
285

Simulating Behavior of Multi-Agent Systems
with Acyclic Interactions of Agents

1

1, 2
R.A. Nesterov <rnesterov@hse.ru, r.nesterov@campus.unimib.it>

1
A.A. Mitsyuk <amitsyuk@hse.ru>

1
I.A. Lomazova <ilomazova@hse.ru>

1
National Research University Higher School of Economics,

20, Myasnitskaya st., Moscow, 101000, Russia
2
Dipartimento di Informatica, Sistemistica e Communicazione,

Università degli Studi di Milano-Bicocca,

Viale Sarca 336 – Edificio U14, I-20126 Milano, Italia

Abstract. In this paper, we present an approach to model and simulate models of multi-agent

systems (MAS) using Petri nets. A MAS is modeled as a set of workflow nets. The agent-to-

agent interactions are described by means of an interface. It is a logical formula over atomic

interaction constraints specifying the order of inner agent actions. Our study considers

positive and negative interaction rules. In this work, we study interfaces describing acyclic

agent interactions. We propose an algorithm for simulating the MAS with respect to a given

interface. The algorithm is implemented as a ProM 6 plug-in that allows one to generate a set

of event logs. We suggest our approach to be used for evaluating process discovery

techniques against the quality of obtained models since this research area is on the rise. The

proposed approach can be used for process discovery algorithms concerning internal agent

interactions of the MAS.

Keywords: Petri nets; multi-agent systems; interaction; interface; simulation; event logs.

DOI: 10.15514/ISPRAS-2018-30(3)-20

For citation: Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-

Agent Systems with Acyclic Interactions of Agents. Trudy ISP RAN/Proc. ISP RAS, vol. 30,

issue 3, 2018, pp. 285-302. DOI: 10.15514/ISPRAS-2018-30(3)-20

1. Introduction

Process discovery has been actively developed over recent years [1]. Many

algorithms for the automatic model synthesis from event logs have been proposed

[2]–[7]. They produce process models in different notations. These can be Petri nets

1
This work is supported by the Basic Research Program at the National Research University

Higher School of Economics and Russian Foundation for Basic Research, project No.

16-01-00546.

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of

Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

286

[3], [6], [7], fuzzy models [2], heuristics nets [4] or BPMN models [5] and many

others (see [8] for the comprehensive review of process discovery algorithms).

Discovering process models from event logs helps to use information about users

and system runtime behavior for proper specification, design, and maintenance of

software systems [9], [10]. This topic is increasingly attracting the attention of

researchers [11]–[14]. In particular, application of process mining techniques to

distributed and multi-agent software systems [15], [16] is interesting and important.

The main drawback of most algorithms is that they are not appropriate for modeling

highly concurrent systems. In particular, these are multi-agent systems (MAS). Such

a system consists of multiple agents executing their work independently and

interacting via predefined interfaces. It makes sense to use compositional

approaches to model MAS’s. Fortunately, such approaches have been proposed over

recent years [17], [18].

The overwhelming majority of process discovery algorithms employ different

heuristics. That is why testing is used to evaluate their efficiency and validity [8]. It

is performed using real-life and artificially generated event logs with suitable

characteristics. The latter are prepared using event log generators.

In this paper, we describe a new event log generator that aims at preparing artificial

event logs for MAS’s. We model individual agents using workflow nets, whereas

interfaces are specified using special formulae. They are constructed using a

declarative formalism that we introduce to describe basic asynchronous interactions

between agents. Based on agent models and a declarative interface formula our

generator derives the operational semantics that describes a MAS behavior. We

show that both of MAS representations are equivalent, i.e. they have the same set of

possible model runs. Thus, this semantics can be used to simulate the model and

generate event logs.

The main contributions of this paper are:

 a formalism for a declarative description of the requirements for agent

interactions is defined;

 the operational semantics representing the behavior of a multi-agent system

with declarative requirements for interactions of agents is defined;

 an algorithm for generating event logs from given agent models and

declarative constraints on their interactions based on the operational

semantics is developed;

 the approach is implemented as a prototype software and evaluated.

This paper is structured as follows. The next section gives an overview of existing

approaches for generating event logs and simulating process models. Section 3

introduces main notions used in the paper. In Section 4, we describe our approach to

modeling multi-agent systems with the help of Petri nets. Implementation details are

discussed in Section 5, and Section 6 concludes the paper.

Нестеров Р.А., Мицюк А.А., Ломазова И.А. Симуляция поведения мультиагентных систем с ациклически

взаимодействующими агентами. Труды ИСП РАН, 2018, том 30, вып. 3, 2018 г., стр. 285-302

287

2. Related Work

Process Logs Generator PLG2 [19] is one of the most popular tools for generating

well-structured process models represented by dependency graphs. The tool

constructs models using randomly generated context-free grammars. The user

should specify desired characteristics of models: a size, a number of choices,

hierarchy blocks etc. The obtained model can be used to generate an event log.

