On the verification of strictly deterministic
behavior of Timed Finite State Machines

E.M. Vinarskii <vinevg2015@gmail.com>
V.A. Zakharov <zakh@cs.msu.su>
Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia

Abstract. Finite State Machines (FSMs) are widely used as formal models for solving
numerous tasks in software engineering, VLSI design, development of telecommunication
systems, etc. To describe the behavior of a real-time system one could supply FSM model
with clocks — a continuous time parameters with real values. In a Timed FSM (TFSM)
inputs and outputs have timestamps, and each transition is equipped with a timed guard and
an output delay to indicate time interval when the transition is active and how much time
does it take to produce an output. A variety of algorithms for equivalence checking,
minimization and test generation were developed for TFSMs in many papers. A
distinguishing feature of TFSMs studied in these papers is that the order in which output
letters occur in an output timed word does not depend on their timestamps. We think that
such behavior of a TFSM is not realistic from the point of view of an outside observer. In this
paper we consider a more advanced and adequate TFSM functioning; in our model the order
in which outputs become visible to an outsider is determined not only by the order of inputs,
but also by de lays required for their processing. When the same sequence of transitions is
performed by a TFSM modified in a such way, the same outputs may follow in different
order depending on the time when corresponding inputs become available to the machine. A
TFSM s called strictly deterministic if every input timed word activates no more than one
sequence of transitions (trace) and for any input timed word which activates this trace the
letters in the output words always follows in the same order (but, maybe, with different
timestamps). We studied the problem of checking whether a behavior of an improved model
of TFSM s strictly deterministic. To this end we showed how to verify whether an arbitrary
given trace in a TFSM is steady, i.e. preserves the same order of output letters for every input
timed word which activates this trace. Further, having the criterion of trace steadiness, we
developed an exhaustive algorithm for checking the property of strict determinacy of TFSMs.
Exhaustive search in this case can hardly be avoided: we proved that determinacy checking
problem for our model of TFSM is co-NP-hard.

Keywords: Timed Finite State Machines; strictly deterministic behavior
DOI: 10.15514/1ISPRAS-2018-30(3)-22

For citation: Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic
behaviour of Timed Finite State Machines. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3,
2018, pp. 325-340. DOI: 10.15514/ISPRAS-2018-30(3)-22

325

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

1. Introduction

Finite State Machines (FSMs) are widely used as formal models for analysis and
synthesis of information processing systems in software engineering, VLSI design,
telecommunication, etc. The most attractive feature of this model of computation is
its simplicity — many important synthesis and analysis problems (equivalence
checking, minimization, test derivation, etc.) for classical FSMs can be solved in
time which is almost linear or quadratic of the size of an FSM under consideration.
The concept of FSM is rather flexible. Since in many applications time aspects such
as durations, delays, timeouts are very important, FSMs can be augmented with
some additional features to describe the dependence of the behavior of a system on
events occurring in real time. One of the most advanced timed extension of FSMs is
the concept of Timed Automata which was developed and studied in [1]. Timed
Automata are supplied with clocks (timers) for indicating real time moments,
measuring durations of events, providing timeout effects. Transitions in such
automata depends not only on the incoming of the outside messages and signals but
also on the values of clocks. Further research showed that this model of
computation is very expressive and captures many important features of real-time
systems behavior. On the other side, Timed Automata in the full scope of their
computing power are very hard for analysis and transformations. The reachability
problem for Timed Automata is decidable [2], and, therefore, this model of
computation is suitable for formal verification of real-time computer systems. But
many other problems such as universality, inclusion, determinability, etc. are
undecidable (see [2], [8]), and this hampers considerably formal analysis of Timed
Automata.

