
271

Static dependency analysis for semantic
data validation

D.V. Ilyin <denis.ilyin@ispras.ru>

N.Yu. Fokina <nfokina@ispras.ru>

V.A. Semenov <sem@ispras.ru>

Ivannikov Institute for Systems Programming of the RAS,

25, Alexander Solzhenitsyn Str., Moscow, 109004, Russia

Abstract. Modern information systems manipulate data models containing millions of items,

and the tendency is to make these models even more complex. One of the most crucial

aspects of modern concurrent engineering environments is their reliability. The principles of

ACID (atomicity, consistency, isolation, durability) are aimed at providing it, but directly

following them leads to serious performance drawbacks on large-scale models, since it is

necessary to control the correctness of every performed transaction. In the paper, a method

for incremental validation of object-oriented data is presented. Assuming that a submitted

transaction is applied to originally consistent data, it is guaranteed that the final data

representation is also consistent if only the spot rules are satisfied. To identify data items

subject to spot rule validation, a bipartite data-rule dependency graph is formed. To

automatically build the dependency graph a static analysis of the model specifications is

proposed to apply. In the case of complex object-oriented models defining hundreds and

thousands of data types and semantic rules, the static analysis seems to be the only way to

realize the incremental validation and to make possible to manage the data in accordance with
the ACID principles.

Keywords: information systems; ACID; data consistency management; EXPRESS

DOI: 10.15514/ISPRAS-2018-30(3)-19

For citation: Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for

semantic data validation. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 271-284.

DOI: 10.15514/ISPRAS-2018-30(3)-19

1. Introduction

Management of semantically complex data is one of the challenging problems

tightly connected with emerging information systems such as concurrent

engineering environments and product data management systems [1-4]. Although

transactional guarantees ACID (Atomicity, Consistency, Isolation, and Durability)

are widely recognized and recommended for any information system, it is difficult

to maintain the consistency and integrity of data driven by complex object-oriented

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.

ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

272

models. Often such models are specified in EXPRESS language being part of the

STEP standard on industrial automation systems and integration (ISO 10303). To be

unambiguously interpretable by different systems the data must satisfy numerous

semantic rules imposed by formal models. Maintaining data consistency and

ensuring system interoperability become a serious computational problem. Full

semantic validation requires extremely high costs, often exceeding the processing

time of individual transactions. Periodic validation is possible, but at a high risk of

violating rules and losing actual data.

The paper presents an effective method for incremental validation of object-oriented

data. An idea of incremental checks is well-understood and was successfully

implemented for the validation of such specific data as UML charts, XML

documents, deductive databases [5-7]. Unlike the aforementioned results, the

proposed method can be applied to semantically complex data driven by arbitrary

object-oriented models.

Assuming that a submitted transaction is applied to originally consistent data, it is

guaranteed that the final data representation is also consistent if only the spot rules

are satisfied. To identify data items subject to spot rule validation, a bipartite data-

rule dependency graph is formed. To automatically build the dependency graph a

static analysis of the model specifications is proposed to apply. In the case of large-

scale models defining hundreds and thousands of data types and semantic rules,

static analysis seems to be the only way to realize the incremental validation and to

make possible to effectively manage the data in accordance with the ACID

principles.

The structure of the paper is as follows. In section 2, we will shortly overview

EXPRESS language with an emphasis on the data types and the rule categories

admitted by the language. Formal definitions of model-driven data, rules and

transactions are also provided. In section 3, we will present a complete validation

routine and then explain how an incremental validation can be arranged using the

proposed dependency graph. This is accompanied by an example of the model

specification. In conclusion, we summarise benefits of the proposed validation

method and outdraw future efforts.

2. Product data and transactions

2.1 EXPRESS language

Product data models and, particularly, semantic rules can be specified formally in

EXPRESS (ISO 2004) language [8]. This object-oriented modeling language

provides a wide range of declarative and imperative constructs to define both data

types and constraints imposed upon them. The supported data types can be

subdivided into the following groups: simple types (character, string, integer, float,

double, Boolean, logical, binary), aggregate types (set, multi-set, sequence, array),

selects, enumerations, and entity types.

