresponding route queries. Therefore, each edge is formed by the
dependency structure o containing both a rule reference o.rule and an optional
query route a.route. In some sense, the graph reflects the transaction structure as if
it contains all possible kinds of changes and the data organisation as if all data types
are present and all rules are potentially suffered to violations. As mentioned above,
only elementary operations are involved in the dependency analysis.
Thus, the dependency graph enables to determine spot rules that could be violated
for particular data due to the accepted transaction. For example, if the node
operation is a modification of the object attribute c.a and a rule r € R, U Ry U
R, U ..U R, is defined for its type, then the node &,,04(c.q) IS connected with the
rule node r by a corresponding edge. Having a specific operation of this kind
Omod(o.a)r typeof(o) =c in the delta representation the corresponding check
r(0.a) can be produced using the dependency edge.
The method of the dependency graph construction is described in more detail in the
next section. Still, here we will point out some of its important features.
If the same attribute c.a participates in an expression of the domain rule » € R, for
the class c, then the operation &,,,4(0.0), typeof (o) = ¢ produces the check (o)
for the object o.
If the attribute c. a participates in the uniqueness rule r € R,, defined for the class
¢, then another dependency edge must be associated with the operation node. In this
case, the corresponding check r(Qeyxtens (%, ¢)) must be performed.
There is a more difficult case when the attribute c. a participates in an expression of
the domain rule r € R, defined for the other class c*. The attribute c. a is assumed
to be accessed by traversing associated objects along the route {c*.a*} from the
objects o™ € c*. Then the operation 8,,,4(0.0), tyreof (o) = c induces the checks
r(0*) for all 0* € Qoute(x,0,7ev {c*.a*}). To identify and perform such checks
the operation node must be connected with the evaluated rule node and a route
{c*.a*} must be prescribed to the edge. The dependency analysis of spot rules
T € Ry, is carried out in a similar way.
Finally, we note that the operations of creating and deleting objects on the
assumptions made above can only violate global rules and only in those cases if the
cardinalities of class extents are computed. Considering object references as specific
attribute types, it is possible to localize some spot rules more exactly. Differing
operations on aggregates also leads to better localization of spot rules. For brevity
we omit the details how the spot rules can be localized more carefully and provide
an example in the next subsection.
for each elementary operation &(0),d(0.a) € delta
{ 0 } = dependency graph(kindof(&))
for each dependency o € { o}
switch kindof (o.rule)
case attribute rule :

check o.rule(o.a), log if violated
case local rule :

276

Wneun 1.B., ®okuna H.1O., CemenoB B.A. CraTudeckuii aHau3 3aBUCUMOCTEH 11 CEMaHTHYECKOW BaJlJalluKl
naHHbIX. Tpyoet UCIT PAH, tom 30, Beim. 3, 2018 1., ctp. 271-284

{ o* } = Query route(x, o, rev (o.route))
for each o* € { o* }
checkset.put (o.rule(o*))
case uniqueness rule :
checkset.put (o)
case glabal rule :
checkset.put (o)
for each check o, c(0) € checkset
switch kindof (o.rule)
case local rule :
check o.rule(o), log if violated
case uniqueness rule :
check o.rule(Query extent(x, o.rule.c)), log if violated
case global rule :
check o.rule(Query extent(x, o.rule.cl), Query extent(x, o.rule.c2),..),
log if violated

Fig. 2. Incremental validation routine

The validation routine presented in Figure 2 consists in the sequential traversing of
delta operations, determining the nodes of the operation semantics, obtaining
associated spot rule nodes, evaluating the rules directly or filling the checkset for
the subsequent validation. The checkset is organized as an indexed set of records
each of which stores references on the validated rule, query and factual data to
perform the corresponding check. The use of the checkset is motivated by the fact
that some operations lead to repeated checks of the same rules. Indexing of the
checkset allows you to exclude repeated records and, thus, to avoid redundant
computations. At the same time, the attribute rule checks are always produced once
by the modification operations and, therefore, it is more expedient to execute them
immediately, without overloading the checkset.

3.3 Dependency graph construction

To construct the dependency graph, an abstract syntactic tree for the model is built.
According to the retrieved data, for all attribute declarations operation nodes are
built. Number and types of these nodes constructed for a single attribute depend on
its type. For non-aggregate attributes c.a only node §,,,4(c.a), representing
modification of the attribute, is built. For aggregate attributes c. a[] three nodes are
created: (1) &;,5(c.a[]) — insertion of a new element; (2) &poa(c-a[l) —
modification of an element of the aggregate; (3) 8,.m(c.a[]) — removal of an
element.