When a Timed Automaton is capable to selectively reset timers, it can display rather
sophisticated behavior which is very difficult for understanding and analysis. In
some cases, such ability is very important; see, e.g. [9]. But a great deal of real-time
programs and devices operate with timers much more simply: as soon as such a
device switches to a new mode of operation (new state), it resets all timers. Timed
Finite State Machines (TFSM) of this kind were studied in [5], [10], [13], [14].
TFSM has the only timer which it resets "automatically” as soon as it moves from
one state to another. On the other hand, TFSMs, in contrast to Timed Automata
introduced in [1], operate like transducers: they receive a sequence of input signals
augmented with their timestamps (input timed word) and output a sequence of
responses also labeled by timestamps (output timed word). The timestamps are real
numbers which indicate the time when an input signal becomes available to a TFSM
or an output response is generated. Transitions of a TFSM are equipped with time
guards to indicate time intervals when transitions are active. Therefore, a reaction of
a TFSM to an input signal depends not only on the signal but also on its timestamp.
Some algorithms for equivalence checking, minimization and test generation were
developed for TFSMs in [6], [5], [13], [14], [15]. It can be recognized that this
model of TFSM combines a sufficient expressive power for modeling a wide class
of real-time information processing systems and a developed algorithmic support.

326

Bunapcxkuit E.M., 3axapos B.A. K nposepke cTporo JIeTepMUHUPOBAHHOTO MOBEICHHS BPEMEHHBIX KOHEUHbBIX
aBTomatoB. Ipyosr UCII PAH, Tom 30, Bem. 3, 2018 1., cTp. 325-340

As it was noticed above a behavior of a TFSM is characterized by a pair sequences:
an input timed word and a corresponding output timed word. A distinguishing
feature of TFSMs studied in [5], [10], [13], [14], [15] is that an output timed word is
formed of timestamped output letters that follows in the same order as the
corresponding input letters regardless of their timestamps. Meanwhile, suppose that
a user of some file management system gives a command «Save» and immediately
after that a command «Exity». Then if a file to be saved is small then the user will
observe first a response «File is saved» and then a notification «File Management
System is closed». But if a file has a considerable size then it takes a lot of time to
close it. Therefore, it can happen that a user will detect first a notification «File
Management System is closed» and then, some time later, he/she will be surprised
to find an announcement «File is saved». Of course, the user may regard such
behavior of the system enigmatic. But much worse if the order in which these
notifications appear may vary in different sessions of the system. If a File
Management System interacts with other service programs such an interaction will
almost certainly lead to errors. However, if a behavior of TFSMs is defined as in the
papers referred above then such a model can not adequately capture behavioral
defects of real-time systems, similar to the one that was considered in the example.
To avoid this shortcoming of conventional TFSMs and to make their behavior more
“realistic” from the point of view of an outside observer we offer some technical
change to this model. We will assume that an output timed word consists of
timestamped letters, and these letters always follow in ascending order of their
timestamps regardless of an order in which the corresponding input letters entered a
TFSM. In this model it may happen so that an input b follows an input a but a
response to b appears before a response to a is computed. Clearly, the defect with
File Management System discussed above becomes visible to an outside observer
“through” the model of TFSMs thus modified.

At first sight, it may seem that this change only slightly complicates the analysis of
the behavior of such models. But this is a false impression. In the initial model of
TFSM the formation of an output timed word is carried out by local means for each
state of the system. In our model this is a global task since to find the proper
position of a timestamped output letter one should consider the run of TFSM as a
whole. Therefore, even the problem of checking whether a behavior of an improved
model of TFSM is deterministic can not be solved as easy and straightforwardly as
in the case of the initial model of TFSM.

It should be noticed that the property of deterministic behavior is very important in
theory real-time machines. As it was said above, universality, inclusion and
equivalence checking problems are undecidable for Timed Automata in general case
[2] but all these problems have been shown to be decidable for deterministic Timed
Automata [3], [11]. However, testing whether a Timed Automaton is determinable
has been proved undecidable [8]. Understanding and coping with these weaknesses
have attracted lots of research, and classes of timed automata have been exhibited,
that can be effectively determinized [3], [12]. A generic construction that is

327

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

applicable to every Timed Automaton, and which, under certain conditions, yields a
deterministic Timed Automaton, which is language-equivalent to the original timed
automaton, has been developed in [4].