Ильин Д.В., Фокина Н.Ю., Семенов В.А. Статический анализ зависимостей для семантической валидации

данных. Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 271-284

273

Depending on the definition context, three basic sorts of constraints are

distinguished in the modeling language: rules for simple user-defined data types,

local rules for object types, and global rules for object type extents. Depending on

the evaluation context these imply the following semantic checks:

 attribute type compliance (𝑅0);

 limited widths of strings and binaries (𝑅1, 𝑅2);

 size of aggregates (𝑅3);

 multiplicity of direct and inverse associations in objects (𝑅4, 𝑅5);

 uniqueness of elements in sets, unique lists and arrays (𝑅6);

 mandatory attributes in objects (𝑅7);

 mandatory elements in aggregates excluding sparse arrays (𝑅8);

 value domains for primitive data types (𝑅9);

 value domains restricting and interrelating the states of separate attributes

within objects (𝑅10 or so-called local rules);

 uniqueness of attribute values (optionally, their groups) on object type

extents (𝑅11 or uniqueness rules);

 value domains restricting and interrelating the states of whole object

populations (𝑅12 or so-called global rules). Value domains can be specified

in a general algebraic form by means of all the variety of imperative

constructs available in the language (control statements, functions,

procedures, etc.).

Certainly, each product model defines own data types and rules. Therefore,

semantic validation methods and tools should be developed in a model-driven

paradigm allowing their application for any data whose model is formally specified

in EXPRESS language. For a more detailed description refer to the mentioned

above standard family which regulates the language.

2.2 Formalization of models, data and transactions

An object-oriented data model 𝑀 can be formally considered as a triple 𝑀 =
〈𝑇 ∪ ≺ ∪ 𝑅〉, where the types 𝑇 = {𝐶 ∪ 𝑆 ∪ 𝐴 ∪ … } are classes 𝐶, simple types 𝑆,

aggregates 𝐴 and other constructed structures allowed by EXPRESS.

Generalization/specialization relations ≺ are defined among these types. Each class

𝑐 ∈ 𝐶 defines a set of attributes in the form 𝑐. 𝑎: 𝐶 ↦ 𝑇. The attributes 𝑐. 𝑎: 𝐶 ↦ 𝐶,

𝑐. 𝑎: 𝐶 ↦ 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝐶) are single and multiple associations which play role of

object references. The rules 𝑅 = {𝑅0 ∪ 𝑅1 ∪ 𝑅2 ∪ …∪ 𝑅12} define the value

domains of typed data in an algebraic way in accordance with EXPRESS. The rules

are subdivided into 12 categories enumerated above. Let us define the key concepts

that are used in further consideration.

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.

ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

274

An object-oriented dataset 𝑥 = {𝑜1, 𝑜2, … } is said to be driven by the model

𝑀〈𝑇,≺, 𝑅〉 if all the objects belong to its classes: ∀ 𝑜 ∈ 𝑥 → 𝑡𝑦𝑝𝑒𝑜𝑓(𝑜) ∈ 𝐶 ⊂ 𝑇.

Let a dataset 𝑥 is driven by the model 𝑀〈𝑇,≺, 𝑅〉. All the objects {𝑜∗} ⊂ 𝑥 such that

𝑠𝑢𝑏𝑡𝑦𝑝𝑒𝑜𝑓(𝑜∗) = 𝑐 ∈ 𝐶 ⊂ 𝑇 are called an extent of the class 𝑐 on the dataset 𝑥. A

query returning the class extent 𝑐 on the dataset 𝑥 is called the extent query and is

designated as 𝑄𝑒𝑥𝑡𝑒𝑛𝑡(𝑥, 𝑐).

Let a dataset 𝑥 is driven by the model 𝑀〈𝑇,≺, 𝑅〉. An object set {𝑜∗} ⊂ 𝑥,

𝑡𝑦𝑝𝑒𝑜𝑓(𝑜∗) = 𝑐∗ ∈ 𝐶 ⊂ 𝑇 is said to be interlinked with the objects {𝑜} ⊂ 𝑥,

𝑡𝑦𝑝𝑒𝑜𝑓(𝑜) = 𝑐 ∈ 𝐶 ⊂ 𝑇 along the association 𝑐. 𝑎 if ∀𝑜 ∈ {𝑜}, 𝑜. 𝑎 ⊂ {𝑜∗},

∀𝑜∗ ∈ {𝑜∗} → ∃𝑜 ∈ {𝑜}: 𝑜∗ ∈ 𝑜. 𝑎. We will denote that as {𝑜}
𝑐.𝑎
→ {𝑜∗}.

