
303

On the model checking of finite state
transducers over semigroups

1
A.R. Gnatenko<gnatenko.cmc@gmail.com>

2
V.A. Zakharov<zakh@cs.msu.su>

1
Lomonosov Moscow State University,

GSP-1, Leninskie Gory, Moscow, 119991, Russia
2
National Research University High School of Economics,

20, Myasnitskaya str., Moscow, 101000, Russia

Abstract. Sequential reactive systems represent programs that interact with the environment

by receiving signals or requests and react to these requests by performing operations with

data. Such systems simulate various software like computer drivers, real-time systems,

control procedures, online protocols etc. In this paper, we study the verification problem for

the programs of this kind. We use finite state transducers over semigroups as formal models

of reactive systems. We introduce a new specification language LP-CTL* to describe the

behavior of transducers. This language is based on the well-known temporal logic CTL* and

has two distinguished features: 1) each temporal operator is parameterized with a regular

expression over input alphabet of the transducer, and 2) each atomic proposition is specified

by a regular expression over the output alphabet of the transducer. We develop a tabular

algorithm for model checking of finite state transducers over semigroups against LP-CTL*

formulae, prove its correctness, and estimate its complexity. We also consider a special

fragment of LP-CTL* language, where temporal operators are parameterized with regular

expressions over one-letter alphabet, and show that this fragment may be used to specify
usual Kripke structures, while it is more expressive than usual CTL*.

Keywords: reactive program; transducer; verification; model checking; temporal logic; finite

state automaton; regular language

DOI: 10.15514/ISPRAS-2018-30(3)-21

For citation: Gnatenko A.R., Zakharov V.A. On the model checking of finite state

transducers over semigroups. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-

324. DOI: 10.15514/ISPRAS-2018-30(3)-21

1. Introduction

Finite state machines are widely used in the field of computer science and formal

methods for various purposes. While finite automata represent regular sets,

transducers stand for regular (or, rational) relations and, therefore, can serve as

models of programs and algorithms that operate with input and output data. For

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

304

example, transducers are used as formal models in software engineering to represent

numerous algorithms, protocols and drivers that manipulate with strings, dataflows,

etc. [1, 15, 25].

By extending the concept of ordinary transducers, we build a new formal model for

sequential reactive systems. These systems are software programs or hardware

devices that receive requests (control signals, commands) from the environment and

perform in response some manipulations (actions, transformations) with data,

interactions with the environment, mechanical movements, etc. While the flow of

requests can be represented by finite or infinite words in some fixed alphabet, the

sequence of actions of the system needs a more sophisticated interpretation. The key

point here is that different sequences of actions may bring a computing system to

the same result. To capture this effect the collection of actions performed by a

reactive system can be viewed as a generating set of some algebraic structure (e.g.

semigroup, group, ring, etc.) and particular algebraic properties of basic actions

should be taken into account when choosing adequate formal models for this class

of information processing systems. Let us illustrate this consideration by several

examples.

 A network switch with several input and output ports. A switch is a device,

which receives data packets on its input port, modifies their heads and

commutes them to one of the output ports. Once received a special control

signal, this switch changes its packet-forwarding table and, thus, its behaviour.

Since packets from different flows may be processed in any order, the switch

can be modeled by a transducer, which operates over a free partially

commutative semigroup, or a trace monoid. Trace monoids are commonly used

as an algebraic foundation of concurrent computations and process calculi (see,

e.g., [9]).

 A real-time device that control the operation of some industrial equipment (say,

a boiling system). Such device receives data from temperature and pressure

sensors and switches some processes on and off according to its instructions

and the current state of the system. It seems reasonable that for some actions the

order of their implementation is not important (routine actions), while others

must follow in a strictly specified order (e.g. an execution of some complex

operation). Moreover, there are also actions which bring system to certain

predefined operation mode (set-up actions). These actions are implemented in

the emergency situations. A partially commutative semigroup with right-zero

elements 𝟎 which satisfy the equalities 𝑥𝟎 = 𝟎 for every element 𝑥 provides an

adequate interpretation for such operations.

 A system supervisor that maintains a log-file. For each entry its date and time is

recorded in the file and there is no way to delete entries from the log only to

append it. Thus, for any two basic actions (record operations to the log-file) it is

crucial in which order they are performed and such a supervisor can be modeled

by a transducer over a free semigroup. Verification techniques for such reactive

Гнатенко А.Р., Захаров В.А. О верификации конечных автоматов-преобразователей над полугруппами. Труды

ИСП РАН, том 30, вып. 3, 2018 г., стр. 303-324

305

systems are considered in [17]; this is the main topic of this paper as well.

 A radio-controlled robot, that moves on a surface. It can make one step moves

in any of direction. When it receives a control signal in a state 𝑞′ it must choose

and carry out a sequence of steps and enter to the next state 𝑞′′. At some

distinguished state 𝑞𝑓 the robot reports its current location. Movements of the

robot may be regarded as basic actions, and the simplest model of computation

which is suitable for analyzing a behaviour of this robot is a nondeterministic

finite state transducer operating on a free Abelian group of rank 2.

To construct a reliable system or network it is crucial for its components to have a

correct behaviour. For example, a network switch must process received data

packets within a specified number of execution steps and the boiling system should

never be overheated, that is, will never remain for a long time in a particular

condition without appropriate responses from the control device. By using finite

state transducers as formal models of reactive systems, one can develop verification

algorithms for these models to solve such problems as equivalence checking,

deductive verification or model checking.

The study of the equivalence checking problem for classical transducers began in

the early 60s. It was established that the equivalence checking problem for non-

deterministic transducers is undecidable [13] even over 1-letter input alphabet [16].

However, the undecidability displays itself only in the case of unbounded

transductions when an input word may have arbitrary many images. The

equivalence checking problem was shown to be decidable for deterministic [4],

functional (single-valued) [5, 19], and k-valued transducers [6, 26]. In a series of

papers [20-22] techniques for checking bounded valuedness, k-valuedness and

equivalence of finite state transducers over words were developed. Recently in [29]

equivalence checking problem was shown to be decidable for finite state transducers

that operate over finitely generated semigroups embeddable in decidable groups.

There are also papers where equivalence checking problem for transducers is

studiedin the framework of program verification. The authors of [23] proposed

models of communication protocols as finite state transducers operating on bit

strings. They set up the verification problem as equivalence checking between the

protocol transducer and the specification transducer. The authors of [25] extended

finite state transducers with symbolic alphabets, which are represented as parametric

theories. They showed that a number of classical problems for extended transducers,

including equivalence checking problem, are decidable modulo underlying theories.

In [1] a model of streaming transducers was proposed for programs that access and

modify sequences of data items in a single pass. It was shown that a number of

verification problems such as equivalence checking, assertion checking, and

checking correctness with respect to pre/post conditions, are decidable for this

program model.

Meanwhile, very few papers on the model checking problem for transducers are

known. Transducers can be conveniently used as auxiliary means in regular model

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

306

checking of parameterized distributed systems where configurations are represented

as words over a finite alphabet. In such models, a transition relation on these

configurations may be regarded as a rational relation and, thus, it may be specified

by finite state transducers (see [7, 28]). In these papers, finite state transducers just

play the role of verification instrument, but not an object of verification. However,

as far as we know, a deeper investigation of the model checking problem for the

reactive systems represented by transducers has not yet been carried out. We think

that this is due the following main reason. A transducer is a model of computation

which, given an input word, computes an output word. The letters of input and

output alphabets can be regarded as valuations (tuples of truth values) of some set of

basic predicates. Therefore, a transducer can be viewed as some special

representation of a labeled transition system (Kripke structure) (see [2]). From this

viewpoint model checking problem for finite state transducers conforms well to

standard model checking scheme for finite structures, and, hence, it is not worthy of

any particular treatment.

However, our viewpoint is quite different. Transducer is a more complex model of

computation than a finite state automaton (transition systems). Its behaviorism

characterized by the correspondence between input and output words. A typical

property of such behaviour to be checked is whether for every (some) input word

from a given pattern a transducer outputs a word from another given pattern.

Therefore, when formally expressing the requirements of this kind one needs not

only temporal operators to specify an order in which events occur but also some

means to refer to such patterns. Conventional Temporal Logics like 𝑳𝑻𝑳 or 𝑪𝑻𝑳 are

not sufficient in this case; they should be modified in such a way as to acquire an

ability to express correspondences between the sets (languages) of input words and

the sets (languages) of output words. This could be achieved by supplying temporal

operators with patterns as parameters. Every such pattern is a formal description of

a language 𝐿 over an input alphabet𝒞; automata, formal grammars, regular

expressions, language equations are suitable for this purpose. The basic properties

of output words can be also represented by languages over an output alphabet. Then,

for instance, an expression 𝑮𝐿𝑃 can be understood as the requirement that for every

input word 𝑤 from the language 𝐿 the output word ℎ of a transducer belongs to the

language 𝑃.

The advantages of this approach are twofold. On the one hand, such extensions of

Temporal Logics make it possible to express explicitly relationships between input

and output words and specify thus desirable behaviours of transducers. On the other

hand, it can be hoped that such extensions could rather easily assimilate some well-

known model checking techniques (see [3, 8]) developed for conventional Temporal

Logics. The first attempt to implement this approach was made in [17]. The authors

of this paper introduced an 𝓛𝓟-𝑳𝑻𝑳 specification language based on 𝑳𝑻𝑳 temporal

logic and developed a checking procedure for transducers over free monoids against

specifications from 𝓛𝓟-𝑳𝑻𝑳. It was shown that this procedure has double

exponential time complexity.

Гнатенко А.Р., Захаров В.А. О верификации конечных автоматов-преобразователей над полугруппами. Труды

ИСП РАН, том 30, вып. 3, 2018 г., стр. 303-324

307

In this paper we continue this line of research and "raise'' the specification language

introduced in [17] to the level of 𝓛𝓟-𝑪𝑻𝑳∗. We will focus only on one task related

to the use of new logic for the verification of reactive systems, namely, the

development of a general model checking algorithm for finite state transducers

against specifications in 𝓛𝓟-𝑪𝑻𝑳∗. Such issues as expressive power of 𝓛𝓟-𝑪𝑻𝑳∗,
complexity of model checking and satisfiability checking problems, the influence of

types of languages used as parameters and basic predicates in 𝓛𝓟-𝑪𝑻𝑳∗ on

decidability and complexity of model checking problem remain topic of our further

research and will be covered in our subsequent works. We also leave beyond this

work a number of applied questions, which are worthy of consideration in a separate

paper. For example, it is important to understand to what extent the already

developed model checking tools can be adapted to the new temporal logic. And, of

course, in the future we will have a well-chosen series of examples that illustrate the

new possibilities of using 𝓛𝓟-𝑪𝑻𝑳∗to describe the behavior of reactive systems.