We studied the determinacy checking problem for improved TFSMs and present the
results of our research in this paper. First, we offer a criterion to determine whether
a given sequence of transition (trace) in a TFSM is steady, i.e. for any input timed
word which activates this trace the letters of output words always follow in the same
order (but, maybe, with different timestamps). Then, using this criterion we
developed an exhaustive algorithm for checking the property of strict determinacy
of TFSMs. This property means that every input timed word activates no more than
one trace and all traces in a TFSM are steady. Exhaustive search, although been
time consuming, can hardly be avoided in this case: we proved that determinacy
checking problem for improved version of TFSMs is co-NP-hard by polynomially
reducing to its complement the subset-sum problem [7] which is known to be NP-
complete.

The structure of the paper is as follows. In Section Il we define the basic notions
and introduce an improved concept of TFSM (or, it would be better said, a concept
of TFSM with an improved behavior). In Section Il we present necessary and
sufficient conditions for steadiness of traces in a TFSM and show how to use this
criterion to check whether a given TFSM s strictly deterministic. Section IV
contains the results on the complexity of checking the properties of strictly
deterministic behavior of TFSM. In the Conclusion we briefly outline the
consequences of our results and topics for further research.

2. Formatting overview

Consider two non-empty finite alphabets I and O; the alphabet I is an input alphabet
and the alphabet O is an output alphabet. The letters from I can be regarded as
control signals received by some real-time computing system, whereas the letters
from O may be viewed as responses (actions) generated by the system. A finite
sequence w = iy, iy, ..., I, Of input letters is called an input word, whereas a
sequence z = o4, 04, ..., 0, Of output letters is called an output word. As usual, the
time domain is represented by the set of non-negative reals RY. The set of all
positive real numbers will be denoted by R*. When such a system receives a control
signal (a letter i) its output depends not only on the input signal i but also on

e acurrent internal state of the system,

e atime instance when i becomes available to a system, and

e time required to process the input (output delay).

These aspects of real-time behavior can be formalized with the help of timestamps,
time guards and delays. A timestamp as well as a delay is a real number from R*. A
timestamp indicates a time instance when the system receives an input signal or
generates a response to it. A delay is time the system needs to generate an output
response after receiving an input signal. A time guard is an interval g = (u, v),

328

Bunapcxkuit E.M., 3axapos B.A. K nposepke cTporo JIeTepMUHUPOBAHHOTO MOBEICHHS BPEMEHHBIX KOHEUHbBIX
aBTomatoB. Ipyosr UCII PAH, Tom 30, Bem. 3, 2018 1., cTp. 325-340

where (€ {([}, Y€ {),]}, and u,v are timestamps such that 0 < u < v. Time
intervals indicate the periods of time when transitions of a system are active for
processing input signals. As usual, the term time sequences is reserved for an
increasing sequence of timestamps. For the sake of simplicity we will deal only with
time guards of the form (u, v]: all the results obtained in this paper can be adapted
with minor changes to arbitrary time guards.

Let w = xq,%5,...x, and T = tq, t,, ..., t, be an input (output) word and a time
sequence, respectively, of the same length. Then a pair (w,t) is called a timed
word. Every pair of corresponding elements x; and t;, 1 < j < n, indicates that an
input signal (or an output response) x; appears at time instance t;. In order to make
this correspondence clearer we will often write timed words as sequences of pairs
(w, 1) = (iy, ty), (i, ty), ..., (i, t,) Whose components are input signals (or output
responses) and their timestamps.

A Finite State Machine (FSM) over the alphabets I and O is a triple M = (S, s;, p)
where S is a finite non-empty set of states, s;, is an initial state, p € (§ X I X 0 X
S) is a transition relation. A transition (s, i, 0, s") means that FSM M when being at
the state s and receiving an input signal i moves to the state s’ and generates the
output response o.