Let a dataset 𝑥 is driven by the model 𝑀〈𝑇,≺, 𝑅〉. An object set {𝑜∗} ⊂ 𝑥,

𝑡𝑦𝑝𝑒𝑜𝑓(𝑜∗) = 𝑐∗ ∈ 𝐶 ⊂ 𝑇 is said to be interlinked with the objects {𝑜} ⊂ 𝑥,

𝑡𝑦𝑝𝑒𝑜𝑓(𝑜) = 𝑐 ∈ 𝐶 ⊂ 𝑇 along the route {𝑐. 𝑎} if ∃ {𝑜′} ⊂ 𝑥, {𝑜′′} ⊂ 𝑥, …, so that

{𝑜}
𝑐.𝑎
→ {𝑜′}

𝑐′ .𝑎′

→ {𝑜′′}
𝑐′′ .𝑎′′

→ … → {𝑜∗}. A query returning the objects {𝑜∗} interlinked

with a given set {𝑜} along the route {𝑐. 𝑎} is called the route query and is designated

as 𝑄𝑟𝑜𝑢𝑡𝑒(𝑥, {𝑜}, {𝑐. 𝑎}). A query returning the objects {𝑜} by a given object set {𝑜∗}
is called the reverse route query and is designated as 𝑄𝑟𝑜𝑢𝑡𝑒(𝑥, {𝑜

∗}, 𝑟𝑒𝑣 {𝑐. 𝑎}).

The object set 𝑥 = {𝑜1, 𝑜2, … } driven by the model 𝑀〈𝑇,≺, 𝑅〉 is called consistent if

all the rules being instantiated and evaluated are satisfied on this data set: ∀ 𝑟 ∈
𝑅 → 𝑟(𝑥) = 𝑡𝑟𝑢𝑒.

Finally, let us introduce the concept of the delta as a specific representation of

transactions. Each delta Δ(𝑥′, 𝑥) aggregates the changes happened in the dataset

𝑥′ = {𝑜1
′ , 𝑜2

′ , … } compared with its original revision 𝑥 = {𝑜1, 𝑜2, … }. It is assumed

that both revisions are driven by the same model and the objects have unique

identifiers that allows to uniquely map the objects and to compute delta in a formal

way as Δ(𝑥′, 𝑥) = 𝑑𝑒𝑙𝑡𝑎(𝑥′, 𝑥). The delta can be arranged as bidirectional one and

then any of the revisions can be restored by the given other: 𝑥′ = 𝑎𝑝𝑝𝑙𝑦(𝑥, Δ) and

𝑥 = 𝑎𝑝𝑝𝑙𝑦(𝑥′, Δ−1).

The delta is represented as a set of elementary and compound changes Δ = {𝛿},
where each change can be either the creation of an object, or its deletion or

modification designated as 𝛿𝑛𝑒𝑤(𝑜), 𝛿𝑑𝑒𝑙(𝑜), 𝛿𝑚𝑜𝑑(𝑜) correspondingly. The

modification, in turn, is represented as a change in the attributes 𝛿𝑚𝑜𝑑(𝑜) =

{𝛿𝑚𝑜𝑑(𝑜.𝑎)} that in the case of aggregates is represented by the operations of

insertion, removal and modification of the elements

𝛿𝑚𝑜𝑑(𝑜.𝑎) = {𝛿𝑖𝑛𝑠(𝑜.𝑎[]), 𝛿𝑟𝑒𝑚(𝑜.𝑎[]), 𝛿𝑚𝑜𝑑(𝑜.𝑎[])}. In what follows, we assume that

each creation operation in the delta representation is complemented by the

operations of initializing the attributes that are equivalent to the modification

operations. Each deletion operation is supplemented by the operations of resetting

the attributes to an undefined state, also representable by the modification

operations. Regardless of the way, the delta is structured, only elementary

operations are taken into account in the context of the studied validation problems.

Ильин Д.В., Фокина Н.Ю., Семенов В.А. Статический анализ зависимостей для семантической валидации

данных. Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 271-284

275

3. Validation

3.1 Complete validation

The complete validation routine is provided below (see Figure 1). In a cycle on all

objects their attributes are checked against the rules of the categories 𝑅1 ∪ 𝑅2 ∪ …∪
𝑅9. The checks are performed individually for each attribute provided that the

corresponding rules are imposed on their types. In case of detected violations, the

error messages are logged. Rules 𝑅10 are evaluated for entire objects in the same

loop. The second cycle is formed due to the need for checks of uniqueness rules

𝑅11. Since these rules are declared inside the class definitions, an additional cycle is

arranged on the model classes. The rules are evaluated on the class extents. Finally,

the third cycle allows to check global rules 𝑅12 which are defined directly in the

model. Such checks are performed for the corresponding class extents.