Construction of the dependency graph proceeds with generating rule nodes. We
handle construction of nodes for rules R;-Rgand Rio-Ry, differently.

For rules R;-Rg we take all explicit attributes and build rule nodes for each of them.
The types of rule nodes depend on the type of the attribute in question. For instance,
if it is a bounded string c.S, we generate a R;(c.S) (R; — limited width of strings),
connected with the node corresponding to the modification of S &,,,4(c.S).
Similarly, if an attribute is a bounded aggregate, we construct a node of type R, and

277

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

connect it with the insertion &;,¢(c.a[]) and/or removal §,.,,(c.a[]) operation
nodes of the attribute, depending on the side from which the aggregate is bounded —
if it is bounded above, then only with insertion node, if below — with removal, if
from both sides — with both of them.

The way of construction of rule nodes for Ryp-Ry, is uniform. We start with locating
all local rules for Ry, all uniqueness rules for Ry; and all global rules for Ry,. For
each of the rules, we find all attributes used in it. If an attribute is explicit, we only
connect its modification with the rule node, and also with insertion and removal, if
it is an aggregate used inside a SIZEOF operation. If an attribute is derived, we take
its definition and find the attributes used in it; if inverse — we proceed with
analyzing the attribute it references. For derived and explicit attributes, the analysis
is performed recursively, until all the explicit attributes, directly and indirectly
referenced by them, are located. Then all of them are connected with the rule node
corresponding to the rule in question. If the during the analysis we find a node that
is a function call, we substitute its formal parameters with actual and thus locate the
attributes which are used in it; the analysis of a function body with the parameters
substituted is completely identical to the analysis of a rule.

An example illustrating the constructed graph is given in the next subsection.

3.4 Example of a dependency graph

Let us consider a fragment of the EXPRESS specification of a project management
system. Three classes depicted in Figure 3 — Task, Link and Calendar — are its core
entities. The meaning of Task is self-evident; Link represents a connection defining
a relation and execution order between two tasks. The fact that between two tasks
might be only a single link of one type is reflected in uniqueness rule url. A
Calendar defines a typical working pattern: working days, working times, holidays.
The calendar can be assigned to specific tasks, and one calendar can be set as a
default project calendar, that means that it will be used for tasks for which no task
calendar is set. Besides that, it is possible to use an Elapsed calendar for a task
implying that work will be performed 24/7. Global rule SingleProjectCalendar
restricts the possible number of project calendars to no more than one. Moreover,
local rule wr3 is used to check that if a task has got a task calendar, it the reference
to it must be non-null. One more local rule, wr2, restricts the length of an
EntityName to be between 1 and 32 characters.

TYPE LinkEnum = ENUMERATION OF
(START START, START FINISH, FINISH START, FINISH FINISH);
END_TYPE;

TYPE CalendarRuleEnum = ENUMERATION OF
(TASK, PROJECT, ELAPSED);

END TYPE;

FUNCTION TaskIsCyclic (Tl : Task, T2 : Task) : BOOLEAN;
IF (SIZEOF(Tl.Parent) = 0) THEN RETURN (FALSE) ;
ELSE

278

Wneun 1.B., ®okuna H.1O., CemenoB B.A. CraTudeckuii aHau3 3aBUCUMOCTEH 11 CEMaHTHYECKOW BaJlJalluKl
naHHbIX. Tpyoet UCIT PAH, tom 30, Beim. 3, 2018 1., ctp. 271-284

IF ((TaskIsCyclic(Tl.Parent[l], T2) = TRUE) OR (Tl = T2))
THEN RETURN (TRUE) ;
END_IF;
END_IF;

END_FUNCTION;
RULE SingleProjectCalendar FOR (Calendar);
WHERE
wrl: SIZEOF (QUERY (Temp <* Calendar | Temp.isProjectCalendar =
TRUE)) <= 1;
END RULE;

TYPE EntityName = STRING;
WHERE

wr2: (1 <= SELF) AND (SELF <= 32);
END TYPE;

ENTITY Task;
ID : INTEGER;
Name : EntityName;
TaskCalendar : Calendar;