The paper is organized as follows. In Section 2, we define the concept of finite state

transducer over semigroup as a formal model of sequential reactive systems (see

[29]) and in Section 3, we describe the syntax and the semantics of 𝓛𝓟-𝑪𝑻𝑳∗ as a

formal language for specifying behaviour of sequential reactive systems. In Section

3 we also set up formally model checking problem for finite state transducers

against 𝓛𝓟-𝑪𝑻𝑳∗ formulae. In Section 4, we present an 𝓛𝓟-𝑪𝑻𝑳∗ model checking

algorithm for the case when parameters of temporal operators and basic predicates

are regular languages represented by finite state automata. The model checking

algorithm we designed has time complexity which is linear of the size of a

transducer but exponential of the size of 𝓛𝓟-𝑪𝑻𝑳∗ formula. This complexity

estimate is in contrast to the case of conventional 𝑪𝑻𝑳 model checking: its time

complexity is linear of both the size of a model and the size of a 𝑪𝑻𝑳 formula. To

explain this effect in Section 5 we show how 𝓛𝓟-𝑪𝑻𝑳∗ formulae can be also

checked on the conventional Kripke structures. Finally, we compare 𝓛𝓟-𝑪𝑻𝑳∗ with

some other known extensions Temporal Logics and discuss some topics for further

research.

2. Finite state transducers as models of reactive systems

In this section, we introduce a Finite State Transducer as a formal model of a

reactive computing system which receives control signals from the environment and

reacts to these signals by performing operations with data.

Let 𝒞 be a finite set of signals. Finite words over 𝒞 are called signal flows; the set of

all signal flows is denoted by𝒞∗. Given a pair of signal flows 𝑢 and 𝑣 we write 𝑢𝑣

for their concatenation, and denote by 𝜀 the empty flow.

Let 𝒜 = {𝑎1, … , 𝑎𝑛} be a finite set of elements called basic actions; these actions

stand for the elementary operations performed by a reactive system. Finite words

over 𝒜 are called compound actions; they denote sequential compositions of basic

actions. Since different sequences of basic actions could produce the same result,

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

308

one may interpret compound actions over a semigroup (𝑆, 𝑒, ∘) generated by a set

of basic actions 𝒜. The elements of 𝑆 are called data states. Every compound action

ℎ = 𝑎𝑖1𝑎𝑖2 …𝑎𝑖𝑘 is evaluated by the data state [ℎ] = [𝑎𝑖1] ∘ [𝑎𝑖2] ∘ … ∘ [𝑎𝑖𝑘]. For

example, if a reactive system just keeps a track of input requests by adding certain

records to a log-file then a free semigroup will be suitable for interpretation of these

operations. But when a robot moves on a 2-dimensional surface then the actions

(movements) performed by this robot may be regarded as generating elements of

Abelian group 𝐺 of rank 2, and the positions on the surface occupied by this robot

can be specified by the elements from 𝐺. In this paper we restrict ourselves to the

consideration of free semigroups when [ℎ] = ℎ holds for every compound action ℎ,

and ∘ is the word concatenation operation.

Let 𝒞 be a set of signals and 𝒜 be a set of basic actions that are interpreted over a

semigroup (𝑆, 𝑒,∘). Then a Finite State Transducer (in what follows, FST) is a

quintuple Π = (𝑄, 𝒞,𝒜, 𝑞𝑖𝑛𝑖𝑡 , 𝑇), where

 𝑄 is a finite set of control states;

 𝑞𝑖𝑛𝑖𝑡 ∈ 𝑄 is an initial control state;

 𝑇 ⊆ 𝑄 × 𝒞 × 𝑄 ×𝒜∗is a finite transition relation.

Each tuple (𝑞′, 𝑐, 𝑞′′, ℎ) in 𝑇 is called a transition: when a transducer is in a control

state 𝑞′ and receives a signal 𝑐, it changes its state to 𝑞′′ and performs a compound

action ℎ. We denote such transition by 𝑞′
𝑐,ℎ
→ 𝑞′′. A run of a FST Π is any finite

sequence of transitions

𝑞1
𝑐1,ℎ1
→ 𝑞2

𝑐2,ℎ2
→ 𝑞3

𝑐3,ℎ3
→ ⋯

𝑐𝑛,ℎ𝑛
→ 𝑞𝑛+1;

this run transduces a signal flow 𝑤 = 𝑐1𝑐2…𝑐𝑛 into a data state [ℎ1ℎ2…ℎ𝑛].

The behaviour of a FST Π = (𝑄, 𝒞,𝒜, 𝑞𝑖𝑛𝑖𝑡 , 𝑇) over a semigroup (data space)

(𝑆, 𝑒,∘) is presented formally by a transition system 𝑇𝑆(Π, 𝑆) = (𝐷, 𝒞, 𝑑𝑖𝑛𝑖𝑡 , 𝒯),
where

 𝐷 = 𝑄 × 𝑆 is (in general case, infinite) set of states of computation,

 𝑑𝑖𝑛𝑖𝑡 = (𝑞𝑖𝑛𝑖𝑡 , 𝑒) is the initial state, and

 𝒯 ⊆ 𝐷 × 𝒞 × 𝐷 is a transition relation such that for every states of

computation 𝑑′ = (𝑞′, 𝑠′), 𝑑′′ = (𝑞′′, 𝑠′′) and every signal 𝑐 ∈ 𝒞 the

relationship

(𝑑′, 𝑐, 𝑑′′) ∈ 𝒯 ⇒ ∃ℎ ∈ 𝒜∗(𝑞′, 𝑐, 𝑞′′, ℎ) ∈ 𝑇 and 𝑠′′ = 𝑠′ ∘ [ℎ]

holds.

As usual, a transition (𝑑′, 𝑐, 𝑑′′) ∈ 𝒯 is denoted by 𝑑′
𝑐
→ 𝑑′′.

A trajectory in a transition system 𝑇𝑆(Π, 𝑆) is a pair 𝑡𝑟 = (𝑑0, 𝛼), where 𝑑0 ∈ 𝐷

and 𝛼 = (𝑐1, 𝑑1), (𝑐2, 𝑑2), … , (𝑐𝑖 , 𝑑𝑖), … is a sequence of pairs (𝑐𝑖 , 𝑑𝑖) such that

𝑑𝑖−1
𝑐𝑖
→ 𝑑𝑖 holds for every 𝑖, 𝑖 ≥ 1. A trajectory represents a possible scenario of a

behaviour of a sequential reactive system: when receiving a signal flow

Гнатенко А.Р., Захаров В.А. О верификации конечных автоматов-преобразователей над полугруппами. Труды

ИСП РАН, том 30, вып. 3, 2018 г., стр. 303-324

309

𝑐1, 𝑐2, … , 𝑐𝑖 , … the reactive system performs a sequence of basic actions ℎ and

follows sequentially via the states of computation 𝑑1, 𝑑2, … , 𝑑𝑖 , …. By 𝑡𝑟|𝑖 we mean

the trajectory(𝑑𝑖 , 𝛼|
𝑖), where 𝛼|𝑖 = (𝑐𝑖+1, 𝑑𝑖+1), (𝑐𝑖+2, 𝑑𝑖+2), … is a suffix of 𝛼,

respectively.

3. 𝓛𝓟-𝑪𝑻𝑳∗ specification language

When designing sequential reactive systems one should be provided with a suitable

formalism to specify the requirements for their desirable behaviour. For example,

one may expect that

 a mobile robot, receiving an equal number of control signals "go_left'' and

"go_right'', will always return to its original position,

 a network switch will never commute data packets from different packet

flows into the same output buffer,

 it is not possible for the interrupt service routine to complete the processing

of one interrupt before it receives a request to handle another.

These and many other requirements which refer to the correspondences between

control flows and compound actions in the course of FST runs can be specified by

means of Temporal Logics. When choosing a suitable temporal logic as a formal

specification language of FST behaviours one should take into account two

principal features of our model of sequential reactive systems:

 since a FST operates over a data space which is semigroup, the basic

predicates must be interpreted over semigroups as well, and

 since a behaviour of a FST depends not on the time flow itself but on a

signal flow which it receives as an input, temporal operators must be

parameterized by certain descriptions of admissible signal flows.

To adapt traditional temporal logic formalism to these specific features of FST

behaviours the authors of [17] introduced a new variant of Linear Temporal Logic

(LTL). We assume that in general case one may be interested in checking the

correctness of FST's responses to arbitrary set of signal flows. Every set of control

flows may be regarded as a language over the alphabet 𝒞 of signals. Therefore, it is

reasonable to supply temporal operators ("globally'' 𝑮, "eventually'' 𝑭, etc.) with

certain descriptions of such languages as parameters. In more specific cases we

may confine ourselves with considering only a certain family of languages (finite,

regular, context-free, etc.) ℒ used as parameters of temporal operators. These

languages will be called environment behaviour patterns.

A reactive system performs finite sequences of basic actions in response to control

signals from the environment and thus follows in the course of its run via a

sequence of data states, which are elements of a semigroup (𝑆, 𝑒, ∘), Therefore,

basic predicates used in LTL formulae may be viewed as some sets of data

states 𝑆′, 𝑆′ ⊆ 𝑆. These sets can be also specified in language-theoretic fashion.

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

310

Any language 𝑃 over the alphabet of basic actions 𝒜 corresponds to a predicate (set

of data states) 𝑆𝑃 = {[ℎ] | ℎ ∈ 𝑃}. As in the case of environment behaviour patterns

we may distinguish a certain class 𝒫 of languages and use them as specifications of

basic predicates. When these languages are used as parameters in temporal formulae

then it will be assumed that they are defined constructively by means of automata,

grammars, Turing machines, etc.

Thus, we arrive at the concept of 𝓛𝓟-variants of Temporal Logics. In [17] the

syntax and semantics of 𝓛𝓟-𝑳𝑻𝑳 was studied in some details in the case when both

environment behaviour patterns and basic predicates are regular languages

presented by finite automata. In this paper we make one step further and extend the

concept of 𝓛𝓟-variants of Temporal Logics to 𝑪𝑻𝑳∗. Select an arbitrary family of

environment behaviour patterns ℒ and a family of basic predicates 𝒫. The set of

𝓛𝓟-𝑪𝑻𝑳∗ formulae consists of state formulae and trajectory formulae, which are

defined as follows:

 each basic predicate 𝑃 ∈ 𝒫 is a state formula;

 if 𝜑1, 𝜑2 are state formulae then ¬ 𝜑1, 𝜑1 ∧ 𝜑2 and 𝜑1 ∨ 𝜑2 are state

formulae;

 if 𝜓 is a trajectory formula then 𝑨𝜓 and 𝑬𝜓 are state formulae;

 if 𝜑 is a state formula then 𝜑 is a trajectory formula;

 if 𝜓1, 𝜓2 are trajectory formulae then ¬ 𝜓1, 𝜓1 ∧ 𝜓2 and 𝜓1 ∨ 𝜓2 are

trajectory formulae;

 if 𝜑, 𝜑1, 𝜑2 are state formulae, 𝑐 ∈ 𝒞, and 𝐿 ∈ ℒ then 𝑿𝑐𝜑, 𝒀𝑐𝜑, 𝑭𝐿𝜑,
𝑮𝐿𝜑 and 𝜑1𝑼𝜑2 are trajectory formulae.