for each object o ∈ x in dataset
 for each attribute o.a in object

 for each attribute rule ∈ R0 U R1 U R2 U … U R9 defined for typeof(o.a)
 check rule(o.a), log if violated

 for each local rule ∈ R10 defined for typeof(o)
 check rule(o), log if violated

for each class c ∈ C defined in model

 for each uniqueness rule ∈ R11 defined for class c
 check rule(Q_extent(x, rule.c)), log if violated

for each global rule ∈ R12 defined in model
 check rule(Q_extent(x, rule.c1), Q_extent(x, rule.c2),…), log if violated

Fig. 1. Complete validation routine

As mentioned above, complete validation of semantically complex product data is a

computationally costly task that can cause performance degradation when

processing transactions. Incremental validation makes it possible to reduce the

amount of checks to be performed.

3.2 Incremental validation

The proposed incremental validation method is based on the idea of localizing spot

rules that can be affected by a transaction and generating a set of semantic checks

that is sufficient to detect all potential violations. For this purpose, the dependency

graph is built by a given specification of the data model in EXPRESS language. For

brevity, we just explain that this structure represents and omit the details of how it

can be formed using static analysis of the specification.

The dependency graph is a bipartite graph whose nodes represent the kinds of

transaction operations and the categories of semantic rules both defined by the

underlying model. An operation node is connected with the rule nodes by directed

edges if only such operations can violate the rules being instantiated for particular

data. Usually, the semantics of the operations imply what are the data it is applied

to. Sometimes the inspected data are apriori unknown and have to be determined by

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.

ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

276

executing corresponding route queries. Therefore, each edge is formed by the

dependency structure 𝜎 containing both a rule reference 𝜎. 𝑟𝑢𝑙𝑒 and an optional

query route 𝜎. 𝑟𝑜𝑢𝑡𝑒. In some sense, the graph reflects the transaction structure as if

it contains all possible kinds of changes and the data organisation as if all data types

are present and all rules are potentially suffered to violations. As mentioned above,

only elementary operations are involved in the dependency analysis.

Thus, the dependency graph enables to determine spot rules that could be violated

for particular data due to the accepted transaction. For example, if the node

operation is a modification of the object attribute 𝑐. 𝑎 and a rule 𝑟 ∈ 𝑅0 ∪ 𝑅1 ∪
𝑅2 ∪ …∪ 𝑅9 is defined for its type, then the node 𝛿𝑚𝑜𝑑(𝑐.𝑎) is connected with the

rule node 𝑟 by a corresponding edge. Having a specific operation of this kind

𝛿𝑚𝑜𝑑(𝑜.𝑎), 𝑡𝑦𝑝𝑒𝑜𝑓(𝑜) = 𝑐 in the delta representation the corresponding check

𝑟(𝑜. 𝑎) can be produced using the dependency edge.

The method of the dependency graph construction is described in more detail in the

next section. Still, here we will point out some of its important features.

If the same attribute 𝑐. 𝑎 participates in an expression of the domain rule 𝑟 ∈ 𝑅10 for

the class 𝑐, then the operation 𝛿𝑚𝑜𝑑(𝑜.𝑎), 𝑡𝑦𝑝𝑒𝑜𝑓(𝑜) = 𝑐 produces the check 𝑟(𝑜)

for the object 𝑜.

If the attribute 𝑐. 𝑎 participates in the uniqueness rule 𝑟 ∈ 𝑅11 defined for the class

𝑐, then another dependency edge must be associated with the operation node. In this

case, the corresponding check 𝑟(𝑄𝑒𝑥𝑡𝑒𝑛𝑡(𝑥, 𝑐)) must be performed.

There is a more difficult case when the attribute 𝑐. 𝑎 participates in an expression of

the domain rule 𝑟 ∈ 𝑅10 defined for the other class 𝑐∗. The attribute 𝑐. 𝑎 is assumed

to be accessed by traversing associated objects along the route {𝑐∗. 𝑎∗} from the

objects 𝑜∗ ∈ 𝑐∗. Then the operation 𝛿𝑚𝑜𝑑(𝑜.𝑎), 𝑡𝑦𝑝𝑒𝑜𝑓(𝑜) = 𝑐 induces the checks

𝑟(𝑜∗) for all 𝑜∗ ∈ 𝑄𝑟𝑜𝑢𝑡𝑒(𝑥, 𝑜, 𝑟𝑒𝑣 {𝑐
∗. 𝑎∗}). To identify and perform such checks

the operation node must be connected with the evaluated rule node and a route
{𝑐∗. 𝑎∗} must be prescribed to the edge. The dependency analysis of spot rules

𝑟 ∈ 𝑅12 is carried out in a similar way.