CalendarRule : CalendarRuleEnum;

Children : LIST [0:?] OF Task;
DERIVE

TaskDuration : Duration := ?;
INVERSE

Parent : SET [0:1] OF Task FOR Children;

DownstreamLinks : SET [0:?] OF Link FOR Predecessor;

UpstreamLinks : SET [0:?] OF Link FOR Successor;
WHERE

wr3 : CalendarRule <> CalendarRuleEnum.TASK OR
EXISTS (TaskCalendar) ;

wr4 : (SIZEOF (Parent) = 0) OR (TaskIsCyclic(Parent[1l], SELF) =
FALSE) ;
UNIQUE

url : ID;
END_ENTITY;

ENTITY Link;
ID : INTEGER;
LinkType : LinkEnum;
Predecessor : Task;
Successor : Task;

UNIQUE
ur2 : LinkType AND Predecessor.ID AND Successor.ID;
ur3 : ID;

END_ENTITY;

ENTITY Calendar;
ID : INTEGER;
Name : OPTIONAL EntityName;
IsProjectCalendar : BOOLEAN;
UNIQUE
urd4 : ID;
END ENTITY;

Fig. 3. An example of the model specification in EXPRESS language
279

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

The dependency graph for this fragment of the specification is shown in Figure 4.

ins(Children[])

Smod(Children(])

Omoa(Task.ID)

Imoa(Name)

Smoa(Link.ID)

Imod(LinkType)

Smod(Predecessor)

JImod(Successor)

Imod(TaskCalendar)

Jmod(CalendarRule)

Jmoa(Calendar.ID)

Smod(IsProjectCalendar)

Jrem(Children[])

O

LLALIAAN,

Ro(Children)
Rg(Children)

Ruo(wrd)

R11(Task.ID)
Ro(Name)

R7(Name)

Rio(wr2)

Ry(Link.ID)
Ro(LinkType)
R7(LinkType)

Ru(ur2)
Ro(Predecessor)
R7(Predecessor)
Ro(Successor)
R7(Successor)
Ro(TaskCalendar)
R1o(wr3)
Ro(CalendarRule)
R7(CalendarRule)
Rii(Calendar.1D)
Ro(IsProjectCalendar)
R7(IsProjectCalendar)
R12(SingleProjectCalendar)
R4(Children)

Rs(Parent)

Fig. 4. A fragment of the model dependency graph

Each operation of attribute modification except for removal of elements from the
list of task children is connected with the rules validating corresponding attribute
type compliance R, and availability of defined values for mandatory attributes R;.
To avoid placement of null values to the list of mandatory elements the rule Rg
should be validated as well after the operations have been performed. The insertion
cannot violate multiplicity of the direct and inverse associations as their upper
borders are unlimited, but checks R4, Rs should be performed when an element is

280

Wneun 1.B., ®okuna H.1O., CemenoB B.A. CraTudeckuii aHau3 3aBUCUMOCTEH 11 CEMaHTHYECKOW BaJlJalluKl
naHHbIX. Tpyoet UCIT PAH, tom 30, Beim. 3, 2018 1., ctp. 271-284

removed from Children. Therefore, the corresponding operation nodes should be
connected with the aforementioned nodes of the rules that the operations may
potentially violate. As the expression for the local rule wr3 includes the attributes
CalendarRule and TaskCalendar, the nodes corresponding to the operations of
modification of these attributes are connected with the wr3 rule node. For the rule
wr2 defining the value range of the EntityName type, there is a connection between
the EntityName modification node and the wr2 rule node. The corresponding edges
are assigned by the routes by traversing of which the attributes could be accessed.
The expression of the global rule SingleProjectCalendar references only one
attribute IsProjectCalendar, so the appropriate graph nodes are connected by the
edge as well. Modification of any attribute of the Link class can affect its uniqueness
defined by ur2; hence the connections between LinkType, Predecessor and
Successor and the uniqueness rule node.

It is also possible that a change affects a constraint not directly but through an
inverse association, or even a chain of them, where other classes can be involved.
In this case, rules for all the chain of affected classes is added to the checkset.
Furthermore, they can be affected not only by direct associations but also by the
inverse. For instance, cardinality constraints on inverse aggregate attributes causes
insertion of additional rule nodes to the graph.