The specification language 𝓛𝓟-𝑪𝑻𝑳∗ is the set of all state formulae constructed as

defined above.

Now we introduce the semantics of 𝓛𝓟-𝑪𝑻𝑳∗ formulae. These formulae are

interpreted over transition systems. Let 𝑀 = 𝑇𝑆(Π, 𝑆) be a transition system, 𝑑 be

a state of computation in this system, and 𝑡𝑟 be a trajectory in 𝑀. Then for every

state formula 𝜑 we write 𝑀, 𝑑 ⊨ 𝜑 to denote the fact that the assertion 𝜑 is true in

the state 𝑑 of 𝑀, and for every trajectory formula 𝜓 we write 𝑀, 𝑡𝑟 ⊨ 𝜓 to denote

the fact that the assertion 𝜓 holds for the trajectory 𝑡𝑟 in 𝑀.

In the definition below it is assumed that 𝑀 is a transition system, 𝑑 = (𝑞, 𝑠) is a

state of computation in 𝑀, and 𝑡𝑟 = (𝑑0, 𝛼) is a trajectory in 𝑀 such that

𝛼 = (𝑐1, 𝑑1), (𝑐2, 𝑑2), … , (𝑐𝑖 , 𝑑𝑖), …. We define the satisfiability relation ⊨ by

induction on the height of formulae:

 𝑀, 𝑑 ⊨ 𝑃 ⟺ 𝑠 ∈ 𝑃;

 𝑀, 𝑑 ⊨ ¬ 𝜑 ⟺ it is not true that 𝑀, 𝑑 ⊨ 𝜑;

 𝑀, 𝑑 ⊨ 𝜑1 ∧ 𝜑2 ⟺ 𝑀, 𝑑 ⊨ 𝜑1 and 𝑀, 𝑑 ⊨ 𝜑2;

 𝑀, 𝑑 ⊨ 𝑬𝜑 ⟺ there exists a trajectory 𝑡𝑟′ = (𝑑, 𝛼′) in 𝑀 such

that 𝑀, 𝑡𝑟′ ⊨ 𝜑;

Гнатенко А.Р., Захаров В.А. О верификации конечных автоматов-преобразователей над полугруппами. Труды

ИСП РАН, том 30, вып. 3, 2018 г., стр. 303-324

311

 𝑀, 𝑑 ⊨ 𝑨𝜑 ⟺ for any trajectory 𝑡𝑟′ = (𝑑, 𝛼′) in 𝑀 it is true

that $𝑀, 𝑡𝑟′ ⊨ 𝜑;

 if 𝜑 is a state formula then 𝑀, 𝑡𝑟 ⊨ 𝜑 ⟺ 𝑀, 𝑑0 ⊨ 𝜑;

 𝑀, 𝑡𝑟 ⊨ ¬ 𝜓 ⟺ it is not true that 𝑀, 𝑡𝑟 ⊨ 𝜓;

 𝑀, 𝑡𝑟 ⊨ 𝜓1 ∧ 𝜓2⟺ 𝑀, 𝑡𝑟 ⊨ 𝜓1 and 𝑀, 𝑡𝑟 \𝑚𝑜𝑑𝑒𝑙𝑠 𝜓2 ;

 𝑀, 𝑡𝑟 ⊨ 𝑿𝑐𝜑 ⟺ 𝑐 = 𝑐1 and 𝑀, 𝑑1 ⊨ 𝜑;

 𝑀, 𝑡𝑟 ⊨ 𝒀𝑐𝜑 ⟺ either 𝑐 ≠ 𝑐1, or 𝑀, 𝑑1 ⊨ 𝜑;

 𝑀, 𝑡𝑟 ⊨ 𝑭𝐿𝜑 ⟺ ∃ 𝑖 ≥ 0 ∶ 𝑐1𝑐2… 𝑐𝑖 ∈ 𝐿 and 𝑀, 𝑡𝑟|𝑖 ⊨ 𝜑;

 𝑀, 𝑡𝑟 ⊨ 𝑮𝐿𝜑 ⟺ ∀ 𝑖 ≥ 0 ∶ if 𝑐1𝑐2… 𝑐𝑖 ∈ 𝐿 then 𝑀, 𝑡𝑟|𝑖 ⊨ 𝜑;

 𝑀, 𝑡𝑟 ⊨ 𝜑 𝑼𝐿𝜓 ⟺ ∃ 𝑖 ≥ 0 ∶ 𝑐1𝑐2… 𝑐𝑖 ∈ 𝐿,𝑀, 𝑡𝑟|
𝑖 ⊨ 𝜓

and ∀ 𝑗, 0 ≤ 𝑗 < 𝑖, if 𝑐1𝑐2… 𝑐𝑖 ∈ 𝐿 then 𝑀, 𝑡𝑟|𝑗 ⊨ 𝜑.

Observe, that operators 𝑿𝑐 and 𝒀𝑐, as well as 𝑭𝐿 and 𝑮𝐿, are dual to each other:

Proposition 1. For any 𝓛𝓟-𝑪𝑻𝑳∗ formula 𝜑, any 𝑐 ∈ 𝒞 and any 𝐿 ∈ ℒ, and for an

arbitrary trajectory 𝑡𝑟 in 𝑀

 𝑡𝑟 ⊨ 𝑿𝑐𝜑 ⟺ 𝑡𝑟 ⊨ ¬ 𝒀𝑐 ¬ 𝜑,

 𝑡𝑟 ⊨ 𝑭𝐿𝜑 ⟺ 𝑡𝑟 ⊨ ¬ 𝑮𝐿 ¬ 𝜑.

As usual, other Boolean connectives like ∨, →, ≡ may be defined by means of ¬

and ∧. Some other 𝑪𝑻𝑳∗ operators like, for example, R (release) or 𝑾 (weak until)

may be parametrized by environmental behaviour patterns in the same fashion.

The model checking problem we deal with is that of checking, given a finite state

transducer Π operating over a semigroup (𝑆, 𝑒, ∘), and an 𝓛𝓟-𝑪𝑻𝑳∗ formula 𝜑,
whether 𝑇𝑆(Π, 𝑆), 𝑑𝑖𝑛𝑖𝑡 ⊨ 𝜑 holds. When a semigroup is fixed then we use a brief

notation Π ⊨ 𝜑.

4. Model checking against 𝓛𝓟-𝑪𝑻𝑳∗ specifications

In this paper, we discuss only the most simple case of model checking problem for

finite state transducers against 𝓛𝓟-𝑪𝑻𝑳∗ formulae when

 the semigroup (𝑆, ∘, 𝑒) the transducers operate over is a free monoid, which

means that 𝑆 is the set of all finite words in the alphabet 𝒜, the binary

operation ∘ is concatenation of words, and the neutral element 𝑒 is the empty

word 𝜀;
 the family of environment behaviour patterns ℒ is the family of regular

languages in the alphabet 𝒞;

 all basic predicates in 𝒫 are specified by regular languages in the alphabet 𝒜.

All regular languages used as environment behaviour patterns and basic predicate

specifications are defined by means of deterministic finite state automata (DFAs).

Therefore, the size of a 𝓛𝓟-𝑪𝑻𝑳∗ formula is the number of Boolean connectives

and temporal operators occurred in 𝜑 plus the total size of automata used in 𝜑 to

specify environment behaviour patterns and basic predicates.

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

312

Let us first describe a model checking algorithm for 𝓛𝓟-𝑪𝑻𝑳 fragment of 𝓛𝓟-

𝑪𝑻𝑳∗, which consists of all 𝓛𝓟-𝑪𝑻𝑳∗ formulae such that every temporal operator

𝐗𝒄, 𝐘𝒄, 𝐅𝑳, 𝐆𝑳   𝐔𝑳 is immediately preceded by a trajectory quantifier 𝐄 or 𝐀. In our

algorithm, we involve an explicit iterative model checking techniques for the

ordinary 𝑪𝑻𝑳 (see [8, 10]). Following this approach satisfiability checking of a

formula 𝝋 in a state 𝒅 of a model 𝑴 is reduced to satisfiability checking of the

largest subformulae of 𝝋 in the state 𝒅 and in the neighboring states of 𝑴. In other

words, a model checking procedure incrementally labels all states of a model by

those subformulae of 𝝋 which are satisfied in these states.

Let 𝚷 = (𝑸, 𝓒,𝓐, 𝒒𝒊𝒏𝒊𝒕, 𝑻) be a finite state transducer over the free semigroup

(𝓐∗, ⋅ , 𝜺) and let 𝝋 be an 𝓛𝓟-𝑪𝑻𝑳 formula. There are five pairs of coupled 𝓛𝓟-

𝑪𝑻𝑳 temporal operators: 𝐀𝐗𝒄 and 𝐄𝐗𝒄, 𝐀𝐘𝒄 and 𝐄𝐘𝒄, 𝐀𝐅𝑳 and 𝐄𝐅𝑳, 𝐀𝐆𝑳 and 𝐄𝐆𝑳,
𝐀𝐔𝑳 and 𝐄𝐔𝑳. As in the case of “ordinary” 𝑪𝑻𝑳 (see), each of these couple can be

expressed in terms of four main coupled operators 𝐄𝐗𝒄, 𝐄𝐘𝒄, 𝐄𝐆𝑳 and 𝐄𝐔𝑳:

Proposition 2. For every formula 𝝋 the following equalities hold

1. ⊨ 𝐀𝐗𝑐𝜑 ≡ ¬𝐄𝐘𝑐  ¬𝜑,

2. ⊨ 𝐀𝐘𝑐𝜑 ≡ ¬𝐄𝐗𝑐  ¬𝜑,

3. ⊨ 𝐀𝐅𝐿𝜑 ≡ ¬𝐄𝐆𝐿  ¬𝜑,

4. ⊨ 𝐄𝐅𝐿𝜑 ≡ 𝐄[𝑡𝑟𝑢𝑒 𝐔𝐿𝜑],
5. ⊨ 𝐀𝐆𝐿𝜑 ≡ ¬𝐄𝐅𝐿  ¬𝜑,

6. ⊨ 𝐀[𝜑 𝐔𝐿𝜓] ≡ ¬𝐄[¬𝜓 𝐔𝐿  (¬𝜑 ∧ ¬𝜓)] ∧ ¬𝐄𝐆𝐿  ¬𝜓.

Certainly, some other relationships like fixed-point identities are also valid in 𝓛𝓟-

𝑪𝑻𝑳∗ (see [17]) but they will not be involved in this paper.