Finally, we note that the operations of creating and deleting objects on the

assumptions made above can only violate global rules and only in those cases if the

cardinalities of class extents are computed. Considering object references as specific

attribute types, it is possible to localize some spot rules more exactly. Differing

operations on aggregates also leads to better localization of spot rules. For brevity

we omit the details how the spot rules can be localized more carefully and provide

an example in the next subsection.

for each elementary operation δ(o),δ(o.a) ∈ delta
 { σ } = dependency_graph(kindof(δ))

 for each dependency σ ∈ { σ }
 switch kindof(σ.rule)

 case attribute_rule :

 check σ.rule(o.a), log if violated

 case local_rule :

Ильин Д.В., Фокина Н.Ю., Семенов В.А. Статический анализ зависимостей для семантической валидации

данных. Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 271-284

277

 { o* } = Query_route(x, o, rev (σ.route))

 for each o* ∈ { o* }
 checkset.put(σ.rule(o*))

 case uniqueness_rule :

 checkset.put(σ)

 case global_rule :

 checkset.put(σ)

for each check σ, σ(o) ∈ checkset
 switch kindof(σ.rule)

 case local_rule :

 check σ.rule(o), log if violated

 case uniqueness_rule :

 check σ.rule(Query_extent(x, σ.rule.c)), log if violated

 case global_rule :

check σ.rule(Query_extent(x, σ.rule.c1), Query_extent(x, σ.rule.c2),…),

log if violated

Fig. 2. Incremental validation routine

The validation routine presented in Figure 2 consists in the sequential traversing of

delta operations, determining the nodes of the operation semantics, obtaining

associated spot rule nodes, evaluating the rules directly or filling the checkset for

the subsequent validation. The checkset is organized as an indexed set of records

each of which stores references on the validated rule, query and factual data to

perform the corresponding check. The use of the checkset is motivated by the fact

that some operations lead to repeated checks of the same rules. Indexing of the

checkset allows you to exclude repeated records and, thus, to avoid redundant

computations. At the same time, the attribute rule checks are always produced once

by the modification operations and, therefore, it is more expedient to execute them

immediately, without overloading the checkset.

3.3 Dependency graph construction

To construct the dependency graph, an abstract syntactic tree for the model is built.

According to the retrieved data, for all attribute declarations operation nodes are

built. Number and types of these nodes constructed for a single attribute depend on

its type. For non-aggregate attributes 𝑐. 𝑎 only node 𝛿𝑚𝑜𝑑(𝑐. 𝑎), representing

modification of the attribute, is built. For aggregate attributes 𝑐. 𝑎[] three nodes are

created: (1) 𝛿𝑖𝑛𝑠(𝑐. 𝑎[]) – insertion of a new element; (2) 𝛿𝑚𝑜𝑑(𝑐. 𝑎[]) –

modification of an element of the aggregate; (3) 𝛿𝑟𝑒𝑚(𝑐. 𝑎[]) – removal of an

element.

Construction of the dependency graph proceeds with generating rule nodes. We

handle construction of nodes for rules R1-R9 and R10-R12 differently.

For rules R1-R9 we take all explicit attributes and build rule nodes for each of them.

The types of rule nodes depend on the type of the attribute in question. For instance,

if it is a bounded string c.S, we generate a R1(c.S) (R1 – limited width of strings),

connected with the node corresponding to the modification of S 𝛿𝑚𝑜𝑑(𝑐. 𝑆).
Similarly, if an attribute is a bounded aggregate, we construct a node of type R4 and

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.

ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

278

connect it with the insertion 𝛿𝑖𝑛𝑠(𝑐. 𝑎[]) and/or removal 𝛿𝑟𝑒𝑚(𝑐. 𝑎[]) operation

nodes of the attribute, depending on the side from which the aggregate is bounded –

if it is bounded above, then only with insertion node, if below – with removal, if

from both sides – with both of them.