Another tool that aims at randomized event log generation is PT and Log

Generator [20]. It generates random process trees (well-structured models)

containing desired number of specified workflow patterns. In particular, generated

models can be constructed from sequences, AND/XOR/OR splits and joins, as well

as structured loops. The algorithm can also randomly insert elements representing

activities. The tool also generates the desired number of logs from automatically

constructed models.

The problem of the randomized process model generation has also been addressed

by Yan, Dijkman, and Grefen in [21]. However, they have not considered event log

generation within the context of their approach.

The main goal of the tools discussed above is the randomized testing using sets of

models and event logs. However, in some cases there is a need to generate event

logs from specific process models that have been prepared on the basis of the real

data or expert knowledge. If this is the case, one can use the tool GENA [22]. It aims

at generating sets of event logs from a Petri net model. The approach allows users to

use preferences to influence a control-flow and to artificially introduce a

randomized noise into an event log. The improved version of GENA can generate

event logs from BPMN 2.0 models [23]. Most basic BPMN constructs are

supported: tasks, gateways, messages, pools, lanes, data objects.

Colored Petri nets can be used to generate event logs [24]. Authors have developed

the extension for CPN Tools that can generate randomized event logs based on a

given colored Petri net. The main drawback of this approach is that it implies

writing Standard ML scripts, which leads to possible problems during tool

adaptation for a specific task. Moreover, this approach and GENA do not support

multi-agent systems with independent asynchronous agents.

Declarative process models might also be used to generate event logs [25]. This

approach is based on construction of a finite automaton using a Declare process

model. The tool can generate a specified number of strings accepted by this

automaton. Strings are generated using the automaton and its randomized execution.

Afterwards, each string is transformed into a log trace with necessary attributes.

This tool is useful, when the only information about the process is the set of

constraints. This approach is also not appropriate for the MAS simulation as we

suggest, because it does not support the imperative control-flow description of

individual agents.

In this paper, we propose an extension to the GENA tool that is supposed to be used

for generating event logs by simulating MAS models, because the tools described

above cannot fully support this feature.

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of

Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

288

3. Preliminaries

Let ℕ denote the set of all non-negative integers, A
+
 – the set of all finite non-empty

sequences over a set A, and A
*
 = A

+∪{𝜀}, where 𝜀 is the empty sequence. For a

subset B ⊂ A, the projection of 𝜎 ∈ A*
 on a set B, denoted 𝜎|B, is the subsequence of

𝜎 including all elements belonging to B.

3.1 Petri Nets

A Petri net is a triple N = (P, T, F), where P and T are two disjoint sets of places

and transitions, and F ⊆ (P×T)∪(T×P) is a flow relation. Pictorially, places are

shown by circles, transitions – by boxes, whereas the flow relation is depicted using

directed arcs (see Fig. 1 for an example).

We suppose that transitions of a Petri net are labeled with activity names from

𝒜∪{𝜏}, where 𝒜 is a set of visible activity names, and 𝜏 is a label for an invisible

action. Labels are assigned to transitions via a labeling function 𝜆: T → 𝒜∪{𝜏}.

A marking (state) of a Petri net N is a function m: P → ℕ assigning numbers to

places. A marking m is designated by putting m(p) black dots into each place p. By

m0 we denote the initial marking.

Let X = P ∪T. For x ∈ X, ˙x = {y ∈ X | (y, x) ∈ F} is the set of input nodes of x in N,

and x˙ = {y ∈ X | (x, y) ∈ F} is the set of its output nodes.

Fig. 1. A Petri net

A marking m enables a transition t ∈ T iff there is at least one token in all places

which are input for t. An enabled transition may fire yielding a new marking mʹ

(denoted m[t⟩mʹ), consuming one token from each of its input places and producing

a token into each of its output places (see Fig. 1b).

A sequence w = t1t2...tn over T is a firing sequence iff m0[t1⟩m1[t2⟩…mn-1[tn⟩mn

(denoted m0[w⟩mn).

Let w = t1t2...tn be a firing sequence of the net N, 𝜆 – a labeling function over a set of

activity names 𝒜. Define 𝜆(w) = 𝜆(t1)𝜆(t2)…𝜆(tn). Then 𝜆(w)|𝒜 is called an

(observable) run in N.

A marking m is reachable iff ∃w ∈ T
*
: m0[w⟩m. A reachable marking is called dead

if it does not enable any transition.

Нестеров Р.А., Мицюк А.А., Ломазова И.А. Симуляция поведения мультиагентных систем с ациклически

взаимодействующими агентами. Труды ИСП РАН, 2018, том 30, вып. 3, 2018 г., стр. 285-302

289

Workflow nets (WF-nets) form a subclass of Petri nets used for business process

modeling. A Petri net is a triple N = (P, T, F, m0) is a WF-net iff:

 there is a single source place i and a single source place f, s.t. ˙i = f ˙ = ∅;

 each node in P∪T lies on a path from i to f.

The initial marking m0 of a WF-net contains exactly one token in its source place i.

3.2 Event Logs

A multiset over a set A is a map B: A → ℕ. The set of all multisets over A is

denoted by ℬ(A).