We can now bound our consideration with those 𝓛𝓟-𝑪𝑻𝑳 formulae which are

constructed using only ¬, ∧, 𝐄𝐗𝒄, 𝐄𝐘𝒄, 𝐄𝐆𝑳 and 𝐄𝐔𝑳. Let 𝑴 be a transition system

𝑻𝑺(𝚷, 𝓐∗) = (𝑫, 𝓒, 𝒅𝒊𝒏𝒊𝒕, 𝓣) of 𝜫 over 𝓐∗. It should be noticed that 𝑴 is, in

general, infinite. Therefore, to obtain an effective model checking procedure we

need a construction that will model the behaviour of 𝑴 w.r.t. a target formula 𝝋.

For every basic predicate 𝑷 ∈ 𝓟 let 𝑨𝑷 = (𝑸𝑷, 𝓐, 𝒊𝒏𝒊𝒕𝑷, 𝜹𝑷 , 𝑭𝑷) be a minimal

DFA recognizing this language. Here 𝑸𝑷 is a finite set of states, 𝒊𝒏𝒊𝒕𝑷 is an initial

state, 𝑭𝑷 is a set of accepting states and 𝜹𝑷 ∶ 𝑸𝑷 × 𝓐 → 𝑸𝑷 is a transition

function. The latter can be extended to the set 𝓐∗ in the usual fashion:

𝜹𝑷(𝒒𝑷, 𝜺) = 𝒒𝑷 𝐚𝐧𝐝 𝜹𝑷(𝒒𝑷, 𝜸𝒂) = 𝜹𝑷(𝜹𝑷(𝒒𝑷, 𝜸), 𝒂).

Let 𝑷𝟏, 𝑷𝟐, … , 𝑷𝒌 be all basic predicates occurred in the formula 𝝋. Given a

transducer 𝚷 = (𝑸, 𝓒, 𝓐, 𝒒𝒊𝒏𝒊𝒕, 𝑻) and a formula 𝝋, we build a checking machine

— a transducer 𝓜 = (�̂� , 𝓒,𝓐, �̂�𝒊𝒏𝒊𝒕, �̂�), where

 �̂� = 𝑄 × 𝑄𝑃1 × …× 𝑄𝑃𝑘 is a set of states (to avoid misunderstanding we will

call them metastates);

 �̂�𝑖𝑛𝑖𝑡 = (𝑞𝑖𝑛𝑖𝑡 , 𝑖𝑛𝑖𝑡𝑃1, … , 𝑖𝑛𝑖𝑡𝑃𝑘) is an initial metastate;

 �̂� ⊆ �̂� × 𝒞 × �̂� × 𝒜∗ is a transition relation, such that:

Гнатенко А.Р., Захаров В.А. О верификации конечных автоматов-преобразователей над полугруппами. Труды

ИСП РАН, том 30, вып. 3, 2018 г., стр. 303-324

313

(�̂�′, 𝒄, �̂�″, 𝒉) ∈ �̂�   ⇔   {

(𝒒′𝝅, 𝒄, 𝒒″𝝅, 𝒉) ∈ 𝑻 𝐚𝐧𝐝

𝜹𝑷𝒋(𝒒′𝑷𝒋 , 𝒉) = 𝒒″𝑷𝒋
  𝐟𝐨𝐫 𝐚𝐥𝐥 𝒋, 𝟏 ≤ 𝒋 ≤ 𝒌.

Thus, every metastate is a tuple �̂� = (𝑞0, 𝑞1, … , 𝑞𝑘) such that 𝑞0 ∈ 𝑄 and 𝑞𝑗 ∈ 𝑄𝑃𝑗

for every 𝑗, 1 ≤ 𝑗 ≤ 𝑘, and the transition relation �̂� synchronizes transitions of 𝛱

and the automata 𝐴𝑃1 , … , 𝐴𝑃𝑘 in response to every signal 𝑐. Recall that the elements

of the free monoid are words 𝑠 from 𝒜∗. The checking machine ℳ induces a binary

relation ∼ on the set 𝐷: for an arbitrary pair 𝑑′ = (𝑞′, 𝑠′) and 𝑑″ = (𝑞″, 𝑠″) of states

of computation of 𝛱 over 𝒜∗

𝒅′ ∼ 𝒅″   ⇔    {
𝒒′ = 𝒒″ 𝐚𝐧𝐝

𝜹𝑷𝒋(𝒊𝒏𝒊𝒕𝑷𝒋 , 𝒔′) = 𝜹𝑷𝒋(𝒊𝒏𝒊𝒕𝑷𝒋 , 𝒔″) 𝐟𝐨𝐫 𝐚𝐥𝐥 𝒋.

The relation ∼ is clearly an equivalence relation of finite index, and every

equivalence class of states of computation in 𝑴 corresponds to a metastate of the

checking machine 𝓜. As it can be seen from the definition of ∼, if two states of

computation 𝒅′ and 𝒅″ are equivalent and there is a trajectory 𝒕𝒓′ = (𝒅′, 𝜶′) in 𝑴,

where 𝜶′ = (𝒄𝟏, 𝒅′𝟏), (𝒄𝟐, 𝒅′𝟐), …, from one of these states, then there is

also a corresponding trajectory 𝒕𝒓″ = (𝒅″, 𝜶″), where 𝜶″ = (𝒄𝟏, 𝒅″𝟏), (𝒄𝟐, 𝒅″𝟐), …

from the other state, such that 𝒅′𝒊 ∼ 𝒅″𝒊 holds for every 𝒊, 𝒊 ≥ 𝟏. Actually, this

means that ∼ is a bisimulation relation on the state space of the transition system 𝑴.

It is well known (see [3, 8]) that bisimulation preserves the satisfiability of 𝑪𝑻𝑳

formulae. The Proposition below shows that the same is true for 𝓛𝓟-𝑪𝑻𝑳. This

means that the checking machine provides a finite contraction of the infinite

transition system 𝑴 = 𝑻𝑺(𝚷, 𝓐∗) w.r.t. satisfiability of 𝓛𝓟-𝑪𝑻𝑳 formulae.

Proposition 3. Suppose that 𝒅′ and 𝒅″ are two states of computation in 𝑴 such

that 𝒅′ ∼ 𝒅″. Then 𝑴, 𝒅′ ⊨ 𝝋 ⇔ 𝑴,𝒅″ ⊨ 𝝋.

Proof. It is carried out by induction on the nesting depth of 𝝋. When 𝝋 is a basic

predicate the assertion follows from the definition of ∼. The cases when 𝝋 = ¬𝝍

and 𝝋 = 𝝍𝟏 ∧ 𝝍𝟐 are obvious. We focus only on the case of 𝝋 = 𝐄[𝝍 𝐔𝑳𝝌]; the

other cases when 𝝋 is of the form 𝐄𝐗𝒄𝝍, 𝐄𝐘𝒄𝝍, or 𝐄𝐆𝑳𝝍 can be treated similarly.

Suppose that 𝑴,𝒅′ ⊨ 𝐄[𝝍 𝐔𝑳𝝌]. Then, by the definition of 𝓛𝓟-𝑪𝑻𝑳 semantics,

there exists a trajectory 𝒕𝒓′ = (𝒅′, 𝜶′), such that 𝑴, 𝒕𝒓′ ⊨ 𝝍 𝐔𝑳𝝌 and 𝜶′ =
(𝒄𝟏, 𝒅′𝟏), (𝒄𝟐, 𝒅′𝟐), …. As it was noticed above, there is also a corresponding

trajectory 𝒕𝒓″ = (𝒅″, 𝜶″) in 𝑴, where 𝜶″ = (𝒄𝟏, 𝒅″𝟏), (𝒄𝟐, 𝒅″𝟐), …, such that

𝒅′𝒊 ∼ 𝒅″𝒊 holds for every 𝒊, 𝒊 ≥ 𝟏. Then, by induction hypotheses, 𝑴,𝒅′𝒊 ⊨ 𝝍 ⇔
𝑴,𝒅″𝒊 ⊨ 𝝍 and 𝑴,𝒅′𝒊 ⊨ 𝝌 ⇔ 𝑴,𝒅″𝒊 ⊨ 𝝌 hold for every 𝒊, 𝒊 ≥ 𝟏.

Since 𝑴, 𝒕𝒓′ ⊨ 𝝍 𝐔𝑳𝝌, there exists 𝒊 such that

1. 𝑐1𝑐2…𝑐𝑖 ∈ 𝐿 and 𝑀, 𝑡𝑟′|𝑖 ⊨ 𝜒;

2. for all 𝑗 < 𝑖 if 𝑐1𝑐2…𝑐𝑗 ∈ 𝐿 then 𝑀, 𝑡𝑟′|𝑗 ⊨ 𝜓.

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

314

However, taking into account the fact that 𝜓 and 𝜒 are state formulas, we must

recognize that 𝑀, 𝑡𝑟″|𝑖 ⊨ 𝜒 and that 𝑀, 𝑡𝑟″|𝑗 ⊨ 𝜓 every time when 𝑀, 𝑡𝑟′|𝑗 ⊨ 𝜓.

Thus, we arrive at the conclusion that 𝑀, 𝑡𝑟″ ⊨ 𝜓 𝐔𝐿𝜒 and, hence, 𝑀, 𝑑″ ⊨
E[𝜓 𝐔𝐿𝜒]. ∎

Each metastate �̂� = (𝒒𝟎, 𝒒𝟏, … , 𝒒𝒌) of the checking machine 𝓐 represents an

equivalence class 𝑫�̂� which includes all states 𝒅 = (𝒒, 𝒉) ∈ 𝑫 such that 𝒒 = 𝒒𝟎 and

𝜹𝑷𝒋(𝒊𝒏𝒊𝒕𝑷𝒋 , 𝒉) = 𝒒𝒋 for all 𝒋, 𝟏 ≤ 𝒋 ≤ 𝒌. By using Proposition 3, we can correctly

introduce a new satisfiability relation ⊨𝟎 on the metastates of the checking machine:

�̂� ⊨
𝟎
𝝋   ⇔    𝐟𝐨𝐫 𝐬𝐨𝐦𝐞 𝒅 ∈ 𝑫�̂�: 𝑴, 𝒅 ⊨ 𝝋 .

Not only the states of the transition system 𝑴 = 𝑻𝑺(𝜫, 𝑺) correspond to the

metastates of the checking machine 𝓜, but also there is a relationship between the

trajectories in 𝑴 and the traces in 𝓜 (they can be quite naturally called

metatrajectories). More formally, every trajectory 𝒕𝒓 = (𝒅𝟎, 𝜶) in 𝑴 with

𝜶 = (𝒄𝟏, 𝒅𝟏)(𝒄𝟐, 𝒅𝟐) …, corresponds to a metatrajectory 𝒕�̂� = (�̂�𝟎, �̂�), where

�̂� = (𝒄𝟏, �̂�𝟏)(𝒄𝟐, �̂�𝟐)… is such that for all 𝒊 ≥ 𝟎: 𝒅𝒊 ∈ 𝑫�̂�𝒊
. It is easy to see that

every metatrajectory 𝒕�̂� = (�̂�𝟎, �̂�) corresponds to the only trajectory 𝒕𝒓 = (𝒅𝟎, 𝜶),
which originates in a given state 𝒅𝟎 from 𝑫�̂�𝟎.