The way of construction of rule nodes for R10-R12 is uniform. We start with locating

all local rules for R10, all uniqueness rules for R11 and all global rules for R12. For

each of the rules, we find all attributes used in it. If an attribute is explicit, we only

connect its modification with the rule node, and also with insertion and removal, if

it is an aggregate used inside a SIZEOF operation. If an attribute is derived, we take

its definition and find the attributes used in it; if inverse – we proceed with

analyzing the attribute it references. For derived and explicit attributes, the analysis

is performed recursively, until all the explicit attributes, directly and indirectly

referenced by them, are located. Then all of them are connected with the rule node

corresponding to the rule in question. If the during the analysis we find a node that

is a function call, we substitute its formal parameters with actual and thus locate the

attributes which are used in it; the analysis of a function body with the parameters

substituted is completely identical to the analysis of a rule.

An example illustrating the constructed graph is given in the next subsection.

3.4 Example of a dependency graph

Let us consider a fragment of the EXPRESS specification of a project management

system. Three classes depicted in Figure 3 – Task, Link and Calendar – are its core

entities. The meaning of Task is self-evident; Link represents a connection defining

a relation and execution order between two tasks. The fact that between two tasks

might be only a single link of one type is reflected in uniqueness rule ur1. A

Calendar defines a typical working pattern: working days, working times, holidays.

The calendar can be assigned to specific tasks, and one calendar can be set as a

default project calendar, that means that it will be used for tasks for which no task

calendar is set. Besides that, it is possible to use an Elapsed calendar for a task

implying that work will be performed 24/7. Global rule SingleProjectCalendar

restricts the possible number of project calendars to no more than one. Moreover,

local rule wr3 is used to check that if a task has got a task calendar, it the reference

to it must be non-null. One more local rule, wr2, restricts the length of an

EntityName to be between 1 and 32 characters.
TYPE LinkEnum = ENUMERATION OF

 (START_START, START_FINISH, FINISH_START, FINISH_FINISH);

END_TYPE;

TYPE CalendarRuleEnum = ENUMERATION OF

 (TASK, PROJECT, ELAPSED);

END_TYPE;

FUNCTION TaskIsCyclic (T1 : Task, T2 : Task) : BOOLEAN;

 IF (SIZEOF(T1.Parent) = 0) THEN RETURN(FALSE);

 ELSE

Ильин Д.В., Фокина Н.Ю., Семенов В.А. Статический анализ зависимостей для семантической валидации

данных. Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 271-284

279

 IF ((TaskIsCyclic(T1.Parent[1], T2) = TRUE) OR (T1 = T2))

 THEN RETURN(TRUE);

 END_IF;

 END_IF;

END_FUNCTION;

RULE SingleProjectCalendar FOR (Calendar);

WHERE

 wr1: SIZEOF(QUERY(Temp <* Calendar | Temp.isProjectCalendar =

TRUE)) <= 1;

END_RULE;

TYPE EntityName = STRING;

WHERE

 wr2: (1 <= SELF) AND (SELF <= 32);

END_TYPE;

ENTITY Task;

 ID : INTEGER;

 Name : EntityName;

 TaskCalendar : Calendar;

 CalendarRule : CalendarRuleEnum;

 Children : LIST [0:?] OF Task;

DERIVE

 TaskDuration : Duration := ?;

INVERSE

 Parent : SET [0:1] OF Task FOR Children;

 DownstreamLinks : SET [0:?] OF Link FOR Predecessor;

 UpstreamLinks : SET [0:?] OF Link FOR Successor;

WHERE

 wr3 : CalendarRule <> CalendarRuleEnum.TASK OR

EXISTS(TaskCalendar);

 wr4 : (SIZEOF(Parent) = 0) OR (TaskIsCyclic(Parent[1], SELF) =

FALSE);

UNIQUE

 ur1 : ID;

END_ENTITY;

ENTITY Link;

 ID : INTEGER;

 LinkType : LinkEnum;

 Predecessor : Task;

 Successor : Task;

UNIQUE

 ur2 : LinkType AND Predecessor.ID AND Successor.ID;

 ur3 : ID;

END_ENTITY;

ENTITY Calendar;

 ID : INTEGER;

 Name : OPTIONAL EntityName;

 IsProjectCalendar : BOOLEAN;

UNIQUE

 ur4 : ID;

END_ENTITY;

Fig. 3. An example of the model specification in EXPRESS language

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.

ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

280

The dependency graph for this fragment of the specification is shown in Figure 4.