Let 𝒜 be a set of activity names. A trace 𝜎 over 𝒜 is defined as a finite non-empty

sequence over 𝒜, i.e. 𝜎 ∈ 𝒜+. An event log L over 𝒜 is a finite multiset of traces,

i.e. L ∈ ℬ(𝒜+).

4. Modeling Multi-Agent Systems

In this section, we present formalism for modeling multi-agent systems consisting

of several asynchronously interacting agents.

A model for a system of k agents will consist of k WF-nets N1, N2,…, Nk,

representing behavior of individual agents (called agent nets), and constraints on

their asynchronous interaction ℐ (called interface).

We assume that transitions of agent nets have individual labels. In other words,

different agents implement different activities. We also assume that agent

interactions are acyclic, namely, activities in interaction constraints do not belong to

cycles and therefore occur in each system run not more than once.

Interfaces are defined as positive logical formulae over atomic constraints. Let us

give the exact definitions.

Let N1, N2,…, Nk be agent nets with pairwise disjoint sets of activity names 𝜆1(T1),

𝜆2(T2),…, 𝜆k(Tk) respectively. We define two types of atomic constraints, namely

A ◁ B and A ◁̄ B, where A and B are activity names from two different sets, i.e.

A ∈ 𝜆i(Ti), B ∈ 𝜆j(Tj) and i≠j.

The validity of atomic constraints for a given trace 𝜎 over the set of activity names

𝒜 = 𝜆1(T1)∪𝜆2(T2)∪…∪𝜆k(Tk) is defined as follows:

 𝜎 ⊨ A ◁ B ⇔ if B occurs in 𝜎, then A occurs before B;

 𝜎 ⊨ A ◁̄ B ⇔ if A does not occur before B in 𝜎.

When 𝜎 ⊨ 𝜙, we say that 𝜙 is valid for 𝜎, and 𝜎 satisfies 𝜙. The validity of the

atomic constraints has a natural interpretation.

The constraint A ◁ B means that B should be always preceded by A, e.g. a message

can be received only if it has already been sent. Thus, A ◁ B is valid for a trace

𝜎 = …A…B… and is not valid for a trace 𝜎 = …<except A>…B… The constraint

A ◁̄ B means that B cannot occur if A has happened before, e.g. if a message has

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of

Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

290

been already sent by mail, we should not fax it again. A trace

𝜎 = …<except A>…B… satisfies this constraint, and a trace 𝜎 = …A…B… does

not satisfy it. However, these atomic constraints are not negations of each other.

Both A ◁ B and A ◁̄ B are valid for a trace that does not contain B.

Now a language of interface constraints is defined by the following grammar rules:

Atom ::= A ◁ B | A ◁̄ B,

𝜙 ::= Atom | 𝜙 ∨ 𝜙 | 𝜙 ∧ 𝜙,

where Atom is an atomic constraint, and 𝜙 is a constraint formula.

Validity of a constraint formula 𝜑 for a given trace 𝜎 is defined in a standard way:

𝜎 ⊨ 𝜙1 ∧ 𝜙2 ⇔ 𝜎 ⊨ 𝜙1 and 𝜎 ⊨ 𝜙2,

𝜎 ⊨ 𝜙1 ∨ 𝜙2 ⇔ 𝜎 ⊨ 𝜙1 or 𝜎 ⊨ 𝜙2.

Let L be an event log over a set 𝒜 of activity names, and 𝜙 be a constraint formula,

then 𝜙 is valid for L iff 𝜙 is valid for each trace in L.

Interface formulae allow us to express different useful interaction constraints, e.g.

the formula 𝜙 = A ◁̄ B ∧ B ◁̄ A describes a conflict between A and B, i.e. A and B

cannot occur in the same trace.

Recall that a MAS model consists of k agent nets N1, N2,…, Nk, where Ni = (Pi, Ti,

Fi, m0
i
, 𝜆i), and a constraint formula ℐ (interface) with atomic constraints that

defines the relations on activities of different agents.

It is easy to see that the union of Petri nets (considering several disjoint graphs as

one disconnected graph) is also a Petri net. Thus, we can consider k agent nets as a

single Petri net N. Recall that a run for a Petri net N is a sequence of activity names,

corresponding to a firing sequence of N, and a trace from the related event log. Then

a run of a MAS model S = (N1, N2,…, Nk, ℐ) is defined as a run 𝜌 in N

satisfying ℐ, i.e. 𝜌 ⊨ ℐ.

The following proposition is the immediate consequence of the definitions.

Proposition 1: Let S = (N1, N2,…, Nk, ℐ) be a MAS model, and 𝜌 be a run in S. Then

for all i the projection 𝜌|
𝜆i(Ti)

 on transition labels of an agent net Ni is a run in Ni.

Fig. 2. A multi-agent system with two interacting systems

Нестеров Р.А., Мицюк А.А., Ломазова И.А. Симуляция поведения мультиагентных систем с ациклически

взаимодействующими агентами. Труды ИСП РАН, 2018, том 30, вып. 3, 2018 г., стр. 285-302

291

Consider as an example the system shown in Fig. 2 with ℐ = A ◁̄ B ∧ B ◁̄ A meaning

that A conflicts with B. Consider a run 𝜎 = x1By2x3 satisfying ℐ. Projecting 𝜎 on

agent nets gives traces x1x3 and By2, which are runs of the corresponding agent nets.