The well-known labeling algorithm for conventional 𝑪𝑻𝑳 and ordinary Kripke

structures can be now adapted in such a way as to cope with model checking

problem for 𝓛𝓟-𝑪𝑻𝑳. The algorithm operates as follows. For every metastate �̂� ∈ �̂�

of the checking machine 𝓜 it computes a set 𝒍𝒂𝒃𝒆𝒍(�̂�) of all subformulae of 𝝋

satisfied in �̂�. More formally, let 𝑺𝒖𝒃(𝝋) be the minimal set of 𝓛𝓟-𝑪𝑻𝑳 formulae

such that:

1. 𝜑 ∈ 𝑆𝑢𝑏(𝜑);

2. if ¬𝜓 ∈ 𝑆𝑢𝑏(𝜑) then 𝜓 ∈ 𝑆𝑢𝑏(𝜑);

3. if 𝜓 ∧ 𝜒 ∈ 𝑆𝑢𝑏(𝜑) then 𝜓, 𝜒 ∈ 𝑆𝑢𝑏(𝜑);

4. if 𝐄𝐗𝑐𝜓 ∈ 𝑆𝑢𝑏(𝜑), 𝐄𝐘𝑐𝜓 ∈ 𝑆𝑢𝑏(𝜑) or 𝐄𝐆𝐿𝜓 ∈ 𝑆𝑢𝑏(𝜑) then 𝜓 ∈ 𝑆𝑢𝑏(𝜑);

5. if 𝐄[𝜓 𝐔𝐿𝜒] ∈ 𝑆𝑢𝑏(𝜑) then 𝜓, 𝜒 ∈ 𝑆𝑢𝑏(𝜑).

The algorithm builds incrementally the sets 𝑙𝑎𝑏𝑒𝑙(�̂�) of all those 𝜓 ∈ 𝑆𝑢𝑏(𝜑) for

which �̂� ⊨0 𝜓 holds. At the first step every 𝑙𝑎𝑏𝑒𝑙(�̂�) contains only basic predicates,

i. e. 𝑙𝑎𝑏𝑒𝑙(�̂�) ⊆ 𝑆𝑢𝑏(𝜑) ∩ 𝒫. Then, at 𝑠𝑡𝑒𝑝 𝑖 the algorithm processes those

subformulae 𝜓 whose nesting depth is 𝑖 − 1. Every time when the algorithm adds a

subformula 𝜓 to 𝑙𝑎𝑏𝑒𝑙(�̂�) it thus detects that �̂� ⊨0 𝜓.

All we need now is to describe how the algorithm should process formulae of 7

types: basic predicate 𝑷, ¬𝝍, 𝝍𝟏 ∧ 𝝍𝟐, 𝑬𝑿𝒄𝝍, 𝐄𝐘𝒄𝝍, 𝑬𝑮𝑳𝝍 and 𝐄[𝝍 𝐔𝑳𝝌].
 A basic predicate 𝑃𝑖 is added to 𝑙𝑎𝑏𝑒𝑙(�̂�) iff �̂� = (𝑞0, 𝑞1, … , 𝑞𝑖 , … , 𝑞𝑘) and

�̂�𝑖 ∈ 𝐹𝑃𝑖 , 𝑖 ≥ 1;

 A subformula ¬𝜓 is added to 𝑙𝑎𝑏𝑒𝑙(�̂�) iff 𝜓 ∉ 𝑙𝑎𝑏𝑒𝑙(�̂�);

 A subformula 𝜓1 ∧ 𝜓2 is added to 𝑙𝑎𝑏𝑒𝑙(�̂�) iff both 𝜓1, 𝜓2 ∈ 𝑙𝑎𝑏𝑒𝑙(�̂�);

Гнатенко А.Р., Захаров В.А. О верификации конечных автоматов-преобразователей над полугруппами. Труды

ИСП РАН, том 30, вып. 3, 2018 г., стр. 303-324

315

 A subformula 𝑬𝑿𝑐𝜓 is added to 𝑙𝑎𝑏𝑒𝑙(�̂�) iff there exists a transition

�̂�
𝑐,ℎ
→ �̂�′ such that 𝜓 ∈ 𝑙𝑎𝑏𝑒𝑙(�̂�′);

 A subformula 𝑬𝒀𝑐𝜓 is added to 𝑙𝑎𝑏𝑒𝑙(𝑞) iff there exists a transition

�̂�
𝑐,ℎ
→ �̂�′ such that 𝜓 ∈ 𝑙𝑎𝑏𝑒𝑙(𝑞 ′) or a transition �̂�

𝑐,ℎ
→ �̂�′ such that 𝑐′ ≠ 𝑐;

 To handle a subformula 𝑬[𝜓 𝑼𝐿𝜒] we construct a directed labeled graph

(DLG) Γ𝑈(ℳ, 𝐿) as follows. Let 𝐴𝐿 = (𝑄𝐿 , 𝒞, 𝑖𝑛𝑖𝑡𝐿 , 𝛿𝐿 , 𝐹𝐿) be a minimal DFA

that recognizes the language 𝐿. Then the nodes of Γ𝑈(ℳ, 𝐿) are all

pairs (�̂�, 𝑞𝐿) ∈ �̂� × 𝑄𝐿 . This DLG has an arc of the form (�̂�′, 𝑞𝐿′)
𝑐,ℎ
→ (�̂�′′, 𝑞𝐿′′) iff �̂�′

𝑐,ℎ
→ �̂�'' is a transition of ℳ and 𝛿𝐿(𝑞𝐿′, 𝑐) = 𝑞𝐿″.

We then delete all those nodes (𝑞 , 𝑞𝐿) of Γ𝑈(ℳ, 𝐿) for which the relations

𝜓 ∉ 𝑙𝑎𝑏𝑒𝑙(�̂�), 𝜒 ∉ 𝑙𝑎𝑏𝑒𝑙(�̂�) and 𝑞𝐿 ∈ 𝐹𝐿 hold simultaneously and discard all

arcs incoming to or outcoming from such nodes. A DLG thus reduced is

denoted by Γ𝑈
′ (ℳ, 𝐿).

 A subformula 𝐸[𝜓 𝑈𝐿𝜒] is added to the set 𝑙𝑎𝑏𝑒𝑙(�̂�) iff Γ𝑈
′ (ℳ, 𝐿) includes the

node (�̂�, 𝑖𝑛𝑖𝑡𝐿) and there exists a directed path in this graph from this node to

some node (�̂�′, 𝑞𝐿′) such that 𝜒 ∈ 𝑙𝑎𝑏𝑒𝑙(�̂�′) and 𝑞𝐿′ ∈ 𝐹𝐿.

 For a subformula 𝐸𝐺𝐿𝜓 we construct a DLG Γ𝐺(ℳ, 𝐿) in the same fashion

and delete all the nodes (�̂�, 𝑞𝐿) for which the relations 𝜓 ∉ 𝑙𝑎𝑏𝑒𝑙(�̂�) and

𝑞𝐿 ∈ 𝐹𝐿 hold simultaneously. As the result we obtain the reduced DLG

Γ′_𝐺 (ℳ, 𝐿).
 The subformula 𝐄𝐆𝐿𝜓 is added to the set 𝑙𝑎𝑏𝑒𝑙(�̂�) iff Γ𝐺

′ (ℳ, 𝐿) includes the

node (�̂�, 𝑖𝑛𝑖𝑡𝐿) and there exists a directed path in this graph from this node to

some nontrivial strongly connected component (SCC), that is, to a subgraph,

every node of which is reachable from any other node by some non-empty

path.

As soon as all the subformulae from 𝑆𝑢𝑏(𝜑) (including the formula 𝜑) are

processed we obtain the result of the model checking as

𝜫 ⊨ 𝝋    ⇔    𝝋 ∈ 𝒍𝒂𝒃𝒆𝒍(�̂�𝒊𝒏𝒊𝒕).

The correctness of this assertion is based on the following relationship: �̂� ⊨𝟎 𝝋 ⇔
 𝝋 ∈ 𝒍𝒂𝒃𝒆𝒍(�̂�). It can be proved by applying induction on the nesting depth of

formulae with the help of Proposition 3. We also need Propositions 4 and 5 to

justify the induction step for formulae of the form 𝐄[𝝍 𝐔𝑳𝝌] and 𝐄𝐆𝑳𝝍.

Suppose, that for every metastate �̂� ∈ �̂� it is true that �̂� ⊨𝟎 𝝍 ⇔ 𝝍 ∈ 𝒍𝒂𝒃𝒆𝒍(�̂�)
and �̂� ⊨𝟎 𝝌 ⇔ 𝝌 ∈ 𝒍𝒂𝒃𝒆𝒍(�̂�). This statement is used as an inductive hypothesis.

Proposition 4. Let �̂�𝟎 ∈ �̂� be an arbitrary metastate in 𝓜. Then �̂�𝟎 ⊨𝟎 𝑬[𝝍 𝑼𝑳𝝌]
iff some node (�̂�′, 𝒒𝑳′) in DLG 𝜞𝑼

′ (𝓜, 𝑳), such that �̂�′ ⊨𝟎 𝝌 and 𝒒𝑳′ ∈ 𝑭𝑳, is

reachable from the node (�̂�𝟎, 𝒊𝒏𝒊𝒕𝑳) by a directed path.

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

316

Proposition 5. Let �̂�𝟎 ∈ �̂� be an arbitrary metastate in 𝓜 . Then �̂� ⊨𝟎 𝑬𝑮𝑳𝝍 iff

some nontrivial strongly connected component is reachable from the node

(�̂�, 𝒊𝒏𝒊𝒕𝑳) in DLG 𝜞𝑮
′ (𝓜, 𝑳) by a directed path.

The proofs of these Propositions are straightforward adaptations of the correctness

proof of the tabular model checking algorithm for 𝑪𝑻𝑳 which is discussed in much

details in [8]. However, for completeness of the exposition we give here a proof of

Proposition 5. The proof of Proposition 4 follows the similar line of reasoning.

Proof of Proposition 5 (Sketch).

(⇒) Suppose, that �̂�𝟎 ⊨𝟎 𝐄𝐆𝑳𝝍. Consider an arbitrary state 𝒅𝟎 ∈ 𝑫�̂�𝟎. Then, by

definition of ⊨𝟎 and by Proposition 3, it is true that 𝑴, 𝒅𝟎 ⊨ 𝐄𝐆𝑳𝝍. This means that

there is a trajectory 𝒕𝒓 = (𝒅𝟎, 𝜶), where 𝜶 = (𝒄𝟏, 𝒅𝟏), (𝒄𝟐, 𝒅𝟐), …, such

that 𝑴, 𝒕𝒓 ⊨ 𝐆𝑳𝝍. By the semantics of 𝓛𝓟-𝑪𝑻𝑳∗, 𝑴, 𝒅𝒊 ⊨ 𝝍 holds for every 𝒊
such that 𝒄𝟏𝒄𝟐…𝒄𝒊 ∈ 𝑳.