δins(Children[])

δmod(Children[])

δmod(Name)

δmod(LinkType)

δmod(Predecessor)

δmod(Successor)

δmod(TaskCalendar)

δmod(CalendarRule)

δmod(IsProjectCalendar)

R0(Children)

R8(Children)

R10(wr2)

R12(SingleProjectCalendar)

δrem(Children[]) R4(Children)

R5(Parent)

R11(ur2)

R10(wr3)

R0(Name)

R7(Name)

R0(TaskCalendar)

R0(LinkType)

R7(CalendarRule)

R0(CalendarRule)

R7(LinkType)

R0(Predecessor)

R7(Predecessor)

R0(Successor)

R7(Successor)

R0(IsProjectCalendar)

R7(IsProjectCalendar)

R10(wr4)

δmod(Task.ID)

R11(Task.ID)

δmod(Link.ID)

R11(Link.ID)

δmod(Calendar.ID)
R11(Calendar.ID)

Fig. 4. A fragment of the model dependency graph

Each operation of attribute modification except for removal of elements from the

list of task children is connected with the rules validating corresponding attribute

type compliance R0 and availability of defined values for mandatory attributes R7.

To avoid placement of null values to the list of mandatory elements the rule R8

should be validated as well after the operations have been performed. The insertion

cannot violate multiplicity of the direct and inverse associations as their upper

borders are unlimited, but checks R4, R5 should be performed when an element is

Ильин Д.В., Фокина Н.Ю., Семенов В.А. Статический анализ зависимостей для семантической валидации

данных. Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 271-284

281

removed from Children. Therefore, the corresponding operation nodes should be

connected with the aforementioned nodes of the rules that the operations may

potentially violate. As the expression for the local rule wr3 includes the attributes

CalendarRule and TaskCalendar, the nodes corresponding to the operations of

modification of these attributes are connected with the wr3 rule node. For the rule

wr2 defining the value range of the EntityName type, there is a connection between

the EntityName modification node and the wr2 rule node. The corresponding edges

are assigned by the routes by traversing of which the attributes could be accessed.

The expression of the global rule SingleProjectCalendar references only one

attribute IsProjectCalendar, so the appropriate graph nodes are connected by the

edge as well. Modification of any attribute of the Link class can affect its uniqueness

defined by ur2; hence the connections between LinkType, Predecessor and

Successor and the uniqueness rule node.

It is also possible that a change affects a constraint not directly but through an

inverse association, or even a chain of them, where other classes can be involved.

In this case, rules for all the chain of affected classes is added to the checkset.

Furthermore, they can be affected not only by direct associations but also by the

inverse. For instance, cardinality constraints on inverse aggregate attributes causes

insertion of additional rule nodes to the graph.

4. Conclusion

This paper presents the incremental method of model data validation. The method is

applicable for semantically complex data driven by arbitrary object-oriented

models. It allows to increase the performance of semantic validation and to

effectively manage the data in accordance with the ACID principles.

The planned work concerns basically the implementation of the method proposed

and its evaluation for industry meaningful product data. The expected positive

results will allow its wide introduction into new software engineering technologies

and emerging information systems.

References
[1]. V.A. Semenov. Product Data Management with Solid Transactional Guarantees, In

Transdisciplinary Engineering: A Paradigm Shift Series Advances in Transdisciplinary

Engineering, IOS Press, 2017, pp. 592-599.

[2]. L. Lämmer and M. Theiss. Product Lifecycle Management, In Concurrent Engineering

in the 21st Century – Foundations, Developments and Challenges, Springer, 2015, pp.

455-490.

[3]. J. Osborn. Survey of concurrent engineering environments and the application of best

practices towards the development of a multiple industry, multiple domain environment.

Clemson University, 2009. Accessed: 29/01/2018. Available:

http://tigerprints.clemson.edu/all_theses/635/

[4]. M. Philpotts. An introduction to the concepts, benefits and terminology of product data

management, Industrial Management & Data Systems, MCB University Press, vol. 96,

no. 4, 1996, pp. 11–17.

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.

ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

282

[5]. X. Blanc, A. Mougenot, I. Mounier, T. Mens. Incremental Detection of Model

Inconsistencies based on Model Operations. In Advanced Information Systems

Engineering, CAiSE 2009, LNCS, vol. 5565, Springer, 2009, pp. 32-46.

[6]. C. Xu, C.S. Cheung, W.K. Chan. Incremental Consistency Checking for Pervasive

Context. In Proc. the 28th International Conference on Software Engineering, 2006, pp.