This property will be further used for designing the simulation algorithm presented

in the next section.

5. Simulating MAS Process Models

In this section, we describe an algorithm for simulating MAS models. It has been

implemented as a ProM 6 plug-in extending GENA tool [22].

5.1 An Interface-Driven Firing Rule

A constraint formula in a MAS model defines declarative restrictions on the model

behavior. To simulate the model behavior, we need to define operational semantics

for MAS models based on a special firing rule for selecting and executing the next

step in the run of the model. We call this rule an interface-driven firing rule to

distinguish it from the standard Petri net firing rule. Naturally, this rule should be

consistent with the declarative definitions of MAS model behavior.

Let S = (N, ℐ) be a MAS model, where a Petri net N = (P, T, F, m0, 𝜆) is a union of

all agent nets.

Firstly, we convert ℐ to a disjunctive normal form (DNF) using standard logical

laws. Then, an interface ℐ = ∨Cj for j = 1, 2,…, n, where Cj = ∧ Sl, and Sl is an

atomic constraint for l = 1, 2,…, m. By abuse of notation, we also denote by ℐ the

set of its conjuncts, and by Cj – the set of atomic constraints in a conjunct Cj.

Obviously, a trace 𝜎 satisfies ℐ iff ∃Cj ∈ ℐ: 𝜎 ⊨ Cj, i.e. it should satisfy at least one

conjunct in ℐ. Thus, to generate a model run, we choose a conjunct Cj and fire

transitions of N only if they do not violate Cj.

Then we define Tℐ ⊆ T to be the set of transitions involved in agent interaction, i.e.

t ∈ Tℐ iff 𝜆(t) occurs in ℐ. We call transitions from Tℐ interface transitions.

Independent transitions from T\Tℐ fire according to the standard firing rule for Petri

nets. The firing of interface transitions is restricted by the constraint formula. To

check whether firing of a transition t violates Cj, we keep the current historical

model run, i.e. a sequence of already fired activities. When a transition t ∈ Tℐ is

enabled according to the standard Petri net firing rule at a current marking m, and an

atomic constraint A ◁ 𝜆(t) occurs in Cj, then t is defined to be enabled only if A

occurs in the current run. Similarly, if A ◁̄ 𝜆(t) occurs in Cj, then t is enabled only if

A does not occur in the current run. Otherwise, a transition t is enabled in the model,

when it is enabled in N.

Now the operational semantics of a MAS model S = (N, ℐ), where N = (P, T, F, m0,

𝜆) and ℐ = ∨Cj for j = 1, 2,…, n, is defined by the following procedure.

Step 1. Choose nondeterministically a conjunct C in ℐ.

Step 2. Start with the initial marking m0 and 𝜀 for the current run 𝜎.

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of

Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

292

Step 3. For a current marking m and a current run 𝜎 repeat while there are enabled

transitions in N:

1) compute the set Tok of all transitions enabled at m and not violating

constraints from C w.r.t. 𝜎;

2) choose nondeterministically a transition t from Tok;

3) fire t by changing the current marking to mʹ, m[t⟩mʹ, and adding 𝜆(t) to 𝜎.

5.2 Event Log Generation

This subsection presents an algorithm for generating an event log by simulating

behavior of a MAS model.

Let S = (N, ℐ) be a MAS model, where N = (P, T, F, m0, 𝜆) is a Petri net, and ℐ is in

DNF. Firstly, for each conjunct C occurring in ℐ, we run (simulate) S to check if it is

possible to obtain a trace 𝜎 satisfying C. If we cannot obtain such a trace, we

exclude this conjunct. As a result, we come to a set of conjuncts ℐʹ ⊆ ℐ, which can

be actually satisfied by traces of S or an empty set if ℐ cannot be satisfied by traces

of S. If ℐʹ = ∅, then the simulation is terminated producing an empty event log L.

That is why we can simulate S w.r.t. conjuncts occurring in ℐʹ only. Starting a new

iteration of simulation, we randomly choose a conjunct from ℐʹ and fire transitions

of N according to the interface-driven firing rule.

The end user specifies the final marking mf, which is actually the set of sink places

of agent nets. Apart from that, the log generation is regulated by the number of logs,

the number of traces in a log, and by the maximum number of steps which can be

executed while generating a single trace (denoted further by maxSteps).

Algorithm 1 is used for generating a single trace that satisfies C from ℐʹ.