FSMs can not measure time and, therefore, they are unsuitable for modeling the
behavior of real-time systems. The authors of [1] proposed to equip FSMs with
clocks — variables which take non-negative real values. To manipulate with clocks
machines use reset instructions, timed guards and output delays. Time guards
indicate time intervals when transitions are active for processing input signals. An
output delay indicates how much time does it take to process an input. Thus, every
transition in such a machine is a quadruple
(input, timed guard, output, delay). Input signals and output responses are
accompanied by timestamps. If an input is marked by a timestamp which satisfies
the time guard then the transition fires, the machine moves to the next state and
generates the output. This output is marked by a timestamp which is equal to the
timestamp of the input plus the delay. For real-time machines of this kind usual
problems from automata theory (equivalence and containment checking,
minimization, etc.) may be set up and solved. The minimization problem for real-
time machines is very important, since the complexity of many analysis and
synthesis algorithms depend on the size of machines. In [14] this problem was
studied under the so called "slow environment assumption”: next input becomes
available only after an output response to the previous one is generated.

In this paper, we consider a more advanced real-time machine; in this model the
order in which outputs become visible to an outside observer is determined not only
by the order in which inputs follow, but also by the delay required for their
processing. When the same sequence of transitions is performed by such a machine
the same outputs may follow in different order depending on the arriving time of the
corresponding inputs. Our main goal is to develop equivalence checking and

329

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

minimization algorithms for real-time machines of this kind. But, as the results of
Automata Theory show, these problems may have efficient solution only for
deterministic machines. Thus, our first step toward the solution of these problems is
to find a way to check if the behavior of a machine is deterministic.

But there is also another reason to study the problem of checking the determinism of
the behavior of real-time machines. Unlike traditional discrete models of
computation, the behavior of real-time machines depends not only on the control
signals as such, but also on the time of their arrival. However, the latter factor has a
greater degree of uncertainty. In most cases, in practice, it is desirable to reduce the
effect of this uncertainty to a minimum. Therefore, the determinacy checking
problem for real-time machines can be considered as a special version of the
verification problem — checking that the time factor does not have an unforeseen
influence on the behavior of the system.

Formally, by Timed FSM (TFSM) over the alphabets I and O we mean a quadruple
M = (S8, s;,, G, p) where:

. Sisafinite non-empty set of states,

. S isaninitial state.

. Gisasetof timed guards,

. PES(SXIx0xSxGxR")isatransition relation.
A transition (s, i,0,s’, g, d) should be understood as follows. Suppose that TFSM
receives the input letter i marked by a timestamp t when being at the state s. If the

previous letter has been delivered to the TFSM at time ¢ suchthat At =t — ¢ € g
then the TFSM moves to the state s’ and outputs the letter o marked with the
timestamp t = t + d. When algorithmic and complexity issues of TFSM’s analysis
and synthesis are concerned then we assume that time guards and delays are rational
numbers, and the size of a TFSM is the length of a binary string which encodes all
transitions in the TFSM.

A trace tr in TFSM M is a sequence of transitions
(50, a1, b1, 51, (Ug,v1],d1),) (Sn—1, A, by, Sp, (U, v,], dy,), Where every state
sj, 0 <j <m, is an arrival state of one transition and a departure state of the next
transition. We say that the trace tr converts an input timed word

a=(ay,ty), (ayty), .., (a,t,) to the timed output word
ﬁ = (bjl,Tl), (biZ’TZ)’ . (bjn’ Tn), iff
. tj — tj—1 € (u;,v;] holds for all j,1 < i < n (itis assumed that t, = 0);

. B is such a permutation of the sequence y = (by, t; + dq), (by, t, +
dy), ..., (by, t,, + d,,) that the second components of the pairs 7, t,, ..., T,,
constitute a time sequence.