292-301.

[7]. J. Harrison, S.W. Dietrich. Towards an Incremental Condition Evaluation Strategy for

Active Deductive Databases. In Research and Practical Issues in Databases, World

Scientific, 1992, pp. 81-95.

[8]. ISO 10303-11: 2004. Industrial automation systems and integration – Product data

representation and exchange – Part 11: Description methods: The EXPRESS language

reference manual, ISO, 2004.

Статический анализ зависимостей для семантической
валидации данных

Ильин Д.В. <denis.ilyin@ispras.ru>

Фокина Н.Ю. <nfokina@ispras.ru>

Семенов В.А. <sem@ispras.ru>

Институт системного программирования им. В.П. Иванникова РАН,

109004, Россия, г. Москва, ул. А. Солженицына, д. 25

Аннотация. Современные информационные системы манипулируют моделями

данных, содержащими миллионы объектов, и тенденция такова, что эти модели

постоянно усложняются. Одним из важнейших аспектов современных параллельных

инженерных сред является их надежность. Принципы ACID (атомарность,

согласованность, изолированность, устойчивость) направлены на ее обеспечение,

однако прямое следование им приводит к серьезному снижению производительности

на крупномасштабных моделях, поскольку необходимо контролировать правильность

каждой выполненной транзакции. В настоящей статье представлен метод

инкрементальной валидации объектно-ориентированных данных. Предполагая, что

транзакция применяется к первоначально согласованным данным, гарантируется, что

окончательное представление данных также будет согласованным, если только будут

выполнены локальные правила. Для определения объектов данных, подлежащих

проверке, формируется двудольный граф зависимостей по данным. Для

автоматического построения графа зависимостей предлагается применять статический

анализ спецификаций модели. В случае сложных объектно-ориентированных моделей,

включающих сотни и тысячи типов данных и семантических правил, статический

анализ, по-видимому, является единственным способом реализации инкрементальной

валидации и обеспечения возможности управления данными в соответствии с
принципами ACID.

Ключевые слова: информационные системы; ACID; управление целостностью

данных; EXPRESS

DOI: 10.15514/ISPRAS-2018-30(3)-19

Ильин Д.В., Фокина Н.Ю., Семенов В.А. Статический анализ зависимостей для семантической валидации

данных. Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 271-284

283

Для цитирования: Ильин Д.В., Фокина Н.Ю., Семенов В.А. Статический анализ

зависимостей для семантической валидации данных. Труды ИСП РАН, том 30, вып. 3,

2018 г., стр. 271-284 (на английском языке). DOI: 10.15514/ISPRAS-2018-30(3)-19

Список литературы

[1]. V.A. Semenov. Product Data Management with Solid Transactional Guarantees, In

Transdisciplinary Engineering: A Paradigm Shift Series Advances in Transdisciplinary

Engineering, IOS Press, 2017, pp. 592-599.

[2]. L. Lämmer and M. Theiss. Product Lifecycle Management, In Concurrent Engineering

in the 21st Century – Foundations, Developments and Challenges, Springer, 2015, pp.

455-490.

[3]. J. Osborn. Survey of concurrent engineering environments and the application of best

practices towards the development of a multiple industry, multiple domain environment.

Clemson University, 2009. Дата обращения: 29/01/2018. Режим доступа:

http://tigerprints.clemson.edu/all_theses/635/

[4]. M. Philpotts. An introduction to the concepts, benefits and terminology of product data

management, Industrial Management & Data Systems, MCB University Press, vol. 96,

no. 4, 1996, pp. 11–17.

[5]. X. Blanc, A. Mougenot, I. Mounier, T. Mens. Incremental Detection of Model

Inconsistencies based on Model Operations. In Advanced Information Systems

Engineering, CAiSE 2009, LNCS, vol. 5565, Springer, 2009, pp. 32-46.

[6]. C. Xu, C.S. Cheung, W.K. Chan. Incremental Consistency Checking for Pervasive

Context. In Proc. the 28th International Conference on Software Engineering, 2006, pp.

292-301.

[7]. J. Harrison, S.W. Dietrich. Towards an Incremental Condition Evaluation Strategy for

Active Deductive Databases. In Research and Practical Issues in Databases, World

Scientific, 1992, pp. 81-95.

[8]. ISO 10303-11: 2004. Industrial automation systems and integration – Product data

representation and exchange – Part 11: Description methods: The EXPRESS language

reference manual, ISO, 2004.

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.

ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

284