4. Conclusion

This paper presents the incremental method of model data validation. The method is
applicable for semantically complex data driven by arbitrary object-oriented
models. It allows to increase the performance of semantic validation and to
effectively manage the data in accordance with the ACID principles.

The planned work concerns basically the implementation of the method proposed
and its evaluation for industry meaningful product data. The expected positive
results will allow its wide introduction into new software engineering technologies
and emerging information systems.

References

[1]. V.A. Semenov. Product Data Management with Solid Transactional Guarantees, In
Transdisciplinary Engineering: A Paradigm Shift Series Advances in Transdisciplinary
Engineering, 10S Press, 2017, pp. 592-599.

[2]. L. Lammer and M. Theiss. Product Lifecycle Management, In Concurrent Engineering
in the 21st Century — Foundations, Developments and Challenges, Springer, 2015, pp.
455-490.

[3]. J. Osborn. Survey of concurrent engineering environments and the application of best
practices towards the development of a multiple industry, multiple domain environment.
Clemson University, 2009. Accessed: 29/01/2018. Available:
http://tigerprints.clemson.edu/all_theses/635/

[4]. M. Philpotts. An introduction to the concepts, benefits and terminology of product data
management, Industrial Management & Data Systems, MCB University Press, vol. 96,
no. 4, 1996, pp. 11-17.

281

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

[5]. X. Blanc, A. Mougenot, I. Mounier, T. Mens. Incremental Detection of Model
Inconsistencies based on Model Operations. In Advanced Information Systems
Engineering, CAISE 2009, LNCS, vol. 5565, Springer, 2009, pp. 32-46.

[6]. C. Xu, C.S. Cheung, W.K. Chan. Incremental Consistency Checking for Pervasive
Context. In Proc. the 28th International Conference on Software Engineering, 2006, pp.
292-301.

[7]. J. Harrison, S.W. Dietrich. Towards an Incremental Condition Evaluation Strategy for
Active Deductive Databases. In Research and Practical Issues in Databases, World
Scientific, 1992, pp. 81-95.

[8]. 1SO 10303-11: 2004. Industrial automation systems and integration — Product data
representation and exchange — Part 11: Description methods: The EXPRESS language
reference manual, 1SO, 2004.

CtaTnyeckum aHanmn3 3aBUCMMOCTEN AN CeMaHTU4YeCKomn
Banuaauuu AaHHbIX

Hwun J].B. <denis.ilyin@ispras.ru>
@oxuna H.1O. <nfokina@ispras.ru>
Cemenos B.A. <sem@ispras.ru>
Hnemumym cucmemnozo npoecpammuposanus um. B.I11. Heannuxoea PAH,
109004, Poccus, . Mockea, yn. A. Conocenuyvina, 0. 25

Annorammsi. CoBpeMeHHble HMH(GOPMAlMOHHBIE CHUCTEMbl MAHUITYJIMPYIOT MOJACISIMU
JAHHBIX, COAEPKAMIMMU MIJUTHOHBI OOBEKTOB, M TEHAEHNMS TaKoBa, YTO STH MOJEIH
TIOCTOSIHHO YCIOXKHSIOTCA. OHIM 13 Ba)KHEWIINX acCIeKTOB COBPEMEHHBIX MapajlIeTbHBIX
WH)KEHEpHBIX cpel sABIseTcss uX HagexHocTb. [lpuamumer ACID (aTomapHOCTS,
COTJIACOBAaHHOCTh, HM30JIMPOBAHHOCTh, YCTOMYMBOCTH) HAIpaBICHBl Ha ee obecreuceHue,
OJIHAKO IPSMOE CJICIOBAHUE MM NPUBOAUT K CEPbE3HOMY CHIDKEHHUIO NPOU3BOIUTEIBHOCTH
Ha KPYIHOMACIITaOHBIX MOJEJAX, OCKOJIBKY HEOOXOAUMO KOHTPOJIMPOBATH IPABUIBHOCTh
KaXJIOW BBINOJHEHHON TpaH3akuMu. B Hacrosimed crarbe NpPeACTaBICH METOJ
WHKPEMEHTAIbHOW BaMnMAalnd OOBEKTHO-OPHEHTHPOBAHHBIX IAHHBIX. lIpenmornaras, 9ro
TpaH3aKIHs MPUMEHseTCS K MepBOHAYAIBFHO COTJIACOBAHHBIM IAHHBIM, TapaHTHPYETCS, 4TO
OKOHYATEILHOE TIPEJCTaBICHNE JAAHHBIX TaKXke OyIeT COTrIacoBaHHBIM, €CIH TOJNBKO OymyT
BEITIOJTHEHB! JIOKaJbHBIE MpaBmia. [ompeneneHuss OOBEKTOB JAHHBIX, ITOUICKAIINX
npoBepke, (GOpPMHUpYeTCsl IBYAONBHBIA Tpad 3aBUCHUMOCTEH 1O JOaHHBIM. J[ns
ABTOMATHYECKOTO MOCTPOCHHs rpada 3aBUCUMOCTEH MpeAaraeTcsi IPUMEHSTh CTaTHIeCKHN
a”anu3 creruuKaii Moaenu. B ciydae clI0XHBIX 00BbEKTHO-OPUEHTHPOBAHHBIX MOJIEIICH,
BKIIIOYAKOIIMUX COTHU W TBICAYM THUIIOB AJAHHBIX U CEMAaHTUYCCKUX IIPaBUII, CTaTUYCCKUM
aHaNN3, MO-BUMMOMY, SBISIETCS €IMHCTBEHHBIM CIIOCOOOM pealn3alii WHKPEMEHTaIbHON
BaUAIUN ¥ OOECIeYeHUss BO3MOXKHOCTH YIPABIECHHS JaHHBIMA B COOTBETCTBHH C
npuHuunamu ACID.