Consider now the corresponding metatrajectory 𝒕�̂� = (�̂�𝟎, �̂�) in the checking

machine, where �̂� = (𝒄𝟏, �̂�𝟏), (𝒄𝟐, �̂�𝟐), …, and let

𝝅 = (�̂�𝟎, 𝒊𝒏𝒊𝒕𝑳)
𝒄𝟏,𝒉𝟏
→ (�̂�𝟏, 𝒒𝟏𝑳)

𝒄𝟐,𝒉𝟐
→ (�̂�𝟐, 𝒒𝟐𝑳)

𝒄𝟑,𝒉𝟑
→ … ,

be the respective path in the DLG 𝚪𝑮(𝓜, 𝑳) which originates in the node

(�̂�𝟎, 𝒊𝒏𝒊𝒕𝑳). Relying on Proposition 3 and taking into account the fact that 𝒒𝒊𝑳 =
𝜹𝑳(𝒊𝒏𝒊𝒕𝑳, 𝒄𝟏𝒄𝟐…𝒄𝒊) for every 𝒊, 𝒊 ≥ 𝟎, we may conclude that �̂�𝒊 ⊨𝟎 𝝍 holds for

every 𝒊 such that 𝒒𝒊𝑳 ∈ 𝑭. By induction hypothesis, �̂�𝒊 ⊨𝟎 𝝍 is equivalent to 𝝍 ∈
𝒍𝒂𝒃𝒆𝒍(�̂�𝒊). Therefore, by definition of DLG 𝚪𝑮(𝓜, 𝑳) the path 𝝅 is the infinite path

which is entirely contained in the 𝚪𝑮
′(𝓜, 𝑳). Due to the finiteness of 𝚪𝑮

′ (𝓜, 𝑳), this

path may be represented as a concatenation 𝝅 = 𝝅𝟏𝝅𝟐, where 𝝅𝟏 is a finite path,

and 𝝅𝟐 is an infinite path passing through each of its nodes infinitely often. It is

clear that the set 𝑽(𝝅𝟐) of all nodes of 𝝅𝟐 is included in some strongly connected

component. Thus, a nontrivial strongly connected component is reachable from the

node (�̂�𝟎, 𝒊𝒏𝒊𝒕𝑳) in DLG 𝚪𝑮
′ (𝓜, 𝑳).

(⇐) Suppose, that a nontrivial strongly connected component is reachable from the

node (�̂�𝟎, 𝒊𝒏𝒊𝒕𝑳) in DLG 𝚪𝑮
′ (𝓜, 𝑳). Then there exists an infinite path

𝝅 = (�̂�𝟎, 𝒊𝒏𝒊𝒕𝑳)
𝒄𝟏,𝒉𝟏
→ (�̂�𝟏, 𝒒𝟏𝑳)

𝒄𝟐,𝒉𝟐
→ (�̂�𝟐, 𝒒𝟐𝑳)

𝒄𝟑,𝒉𝟑
→ … ,

 in 𝚪𝑮
′ (𝓜, 𝑳) from the node (�̂�𝟎, 𝒊𝒏𝒊𝒕𝑳) Consider now the sequence of the first

components �̂�𝒊 of all nodes (�̂�𝒊, 𝒒𝒊𝑳), 𝒊 ≥ 𝟎, occurred in this path. By the definition

of the DLG 𝚪𝑮
′ (𝓜, 𝑳),

1. this sequence is a metatrajectory 𝑡�̂� in the checking machine ℳ,

2. 𝜓 ∈ 𝑙𝑎𝑏𝑒𝑙(�̂�𝑖) holds for every node (�̂�𝑖 , 𝑞𝑖𝐿) such that 𝑞𝑖𝐿 ∈ 𝐹𝐿.

By the induction hypothesis, the latter implies �̂�𝑖 ⊨0 𝜓 for every metastate �̂�𝑖 in this

trajectory such that 𝑐1𝑐2…𝑐𝑖 ∈ 𝐿. Consider an arbitrary state 𝑑0 ∈ 𝐷�̂�0 and a

Гнатенко А.Р., Захаров В.А. О верификации конечных автоматов-преобразователей над полугруппами. Труды

ИСП РАН, том 30, вып. 3, 2018 г., стр. 303-324

317

trajectory 𝑡𝑟 = (𝑑0, 𝛼) in 𝑀, where 𝛼 = (𝑐1, 𝑑1), (𝑐2, 𝑑2), …, which corresponds

to 𝑡�̂�. By definition of ⊨0 and Proposition 3, 𝑀, 𝑑𝑖 ⊨ 𝜓 holds for every 𝑖 such that

𝑐1𝑐2…𝑐𝑖 ∈ 𝐿. Then, according to the semantics of 𝓛𝓟-𝑪𝑻𝑳∗, 𝑀, 𝑡𝑟 ⊨ 𝐆𝐿𝜓, and,

hence, 𝑀, 𝑑0 ⊨ 𝐄𝐆𝐿𝜓. Thus, by referring once again to definition of ⊨0, we arrive

at the conclusion that �̂�0 ⊨0 𝐄𝐆𝐿𝜓. ∎

Now we estimate the complexity of the model checking algorithm for 𝓛𝓟-𝑪𝑻𝑳

described above. By the size of a transducer 𝚷 = (𝑸, 𝓒,𝓐, 𝒒𝒊𝒏𝒊𝒕, 𝑻) we will mean

the sum ∥ 𝜫 ∥= |𝑸| + |𝑻|. The size of a formula 𝝋 is defined as follows. Suppose

that basic predicates {𝑷𝒊}𝒊=𝟏
𝒌 occurred in 𝝋 are recognized by minimal DFAs

{𝑨𝑷𝒊 = 𝑸𝑷𝒊 ,𝓐, 𝒊𝒏𝒊𝒕𝑷𝒊 , 𝜹𝑷𝒊 , 𝑭𝑷𝒊)}𝒊=𝟏
𝒌 . Suppose also that environment patterns

{𝑳𝒊}𝒊=𝟏
𝒔 used in 𝝋 are recognized by minimal

DFAs {𝐀𝐋𝐢 = (𝐐𝐋𝐢𝓐, 𝐢𝐧𝐢𝐭𝐋𝐢 , 𝛅𝐋𝐢 , 𝐅𝐋𝐢)}𝒊=𝟏
𝒔 . Then the size of 𝝋 is the sum ∥ 𝝋 ∥ =

|𝑺𝒖𝒃(𝝋)| + ∑ |𝒌
𝒊=𝟏 𝑸𝑷𝒊| + ∑ |𝒔

𝒊=𝟏 𝑸𝑳𝒊|.

As it can be seen from the description of our model checking algorithm, the size of

auxiliary graphs 𝚪𝑼
′ (𝓜, 𝑳) and 𝚪𝑮

′ (𝓜, 𝑳) used in this algorithm does not exceed the

value ∥ 𝜫 ∥⋅ (∏

𝒊=𝟎
𝒌
|𝑸𝑷𝒊|) ⋅ 𝐦𝐚𝐱(|𝑸𝑳𝒊|: 𝟏 ≤ 𝒊 ≤ 𝒔). These graphs are processed in no

more than |𝑺𝒖𝒃(𝝋)| steps. So, the total time complexity of our model checking

algorithm does not exceed the value ∥ 𝜫 ∥⋅ |𝑺𝒖𝒃(𝝋)| (∏

𝒊=𝟎
𝒌
|𝑸𝑷𝒊|) ⋅ 𝐦𝐚𝐱(|𝑸𝑳𝒊|: 𝟏 ≤

𝒊 ≤ 𝒔) which is 𝑶(∥ 𝜫 ∥⋅ 𝟐∥𝝋∥).

Because of these considerations, we get the following

Theorem 1. Model checking of a finite state transducer 𝜫 operating over a free

monoid against a formula 𝝋 ∈ 𝓛𝓟-𝑪𝑻𝑳 can be performed in time 𝑶(∥ 𝜫 ∥⋅ 𝟐∥𝝋∥).

When a more general case of model checking problem of FSTs against 𝓛𝓟-𝑪𝑻𝑳∗
formulae is concerned we can rely on the well-known combining approach which is

based on the interleaving application of model checking algorithms for 𝑪𝑻𝑳

and 𝑳𝑻𝑳. The details can be found in [8]. The similar procedure for 𝓛𝓟-𝑪𝑻𝑳∗ can

be obtained in the same fashion by means of 𝓛𝓟-𝑪𝑻𝑳 model checking algorithm

described above and 𝓛𝓟-𝑳𝑻𝑳 model checking algorithm developed in . Since this

approach does not take into account any specific features of 𝓛𝓟-𝑪𝑻𝑳∗ formulae, we

will not give a complete description of it.

5. 𝓛𝓟-𝑳𝑻𝑳∗ and ordinary Kripke structures

In this section, we consider the model checking problem for two subfamilies of

𝓛𝓟-𝑪𝑻𝑳∗ whose semantics can be defined on ordinary Kripke structures.

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

318

Recall, that a Kripke structure over a finite set 𝑨𝑷 of atomic propositions is a

quadruple 𝑴 = (𝑸, 𝒒𝒊𝒏𝒊𝒕, 𝑹, 𝝆), where 𝑸 is a finite set of states which includes an

initial state 𝒒𝒊𝒏𝒊𝒕, 𝑹 ⊆ 𝑸 × 𝑸 is a transition relation and 𝝆:𝑸 → 𝟐𝑨𝑷 is a labeling

function which for each state 𝒒 gives a matching set 𝝆(𝒒) ⊆ 𝑨𝑷 of all atomic

propositions that are evaluated to 𝒕𝒓𝒖𝒆 in this state. As usual, the size of 𝑴 is the

sum ∥ 𝑴 ∥= |𝑸| + |𝑹|. Below we present two modifications of 𝓛𝓟-𝑪𝑻𝑳∗ that are

well suited for model checking of Kripke structures.

Given a Kripke structure 𝑴 = (𝑸, 𝒒𝒊𝒏𝒊𝒕, 𝑹, 𝑳), consider a set of 𝓛𝓟-𝑪𝑻𝑳∗ formulae

where 𝓛is a family of regular languages over one-letter alphabet {𝒄} and 𝓟 = 𝑨𝑷

(we denote this formulae by 𝓛𝓟-1-𝑪𝑻𝑳∗) and a transition system 𝑴𝒄 =
(𝑸, {𝒄}, 𝒒𝒊𝒏𝒊𝒕, 𝑹𝒄, 𝑳) where (𝒒′, 𝒄, 𝒒″) ∈ 𝑹𝒄 iff (𝒒′, 𝒒″) ∈ 𝑹. Then for 𝒒 ∈ 𝑸 the

relation 𝒒 ⊨ 𝑷 holds iff 𝑷 ∈ 𝝆(𝒒). The semantics of more complex formulae is

defined exactly as in Section 3.