Algorithm 1. Single trace generation

Input: N = (P, T, F, m0, 𝜆), ℐʹ, and mf
Output: a trace 𝜎, s.t. 𝜎 ⊨ ℐʹ

𝜎 ⃪ 𝜀; m ⃪ m0; i ⃪ 1; C ⃪ pickRandomConjunct(ℐʹ)
while (i ≤ maxSteps) ∧ (m ≠ mf) do

 Tok ⃪ findEnabledTransitions(N, m, C, 𝜎)
 if Tok ≠ ∅ then

 t ⃪ pickRandomTransition(Tok)

 m ⃪ fireTransition(N, m, t)
 if 𝜆(t) ≠ 𝜏 then

 𝜎 ⃪ 𝜎 + 𝜆(t); i ⃪ i + 1
 end

 else

 𝜎 ⃪ 𝜀; break
 end

end

Algorithm 2 is used for finding enabled transitions, which do not violate constraints

of C. Firstly, we find a set of transitions enabled at a reachable marking m according

Нестеров Р.А., Мицюк А.А., Ломазова И.А. Симуляция поведения мультиагентных систем с ациклически

взаимодействующими агентами. Труды ИСП РАН, 2018, том 30, вып. 3, 2018 г., стр. 285-302

293

to the standard firing rule. Secondly, if m enables interface transitions, we check

whether the current run 𝜎 = 𝜆(w)|𝒜, s.t. m0[w⟩m, satisfies constraints of C using the

interface-driven firing rule. A run 𝜎 is a trace to be recorded into an event log L.

Algorithm 2. Function findEnabledTransitions

Input: N = (P, T, F, m0, 𝜆), m ∈ [m0⟩, C ∈ ℐʹ, 𝜎

Output: a set Tok of transitions enabled w.r.t. C

Tm ⃪ stEnabledTransitions(N, m)

Tok ⃪ Tm\Tℐ

foreach t ∈ Tm ∩ Tℐ do

 foreach S ∈ C do
 if S = X ◁ 𝜆(t) then

 if 𝜎 = uXv then Tok ⃪ Tok∪t

 else if S = X ◁̄ 𝜆(t) then

 if 𝜎≠uXv then Tok ⃪ Tok∪t
 end

 end

end

We do not show here how the transition firing is implemented. It is discussed in

detail in [22] where the original GENA plug-in is described.

Consider an example based on the system shown in Fig. 2. Assume ℐ = (A ◁ B) ∨

(y1 ◁ x1 ∧ x2 ◁̄ y1). C = y1 ◁ x1 ∧ x2 ◁̄ y1 is chosen. We are at the initial marking, i.e.

𝜎 = 𝜀. Enabled transitions are {A, x1, B, y1}. However, x1 cannot fire, since it should

wait until y1 is executed. Then B fires nondetermenistically. Subsequently, the run is

𝜎 = B, and the enabled transitions are {A, x1, y2}, but x1 still cannot fire. We can

choose A to fire. Then the run is 𝜎 = BA, and the enabled transitions are {x2, y2}

firing of which is not influenced by C. As a result, we can obtain a trace 𝜎 = BAy2x2

satisfying C, and the projections of 𝜎 on agent transitions, Ax2 and By2, are the runs

of corresponding agent nets.

5.3 Experimental Simulation

We have developed the extension to the ProM
2
 plug-in GENA implementing the

proposed simulation algorithm and allowing users to obtain a set of event logs by

simulating a given MAS model w.r.t. interaction constraints.

We have prepared five use cases for evaluating the proposed simulation approach.

In each case, we have generated event logs with 5000 traces. In addition, we provide

a “filtered” version of a generated event log w.r.t. interacting actions, s.t. it is clear

whether the corresponding interface is exactly observed.

We have used Disco
3
 to visualize generated event logs. Insignificant parts of agent

nets are shown by shaded ovals.

2
 ProM 6 Framework page: http://www.promtools.org

3
 Fluxicon Disco page: https://fluxicon.com/disco/

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of

Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

294

a) Sequencing: Consider a system with three interacting agents (see Fig. 3). Each

agent always executes one action. We have simulated it w.r.t. the interface

ℐ = A ◁ B ∧ B ◁ C. Intuitively, in this case each interacting agent prepares resources

needed for the other agent.

Fig. 3. Sequential interaction

b) Conditional sequencing: As opposed to sequencing, conditional sequencing

allows for several execution options. In this case, a system consists of two agents,

one of which has two alternative branches (see Fig. 4). The interface for the

conditional sequencing is as follows: ℐ = A ◁ C ∨ C ◁ B.

Fig. 4. Sequential interaction with options

c) Alternative interaction: The alternative interaction implies that one of two

interacting agents influences the choice done by the other agent. A system consists

Нестеров Р.А., Мицюк А.А., Ломазова И.А. Симуляция поведения мультиагентных систем с ациклически

взаимодействующими агентами. Труды ИСП РАН, 2018, том 30, вып. 3, 2018 г., стр. 285-302

295

of two interacting agents both having two alternative branches (see Fig. 5). The

interface formula for this case is as follows: ℐ = A ◁ C ∨ B ◁ D.

Fig. 5. Alternative interaction

d) Interaction using negative constraints: Assume we have a system of two

interacting agents with two alternative branches as shown in Fig. 5a. The result of

simulating this system w.r.t. the interface ℐ = A ◁̄ C is shown in Fig. 6. It is clear

from the simulation result that C is never preceded by A. Intuitively, negative

constraints allow for a more compact way of interface construction.