KmioueBbie cioBa: wundpopmannonnsie cuctemsl; ACID; ynpasieHue LelOCTHOCTBIO
nanasix; EXPRESS

DOI: 10.15514/ISPRAS-2018-30(3)-19

282

Wneun 1.B., ®okuna H.1O., CemenoB B.A. CraTudeckuii aHau3 3aBUCUMOCTEH 11 CEMaHTHYECKOW BaJlJalluKl
naHHbIX. Tpyoet UCIT PAH, tom 30, Beim. 3, 2018 1., ctp. 271-284

Jasi uurupoBanusi: Wnbun J1.B., ®oxuna H.IO., CemenoB B.A. Craruyeckuil anamus
3aBUCUMOCTEH JUIsl ceManTHdeckod Banmuaanuu ganueix. Tpynst UCIT PAH, tom 30, Beim. 3,
2018 r., ctp. 271-284 (na anrimiickom si3bike). DOIL: 10.15514/ISPRAS-2018-30(3)-19

Cnucok nutepaTtypbl

[1]. V.A. Semenov. Product Data Management with Solid Transactional Guarantees, In
Transdisciplinary Engineering: A Paradigm Shift Series Advances in Transdisciplinary
Engineering, 10S Press, 2017, pp. 592-599.

[2]. L. Lammer and M. Theiss. Product Lifecycle Management, In Concurrent Engineering
in the 21st Century — Foundations, Developments and Challenges, Springer, 2015, pp.
455-490.

[3]. J. Osborn. Survey of concurrent engineering environments and the application of best
practices towards the development of a multiple industry, multiple domain environment.
Clemson University, 2009. Jara o6pamenus: 29/01/2018. Pexum npocryma:
http://tigerprints.clemson.edu/all_theses/635/

[4]. M. Philpotts. An introduction to the concepts, benefits and terminology of product data
management, Industrial Management & Data Systems, MCB University Press, vol. 96,
no. 4, 1996, pp. 11-17.

[5]. X. Blanc, A. Mougenot, I. Mounier, T. Mens. Incremental Detection of Model
Inconsistencies based on Model Operations. In Advanced Information Systems
Engineering, CAISE 2009, LNCS, vol. 5565, Springer, 2009, pp. 32-46.

[6]. C. Xu, C.S. Cheung, W.K. Chan. Incremental Consistency Checking for Pervasive
Context. In Proc. the 28th International Conference on Software Engineering, 2006, pp.
292-301.

[7]. J. Harrison, S.W. Dietrich. Towards an Incremental Condition Evaluation Strategy for
Active Deductive Databases. In Research and Practical Issues in Databases, World
Scientific, 1992, pp. 81-95.

[8]. 1ISO 10303-11: 2004. Industrial automation systems and integration — Product data
representation and exchange — Part 11: Description methods: The EXPRESS language
reference manual, 1SO, 2004.

283

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

284