Some 𝓛𝓟-1-𝑪𝑻𝑳∗ formulae have an ability to keep track of the number of steps of

the run. For example, an 𝓛𝓟-1-𝑳𝑻𝑳 formula 𝐀𝐆𝑳  𝝋, where 𝑳 = {𝒄𝟐𝒏} is a regular

language which contains all 1-letter words of even length, expresses the assertion

that 𝝋 holds at every even step of a run. By using the techniques of Ehrenfeucht-

Fraisse games for Temporal Logics developed and studied in [11] one can prove

that this property cannot be specified by means of usual 𝑳𝑻𝑳. This certifies that 𝓛𝓟-

1-𝑪𝑻𝑳∗ is more expressive than 𝑪𝑻𝑳∗ and justifies its use as a new specification

language for finite state transducers and Kripke structures.

Observe, that given a set 𝑨𝑷 of all atomic propositions used in formulae we can use

the 𝑴𝒄 directly as a checking machine 𝓜 for the algorithm described in Section 4.

Suppose that formula 𝝋 refers to 1-letter regular languages 𝑳𝟏, 𝑳𝟐, … , 𝑳𝒔 as the

parameters of temporal operators, and every language 𝑳𝒊, 𝟏 ≤ 𝒊 ≤ 𝒔, is recognized

by a DFA with a set of states 𝑸𝑳𝒊. Then the size of the graphs used in this algorithm

does not exceed the value ∥ 𝑴 ∥⋅ 𝐦𝐚𝐱(|𝑸𝑳𝒊|: 𝟏 ≤ 𝒊 ≤ 𝒔) which is 𝑶(∥ 𝑴 ∥⋅∥ 𝝋 ∥),

where ∥ 𝝋 ∥= |𝑺𝒖𝒃(𝝋)| + ∑ |𝒔
𝒊=𝟎 𝑸𝑳𝒊|.

Another modification of the Kripke structure 𝑴 allows one to encode more detailed

information of the computation flow. Let 𝜮 = 𝟐𝑨𝑷. For each state 𝒒 in 𝑴 there

exists a letter 𝝈𝝆(𝒒) ∈ 𝜮 corresponding to the label 𝝆(𝒒) assigned to this state.

Let 𝑴𝑨𝑷 = (𝑸 ∪ {𝒆𝒓𝒓}, 𝒒𝒊𝒏𝒊𝒕, 𝑹𝑨𝑷, 𝝆𝑨𝑷) be a transition system for 𝑴, where for

every 𝒒 ∈ 𝑸 the following equalities hold: 𝝆𝑨𝑷(𝒒) = 𝝆(𝒒), 𝝆𝑨𝑷(𝒆𝒓𝒓) = {𝒆𝒓𝒓}
and 𝑹𝑨𝑷 ⊆ 𝑸 × 𝟐𝑨𝑷 × 𝑸 is a minimal transition relation such that:

 for each transition (𝑞′, 𝑞″) of the Kripke structure 𝑀 there exists a fair

transition (𝑞′, 𝜎𝜌(𝑞″), 𝑞″) and erroneous transitions (𝑞′, 𝜎, 𝑒𝑟𝑟) for each

𝜎 ≠ 𝜎𝜌(𝑞″);

 (𝑒𝑟𝑟, 𝜎, 𝑒𝑟𝑟) ∈ 𝑅𝐴𝑃 holds for each 𝜎 ∈ 𝛴 and (𝑒𝑟𝑟, 𝜎, 𝑞) ∉ 𝑅𝐴𝑃 holds for each

𝑞 ≠ 𝑒𝑟𝑟.

Then consider a specification language 𝓛𝓟-𝒏-𝑪𝑻𝑳∗ which is a set of all such

formulae where ℒ is a family of regular languages over 𝛴 and 𝒫 = AP. To model

Гнатенко А.Р., Захаров В.А. О верификации конечных автоматов-преобразователей над полугруппами. Труды

ИСП РАН, том 30, вып. 3, 2018 г., стр. 303-324

319

check a transition system 𝑀𝐴𝑃 against these formulae one needs to process only the

states in 𝑄 and only the fair transitions. To do so, we replace all state formulae of

type 𝐀𝜑 with 𝑨(𝑮 ¬ 𝑒𝑟𝑟 ⟶ 𝜑) and all state formulae of type 𝑬𝜑 with

𝑬(𝑮 ¬ 𝑒𝑟𝑟 ∧ 𝜑). The transition system 𝑀𝐴𝑃 thus obtained may as well be used as a

checking machine for the model checking algorithm described in Section 4.

Thereby, the following theorem holds.

Theorem 2.

1. There exists an algorithm for model checking of a Kripke structure 𝑀 against

a formula 𝜑 ∈ 𝓛𝓟-1-𝑪𝑻𝑳 with time complexity 𝑂(∥ 𝑀 ∥⋅∥ 𝜑 ∥2).

2. There exists an algorithm for model checking of a Kripke structure 𝑀 against

a formula 𝜑 ∈ 𝓛𝓟-n-𝑪𝑻𝑳 with time complexity 𝑂(∥ 𝑀 ∥⋅∥ 𝜑 ∥2⋅ 2|𝐴𝑃|).

As it can be seen from this theorem, the exponential complexity of model checking

procedure described in Section 4 is due to the language-theoretic nature of basic

predicates used in 𝓛𝓟-𝑪𝑻𝑳∗.

6. Related papers and conclusion

Actually, the idea of providing parameterization of temporal operators is not new. In

[27] right-linear grammar patterns were offered to define new temporal operators.

The same kind of temporal patterns but specified by means of finite state automata

were introduced in [18, 24]. For these extensions it was proved that they have the

same expressiveness as S𝟏S and that satisfiability checking problem in these logics

is PSPACE-complete. We did not pursue a goal of merely expanding the expressive

possibilities of 𝑪𝑻𝑳∗; our aim was to make 𝑪𝑻𝑳∗ more adequate for describing the

behaviour of reactive systems. Almost the same kind of parametrization is used in

Dynamic LTL. However, our extension of 𝑪𝑻𝑳∗ differs from that which was

developed in [14], since in our logic basic predicates are also parameterized.

The 𝓛𝓟-𝑪𝑻𝑳∗ formulae allows one to specify and verify the behaviour of finite

state transducers that operate over semigroups as well as classical Kripke structures.

Moreover, when Kripke structures are concerned 𝓛𝓟-𝑪𝑻𝑳∗ has more expressive

power than conventional temporal logics. But the place of 𝓛𝓟-𝑪𝑻𝑳∗ in the

expressive hierarchy of specification languages, such as S1S, PDL or 𝝁-calculus,

has not yet been established and remains a matter for our further research.

The results of this paper combined with the results of [17] provide positive solution

to model checking for transducers over free semigroups. Free semigroups is the

most simple algebraic structure which can be used for interpretation of basic actions

performed by transducers when they are regarded as formal models of sequential

reactive systems. Next, we are going to find out whether model checking algorithms

could be built for transducers operating over more specific semigroups. Some

preliminary results showed that this is not an easy problem. In [12] we proved that it

is undecidable for the case of Abelian groups and free commutative semigroups.

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

320

It is also interesting how much the complexity of model checking algorithms for

𝓛𝓟-𝑪𝑻𝑳∗ depends on languages that are used as parameters of temporal operators.

We assume that model checking problem becomes undecidable when context-free

languages are allowed for this purpose. The complexity issues of model checking

for regular variant of 𝓛𝓟-𝑪𝑻𝑳∗ also need further research. We assume that even for

regular 𝓛𝓟-𝑪𝑻𝑳 this problem is PSPACE-complete.

As for practical application of the results obtained, the most important issue is that

of adapting the existing means of working with finite automata to widely known

model checking tools (like SPIN, 𝝂-SMV, etc.) in order to be able to effectively

implement the proposed model checking algorithms for 𝓛𝓟-𝑪𝑻𝑳∗.

Acknowledgments

The authors of the article thank the anonymous reviewers for their valuable

comments and advice on improving the article. This work was supported by the

Russian Foundation for Basic Research, Grant N 18-01-00854.

References
[1]. Alur R., Cerny P. Streaming transducers for algorithmic verification of single-pass list-

processing programs. In Proceedings of 38-th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, 2011, pp. 599-610

[2]. Alur R., Moarref S., and Topcu U. Pattern-based refinement of assume-guarantee

specifications in reactive synthesis. In Proceedings of 21-st International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, 2015, pp. 501-516.

[3]. Baier C., Katoen J. Principles of Model Checking, 2008, MIT Press.

[4]. Blattner M., Head T. The decidability of equivalence for deterministic finite transducers.

Journal of Computer and System Sciences, 1979, vol. 1, pp. 45-49.

[5]. Blattner M., T. Head T. Single-valued a-transducers. Journal of Computer and System

Sciences, vol. 15, 1977, pp. 310-327.

[6]. Culik K, Karhumaki J. The equivalence of finite-valued transducers (on HDTOL

languages) is decidable. Theoretical Computer Science, 1986, vol. 47, pp. 71-84.

[7]. Bouajjani A., Jonsson B., Nilsson M., Touili T. Regular Model Checking. Proceedings

of 12-th International Conference on Computer Aided Verification, 2000, p. 403-418.

[8]. Clarke (Jr.) E. M., Grumberg O., Peled D. A. Model Checking. MIT Press, 1999.

[9]. Diekert V., Rozenberg G. eds. The Book of Traces, 1995, World Scientific, Singapore.

[10]. Emerson E.A., Halpern J.Y. Decision procedures and expressiveness in the temporal

logic of branching time. Journal of Computer and System Sciences, vol. 30, N 1, 1985,

pp. 1–24.

[11]. Etessami K., WilkeT. An Until Hierarchy and Other Applications of and Ehrenfeucht-

Fraisse Game for Temporal Logic. Information and Computation, vol. 160, 2000, pp.

88-108.

[12]. Gnatenko A.R., Zakharov V. A. On the complexity of verification of finite state

machines over commutative semigroups. In Proceedings of the 18-th International

Conference "Problems of Theoretical Cybernetics'', 2017, pp. 68-70 (in Russian).

Гнатенко А.Р., Захаров В.А. О верификации конечных автоматов-преобразователей над полугруппами. Труды

ИСП РАН, том 30, вып. 3, 2018 г., стр. 303-324

321

[13]. Griffiths T. The unsolvability of the equivalence problem for free nondeterministic

generalized machines. Journal of the ACM, vol. 15, 1968, pp. 409-413.

[14]. HenriksenJ. G., Thiagarajan P.S. Dynamic linear time temporal logic. Annals of Pure

and Applied Logic, vol. 96, 1999, pp.187-207.