Fig. 6. Interaction using negative constraints: an event log

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of

Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

296

e) Complex interaction: In this case, we show several ways of interaction among

three different agents (see Fig. 7a). For convenience, we have filtered the obtained

log in two ways (see Fig. 8). We have used the following interface formula (given in

a conjunctive normal form for the convenience of a reader): ℐ = B ◁ A ∧ H ◁ C ∧

(D ◁ F ∨ E ◁ G).

Fig. 7. Complex interaction

Fig. 8. Complex interaction: filtered event logs

Нестеров Р.А., Мицюк А.А., Ломазова И.А. Симуляция поведения мультиагентных систем с ациклически

взаимодействующими агентами. Труды ИСП РАН, 2018, том 30, вып. 3, 2018 г., стр. 285-302

297

6. Conclusion

We have proposed the new approach to model and simulate multi-agent systems

using Petri nets. Independent agents are modeled as a set of labeled workflow nets,

and their interaction is described using a declarative interface. The interface is

constructed as a logic formula over atomic constraints describing the order of

internal agent actions. This study has considered only acyclic agent interactions

described by two kinds of atomic constraints, s.t. interacting activities are

implemented only once. If cyclic interactions are allowed, subtler relations on

interacting activities are needed to express such constraints as “each B should be

preceded by A” or “at least one B should be preceded by A”. This is a subject for

further research.

An algorithm for simulating process models of multi-agent systems with respect to

the interface has been developed. We have implemented the algorithm within the

existing ProM 6 plug-in GENA and have evaluated it using five different cases of

agent interactions. The experiment results show how to obtain artificial event logs

by simulating process models of multi-agent systems with a finite number of

asynchronously interacting agents.

References
[1]. van der Aalst W.M.P. Process Mining – Data Science in Action. Springer, Heidelberg,

2016, 467 p.

[2]. Günther C.W., van der Aalst W.M.P. Fuzzy mining: Adaptive process simplification

based on multi-perspective metrics. BPM 2007. LNCS, vol. 4714, 2007, pp. 328-343.

[3]. van der Werf J.M.E.M., van Dongen B.F., Hurkens C.A.J., Serebrenik A. Process

Discovery using Integer Linear Programming. Fundamenta Informaticae, vol. 94, no. 3-

4, 2009, pp. 387-412.

[4]. Weijters A.J.M.M., Ribeiro J.T.S. Flexible Heuristics Miner (FHM). In Proceedings of

the IEEE Symposium on Computational Intelligence and Data Mining (CIDM), 2011,

pp. 310-317.

[5]. Kalenkova A.A., Lomazova I.A., van der Aalst W.M.P. Process Model Discovery: A

Method Based on Transition System Decomposition. ICATPN 2014. LNCS, vol. 8489,

2014, pp. 71-90.

[6]. Leemans S.J.J., Fahland D., van der Aalst W.M.P. Scalable Process Discovery with

Guarantees. BPMDS 2015, EMMSAD 2015. LNBIP, vol 214, 2015, pp. 85-101.

[7]. Begicheva A.K., Lomazova I.A. Discovering high-level process models from event logs.

Modeling and Analysis of Information Systems, vol. 24, no. 2, 2017, pp. 125–140..

[8]. Augusto A., Conforti R., Dumas M., La Rosa M., Maria Maggi F., Marrella A., Mecella

M., Soo A. Automated Discovery of Process Models from Event Logs: Review and

Benchmark. CoRR, 2017, vol. abs/1705.02288.

[9]. Rubin V.A., Mitsyuk A.A., Lomazova I.A., van der Aalst W.M.P. Process Mining can

be applied to software too! In Proceedings of the 8th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM ’14), 2014,

pp. 1-8.

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of

Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

298

[10]. Leemans M., van der Aalst W.M.P. Process mining in software systems: Discovering

real-life business transactions and process models from distributed systems. MODELS

2015, pp. 44-53.

[11]. Leemans M., van der Aalst W.M.P., van den Brand M. Recursion Aware Modeling and

Discovery for Hierarchical Software Event Log Analysis (Extended). CoRR, 2017, vol.

abs/1710.09323.

[12]. Liu C., van Dongen B.F., Assy N., van der Aalst W.M.P. Component behavior discovery

from software execution data. In Proceedings of the IEEE Symposium Series on

Computational Intelligence (SSCI), 2016, pp. 1-8.

[13]. Davydova K.V., Shershakov S.A. Mining hybrid UML models from event logs of SOA

systems. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174. DOI:

10.15514/ISPRAS-2017-29(4)-10.

[14]. 3TU: Big software on the run. [Online]. Available: http://www.3tu-bsr.nl. Accessed:

09.06.2018.

[15]. Cabac L., Denz N. Net Components for the Integration of Process Mining into Agent-

Oriented Software Engineering. Transactions on Petri Nets and Other Models of

Concurrency I. LNCS, vol. 5100, 2008, pp. 86-103.

[16]. Cabac L., Knaak N., Moldt D., Rölke H. Analysis of Multi-Agent Interactions with

Process Mining Techniques. MATES 2006. LNCS, vol. 4196, 2006, pp. 12-23.