[15]. Hu Q., D'Antoni L. Automatic Program Inversion using Symbolic Transducers. In

Proceedings of the 38-th ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2017, pp. 376-389.

[16]. Ibarra O. The unsolvability of the equivalence problem for Efree NGSM’s with unary

input (output) alphabet and applications. SIAM Journal on Computing, vol. 4, 1978, pp.

524-532.

[17]. Kozlova D. G., Zakharov V. A. On the model checking of sequential reactive systems.

Proceedings of the25-th International Workshop on Concurrency, Specification and

Programming (CS&P 2016), CEUR Workshop Proceedings, vol. 1698, 2016, pp. 233-

244.

[18]. Kupferman O., Piterman N., Vardi M.Y. Extended Temporal Logic Revisited. In

Proceedings of 12-th International Conference on Concurrency Theory, 2001, pp. 519-

535.

[19]. Schutzenberger M. P. Sur les relations rationnelles. In Proceedings of Conference on

Automata Theory and Formal Languages, 1975, pp. 209-213.

[20]. Sakarovitch J., de Souza R. On the decomposition of k-valued rational relations. In

Proceedings of 25-th International Symposium on Theoretical Aspects of Computer

Science, 2008, pp. 621-632.

[21]. Sakarovitch J., de Souza R. On the decidability of bounded valuedness for transducers.

In Proceedings of the 33-rd International Symposium on Mathematical Foundations of

Computer Science, 2008, pp. 588-600.

[22]. De Souza R. On the decidability of the equivalence for k-valued transducers. In

Proceedings of 12-th International Conference on Developments in Language Theory,

2008, pp. 252-263.

[23]. Thakkar J., Kanade A., Alur R. A transducer-based algorithmic verification of

retransmission protocols over noisy channels. In Proceedings of IFIP Joint International

Conference on Formal Techniques for Distributed Systems, 2013, pp. 209-224.

[24]. Vardi M.Y., Wolper P. Yet Another Process Logic. Logic of Programs, 1983, pp. 501-

512.

[25]. Veanes M., Hooimeijer P., Livshits B. et al. Symbolic finite state transducers:

algorithms and applications. In Proceedings of the 39-th ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, ACM SIGPLAN Notices, vol.

147, 2012, pp. 137-150.

[26]. Weber A. Decomposing finite-valued transducers and deciding their equivalence. SIAM

Journal on Computing. vol. 22, 1993, pp. 175-202.

[27]. Wolper P. Temporal Logic Can Be More Expressive. Information and Control, vol. 56,

N 1/2, 1983, pp. 72-99.

[28]. Wolper P., Boigelot B. Verifying systems with infinite but regular state spaces. In

Proceedings of the 10-th Int. Conf. on Computer Aided Verification (CAV-1998), 1998,

pp. 88-97.

[29]. Zakharov V.A. Equivalence checking problem for finite state transducers over

semigroups. In Proceedings of the~6-th International Conference on Algebraic

Informatics (CAI-2015), 2015, pp. 208-221.

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

322

О верификации конечных автоматов-преобразователей
над полугруппами

1
А.Р. Гнатенко<gnatenko.cmc@gmail.com>

2
В.А. Захаров<zakh@cs.msu.su>

1
Московский государственный университет им. М. В. Ломоносова,

119991, Российская Федерация, Москва, Ленинские горы, д. 1

2
Национальный исследовательский университет Высшая школа экономики,

101000, Российская Федерация, Москва, ул. Мясницкая, д. 20

Аннотация. Последовательные реагирующие системы – это программы,

которые взаимодействуют с окружением, получая от него сигналы или запросы,

и реагируют на эти запросы, проводя операции с данными. Подобные системы

могут служить моделью для многих программ: драйверов, систем реального

времени, сетевых протоколов и др. В статье исследуются задача

верификации программ такого вида. В качестве формальных моделей для

реагирующих систем мы используем конечные автоматы-преобразователи,

работающие над полугруппами. Для описания поведения

автоматов-преобразователей введён новый язык спецификаций LP-CTL*. В его

основу положена темпоральная логика CTL*. Этот язык спецификаций имеет

две характерные особенности: 1) каждый темпоральный оператор снабжён

регулярным выражением над входным алфавитом автомата, и 2) каждое

атомарное высказывание задается регулярным выражением над выходным

алфавитом автомата-преобразователя. В данной работе представлен

табличный алгоритм проверки выполнимости формул LP-CTL* на моделях

конечных автоматов-преобразователей, работающих над свободными

полугруппами. Доказана корректность предложенного алгоритма и получена

оценка его сложности. Кроме того, рассмотрен специальный фрагмент языка

LP-CTL*, содержащий в качестве параметров темпоральных операторов

только регулярные выражения над однобуквенным алфавитом. Показано, что

этот фрагмента применим для спецификаций обычных моделей Крипке, и при этом его

выразительные возможности превосходят обычную логику CTL*.

Ключевые слова: реагирующая система, автомат-преобразователь, верификация,

проверка на модели, темпоральная логика, конечный автомат, регулярный язык.

DOI: 10.15514/ISPRAS-2018-30(3)-21

Для цитирования: Гнатенко А.Р., Захаров В.А. О верификации конечных автоматов-

преобразователей над полугруппами. Труды ИСП РАН, том 30, вып. 3, 2018 г., стр.

303-324 (на английском языке). DOI: 10.15514/ISPRAS-2018-30(3)-21

Список литературы
[1]. Alur R., Cerny P. Streaming transducers for algorithmic verification of single-pass list-

processing programs. In Proceedings of 38-th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, 2011, pp. 599-610

Гнатенко А.Р., Захаров В.А. О верификации конечных автоматов-преобразователей над полугруппами. Труды

ИСП РАН, том 30, вып. 3, 2018 г., стр. 303-324

323

[2]. Alur R., Moarref S., and Topcu U. Pattern-based refinement of assume-guarantee

specifications in reactive synthesis. In Proceedings of 21-st International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, 2015, pp. 501-516.

[3]. Baier C., Katoen J. Principles of Model Checking, 2008, MIT Press.

[4]. Blattner M., Head T. The decidability of equivalence for deterministic finite transducers.

Journal of Computer and System Sciences, 1979, vol. 1, pp. 45-49.

[5]. Blattner M., T. Head T. Single-valued a-transducers. Journal of Computer and System

Sciences, vol. 15, 1977, pp. 310-327.

[6]. Culik K, Karhumaki J. The equivalence of finite-valued transducers (on HDTOL

languages) is decidable. Theoretical Computer Science, 1986, vol. 47, pp. 71-84.

[7]. Bouajjani A., Jonsson B., Nilsson M., Touili T. Regular Model Checking. Proceedings

of 12-th International Conference on Computer Aided Verification, 2000, p. 403-418.

[8]. Clarke (Jr.) E. M., Grumberg O., Peled D. A. Model Checking. MIT Press, 1999.

[9]. Diekert V., Rozenberg G. eds. The Book of Traces, 1995, World Scientific, Singapore.

[10]. Emerson E.A., Halpern J.Y. Decision procedures and expressiveness in the temporal

logic of branching time. Journal of Computer and System Sciences, vol. 30, N 1, 1985,

pp. 1–24.

[11]. Etessami K., WilkeT. An Until Hierarchy and Other Applications of and Ehrenfeucht-

Fraisse Game for Temporal Logic. Information and Computation, vol. 160, 2000, pp.

88-108.

[12]. Гнатенко А.Р., Захаров В.А. О сложности верификации конечных автоматов-

преобразователей над коммутативными полугруппами. Материалы XVIII

международной конференции «Проблемы теоретической кибернетики»' (Пенза,

20-24 июня, 2017), стр. 68-70.

[13]. Griffiths T. The unsolvability of the equivalence problem for free nondeterministic

generalized machines. Journal of the ACM, vol. 15, 1968, pp. 409-413.

[14]. HenriksenJ. G., Thiagarajan P.S. Dynamic linear time temporal logic. Annals of Pure

and Applied Logic, vol. 96, 1999, pp.187-207.

[15]. Hu Q., D'Antoni L. Automatic Program Inversion using Symbolic Transducers. In

Proceedings of the 38-th ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2017, pp. 376-389.

[16]. Ibarra O. The unsolvability of the equivalence problem for Efree NGSM’s with unary

input (output) alphabet and applications. SIAM Journal on Computing, vol. 4, 1978, pp.

524-532.

[17]. Kozlova D. G., Zakharov V. A. On the model checking of sequential reactive systems.

Proceedings of the25-th International Workshop on Concurrency, Specification and

Programming (CS&P 2016), CEUR Workshop Proceedings, vol. 1698, 2016, pp. 233-

244.

[18]. Kupferman O., Piterman N., Vardi M.Y. Extended Temporal Logic Revisited. In

Proceedings of 12-th International Conference on Concurrency Theory, 2001, pp. 519-

535.

[19]. Schutzenberger M. P. Sur les relations rationnelles. In Proceedings of Conference on

Automata Theory and Formal Languages, 1975, pp. 209-213.

[20]. Sakarovitch J., de Souza R. On the decomposition of k-valued rational relations. In

Proceedings of 25-th International Symposium on Theoretical Aspects of Computer

Science, 2008, pp. 621-632.

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

324

[21]. Sakarovitch J., de Souza R. On the decidability of bounded valuedness for transducers.

In Proceedings of the 33-rd International Symposium on Mathematical Foundations of

Computer Science, 2008, pp. 588-600.

[22]. De Souza R. On the decidability of the equivalence for k-valued transducers. In

Proceedings of 12-th International Conference on Developments in Language Theory,

2008, pp. 252-263.

[23]. Thakkar J., Kanade A., Alur R. A transducer-based algorithmic verification of

retransmission protocols over noisy channels. In Proceedings of IFIP Joint International

Conference on Formal Techniques for Distributed Systems, 2013, pp. 209-224.

[24]. Vardi M.Y., Wolper P. Yet Another Process Logic. Logic of Programs, 1983, pp. 501-

512.

[25]. Veanes M., Hooimeijer P., Livshits B. et al. Symbolic finite state transducers:

algorithms and applications. In Proceedings of the 39-th ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, ACM SIGPLAN Notices, vol.

147, 2012, pp. 137-150.

[26]. Weber A. Decomposing finite-valued transducers and deciding their equivalence. SIAM

Journal on Computing. vol. 22, 1993, pp. 175-202.

[27]. Wolper P. Temporal Logic Can Be More Expressive. Information and Control, vol. 56,

N 1/2, 1983, pp. 72-99.

[28]. Wolper P., Boigelot B. Verifying systems with infinite but regular state spaces. In

Proceedings of the 10-th Int. Conf. on Computer Aided Verification (CAV-1998), 1998,

pp. 88-97.

[29]. Zakharov V.A. Equivalence checking problem for finite state transducers over

semigroups. In Proceedings of the~6-th International Conference on Algebraic

Informatics (CAI-2015), 2015, pp. 208-221.