[17]. Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of

Distributed System Models. Trudy ISP RAN/Proc. ISP RAS, 2017, vol. 29, issue 4, pp.

21-38. DOI: 10.15514/ISPRAS-2017-29(4)-2.

[18]. Nesterov R.A., Lomazova I.A. Compositional Process Model Synthesis Based on

Interface Patterns. TMPA 2017. CCIS, vol. 779, 2018, pp. 151-162.

[19]. Burattin A. PLG2: Multiperspective Process Randomization with Online and Offline

Simulations. BPMD 2016. CEUR Workshop Proceedings, vol. 1789, 2016, pp. 1-6.

[20]. Jouck T., Depaire B. PTandLogGenerator: A Generator for Artificial Event Data. BPMD

2016. CEUR Workshop Proceedings, vol. 1789, 2016, pp. 23-27.

[21]. Yan Z., Dijkman R.M., Grefen P. Generating process model collections. Software and

System Modeling, 2017, vol. 16, issue 4, pp. 979-995.

[22]. Shugurov I.S., Mitsyuk A.A. Generation of a Set of Event Logs with Noise. In

Proceedings of the 8th Spring/Summer Young Researchers Colloquium on Software

Engineering (SYRCoSE 2014), 2014, pp. 88-95. DOI: 10.15514/SYRCOSE-2014-8-13.

[23]. Mitsyuk A.A., Shugurov I.S., Kalenkova A.A., van der Aalst W.M.P. Generating event

logs for high-level process models. Simulation Modelling Practice and Theory, vol. 74,

2017, pp. 1-16.

[24]. de Medeiros A.K.A., Günther C.W. Process Mining: Using CPN Tools to Create Test

Logs for Mining Algorithms. In Proceedings of CPN 2005. DAIMI, vol. 576, 2005, pp.

177-190.

[25]. Di Ciccio C., Luca Bernardi M., Cimitile M., Maria Maggi F. Generating Event Logs

Through the Simulation of Declare Models. EOMAS 2015. LNBIP, vol. 231, 2015, pp.

20-36.

Нестеров Р.А., Мицюк А.А., Ломазова И.А. Симуляция поведения мультиагентных систем с ациклически

взаимодействующими агентами. Труды ИСП РАН, 2018, том 30, вып. 3, 2018 г., стр. 285-302

299

Симуляция поведения мультиагентных систем с
ациклически взаимодействующим агентами

1, 2
Р.А. Нестеров <rnesterov@hse.ru, r.nesterov@campus.unimib.it>

1
А.А. Мицюк <amitsyuk@hse.ru>

1
И.А. Ломазова <ilomazova@hse.ru>

1
Национальный исследовательский университет «Высшая школа экономики»,

101000, Россия, г. Москва, ул. Мясницкая, д. 20.
2
Департамент информатики, систем и коммуникаций,

Миланский университет-Бикокка,

 20126, Италия, г. Милан, Viale Sarca 336 – Edificio U14

Аннотация. В работе предложен подход для моделирования и симуляции поведения

мультиагентных систем (МАС) с применением сетей Петри. МАС представляется как

конечное множество сетей потоков работ. Асинхронные взаимодействия агентов

описываются с помощью интерфейса, который определяется логической формулой над

множеством атомарных ограничений. Эти ограничения задают порядок выполнения

внутренних действий агентов. В статье рассматриваются только ациклические

взаимодействия агентов. Также был разработан алгоритм симуляции поведения МАС с

учетом ограничений взаимодействия агентов. Алгоритм реализован в виде

подключаемого модуля для инструмента ProM 6. Предложенный подход может быть

использован для оценки качества алгоритмов извлечения процессов (process discovery)
с точки зрения характеристик получаемых моделей процессов.

Ключевые слова: сети Петри; мультиагентные системы; взаимодействие; интерфейс;

симуляция; журналы событий

DOI: 10.15514/ISPRAS-2018-30(3)-20

Для цитирования: Нестеров Р.А., Мицюк А.А., Ломазова И.А. Симуляция поведения

мультиагентных систем с ациклически взаимодействующими агентами. Труды ИСП

РАН, том 30, вып. 3, 2018 г., стр. 285-302 (на английском языке). DOI:

10.15514/ISPRAS-2018-30(3)-20

Список литературы

[1]. van der Aalst W.M.P. Process Mining – Data Science in Action. Springer, Heidelberg,

2016, 467 p.

[2]. Günther C.W., van der Aalst W.M.P. Fuzzy mining: Adaptive process simplification

based on multi-perspective metrics. BPM 2007. LNCS, vol. 4714, 2007, pp. 328-343.

[3]. van der Werf J.M.E.M., van Dongen B.F., Hurkens C.A.J., Serebrenik A. Process

Discovery using Integer Linear Programming. Fundamenta Informaticae, vol. 94, no. 3-

4, 2009, pp. 387-412.

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of

Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

300

[4]. Weijters A.J.M.M., Ribeiro J.T.S. Flexible Heuristics Miner (FHM). In Proceedings of

the IEEE Symposium on Computational Intelligence and Data Mining (CIDM), 2011,

pp. 310-317.

[5]. Kalenkova A.A., Lomazova I.A., van der Aalst W.M.P. Process Model Discovery: A

Method Based on Transition System Decomposition. ICATPN 2014. LNCS, vol. 8489,

2014, pp. 71-90.

[6]. Leemans S.J.J., Fahland D., van der Aalst W.M.P. Scalable Process Discovery with

Guarantees. BPMDS 2015, EMMSAD 2015. LNBIP, vol 214, 2015, pp. 85-101.

[7]. Begicheva A.K., Lomazova I.A. Discovering high-level process models from event logs.

Modeling and Analysis of Information Systems, vol. 24, no. 2, 2017, pp. 125–140..

[8]. Augusto A., Conforti R., Dumas M., La Rosa M., Maria Maggi F., Marrella A., Mecella

M., Soo A. Automated Discovery of Process Models from Event Logs: Review and

Benchmark. CoRR, 2017, vol. abs/1705.02288.

[9]. Rubin V.A., Mitsyuk A.A., Lomazova I.A., van der Aalst W.M.P. Process Mining can

be applied to software too! In Proceedings of the 8th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM ’14), 2014,

pp. 1-8.

[10]. Leemans M., van der Aalst W.M.P. Process mining in software systems: Discovering

real-life business transactions and process models from distributed systems. MODELS

2015, pp. 44-53.

[11]. Leemans M., van der Aalst W.M.P., van den Brand M. Recursion Aware Modeling and

Discovery for Hierarchical Software Event Log Analysis (Extended). CoRR, 2017, vol.

abs/1710.09323.

[12]. Liu C., van Dongen B.F., Assy N., van der Aalst W.M.P. Component behavior discovery

from software execution data. In Proceedings of the IEEE Symposium Series on

Computational Intelligence (SSCI), 2016, pp. 1-8.

[13]. Davydova K.V., Shershakov S.A. Mining hybrid UML models from event logs of SOA

systems. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174. DOI:

10.15514/ISPRAS-2017-29(4)-10.

[14]. 3TU: Big software on the run. [Online]. Available: http://www.3tu-bsr.nl. Accessed:

09.06.2018.

[15]. Cabac L., Denz N. Net Components for the Integration of Process Mining into Agent-

Oriented Software Engineering. Transactions on Petri Nets and Other Models of

Concurrency I. LNCS, vol. 5100, 2008, pp. 86-103.

[16]. Cabac L., Knaak N., Moldt D., Rölke H. Analysis of Multi-Agent Interactions with

Process Mining Techniques. MATES 2006. LNCS, vol. 4196, 2006, pp. 12-23.

[17]. Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of

Distributed System Models. Trudy ISP RAN/Proc. ISP RAS, 2017, vol. 29, issue 4, pp.

21-38. DOI: 10.15514/ISPRAS-2017-29(4)-2.

[18]. Nesterov R.A., Lomazova I.A. Compositional Process Model Synthesis Based on

Interface Patterns. TMPA 2017. CCIS, vol. 779, 2018, pp. 151-162.

[19]. Burattin A. PLG2: Multiperspective Process Randomization with Online and Offline

Simulations. BPMD 2016. CEUR Workshop Proceedings, vol. 1789, 2016, pp. 1-6.

[20]. Jouck T., Depaire B. PTandLogGenerator: A Generator for Artificial Event Data. BPMD

2016. CEUR Workshop Proceedings, vol. 1789, 2016, pp. 23-27.

[21]. Yan Z., Dijkman R.M., Grefen P. Generating process model collections. Software and

System Modeling, 2017, vol. 16, issue 4, pp. 979-995.

Нестеров Р.А., Мицюк А.А., Ломазова И.А. Симуляция поведения мультиагентных систем с ациклически

взаимодействующими агентами. Труды ИСП РАН, 2018, том 30, вып. 3, 2018 г., стр. 285-302

301

[22]. Shugurov I.S., Mitsyuk A.A. Generation of a Set of Event Logs with Noise. In

Proceedings of the 8th Spring/Summer Young Researchers Colloquium on Software

Engineering (SYRCoSE 2014), 2014, pp. 88-95. DOI: 10.15514/SYRCOSE-2014-8-13.

[23]. Mitsyuk A.A., Shugurov I.S., Kalenkova A.A., van der Aalst W.M.P. Generating event

logs for high-level process models. Simulation Modelling Practice and Theory, vol. 74,

2017, pp. 1-16.

[24]. de Medeiros A.K.A., Günther C.W. Process Mining: Using CPN Tools to Create Test

Logs for Mining Algorithms. In Proceedings of CPN 2005. DAIMI, vol. 576, 2005, pp.

177-190.

[25]. Di Ciccio C., Luca Bernardi M., Cimitile M., Maria Maggi F. Generating Event Logs

Through the Simulation of Declare Models. EOMAS 2015. LNBIP, vol. 231, 2015, pp.

20-36.

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of

Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

302