Clearly, for every trace tr and an input timed word « its conversion g (if any) is
determined uniquely; such a conversion will be denoted as conv(tr,). If

330

Bunapcxkuit E.M., 3axapos B.A. K nposepke cTporo JIeTepMUHUPOBAHHOTO MOBEICHHS BPEMEHHBIX KOHEUHbBIX
aBTomatoB. Ipyosr UCII PAH, Tom 30, Bem. 3, 2018 1., cTp. 325-340

conv(tr, a) is defined then we say that the input timed word « activates the trace
tr. We will say that the output word b; , b;,, ..., b;, is a plain response to the input
timed word « on the trace tr; it will be denoted as resp(tr, a).

1, (0.5, 2]/ (015 4) /\ i, (1.5, 2] /(025 3) /-\ i, (1,1.5]/ (o3, 1)

Fig.1 TFSM M
Consider, for example, a TFSM M depicted in Fig. 1 and a trace
tr = (Sg,i,51,01,(0.5,2],4),(s4,1,5;,0,,(1.5,2],3),

(s2,i,53,03,(1,1.5],1)
in this TESM. Then this trace

1. accepts an input timed word a; = (i, 1), (i, 2.7), (i,4.1) and converts it to the
output timed word B, = (04, 5), (03, 5.1), (04, 5.7); thus, the plain response of
M to @, isw; = 04,03, 0,;

2. accepts an input timed word a, = (i, 1.5), (i, 3.2), (i, 4.3) and converts it to
the output timed word S, = (05, 5.3), (04, 5.5), (0,, 6.2), and the plain
response of M to a, is w, = 03, 04, 0, Which is different from wy;

does not accept an input timed word a5 = (i, 2.3), (i, 4), (i, 6).

3. Steady traces and strictly deterministic TFSMs

As can be seen from the above example, a pair of input timed words that differ only
in timestamps of input signals may activate the same trace in a TFSM, although
plain responses of TFSM to these words are different. Generally speaking, there is
nothing unusual in this: in real-time models not only the input signals, but also the
values of timers influence a run of a model. Nevertheless, in many applications it is
critically important to be sure that the behavior of a real-time system is predictable:
once a system choose a mode of computation (i.e. a trace in TFSM) it will behave in
a similar way (i.e. give the same plain response) in all computations of this mode.
Traditionally, computer systems in which for any input data the processing mode is
uniquely determined by the system are called deterministic. But for our model of
real-time systems this requirement should be clarified and strengthened. For this
purpose, we introduce the notion of steady traces and the property of strict
determinacy of a real-time system.

A trace tr in TFSM M is called steady if resp(tr, a,) = resp(tr,a;) holds for
every pair of input timed words a4 and a, that activate tr. Thus, the order of the
output letters generated by a steady trace does not depend on the small deviations of
the timestamps of the input signals. A TFSM M = (S, s;,, G,p) is called
deterministic iff for every pair of transitions (s,iy,04,s’,(uy,v4],dy) and
(s,i3,05,8", (U, v5],dy) in p either iy #i,, or (uq,v1] N (Uy,vy] = 0. This
requirement means that every timestamped input letter can activate no more than

331

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

one transition from an arbitrary given state s. It also implies that every input timed
word can activate no more than one trace in M. A deterministic TFSM is called
strictly deterministic iff every initial trace in M which starts from the initial state s;,,
is steady. It is easy to see that TFSM, depicted in Fig. 1, is not strictly deterministic.

The Strict Determinacy Checking Problem (in what follows, SDCP) is that of
checking, given a TFSM, if it is strictly deterministic. It is easy to check whether a
TFSM is deterministic by considering one by one all pairs of transitions that emerge
from the same state. But local means alone are not enough to check whether a given
trace in a TFSM is steady. A simple criterion for steadiness of traces is presented as
a Theorem below.

Let a sequence of transitions

(SO' ilﬁ $1,01, (ulr 171), dl)' (N (sn—li in' Sn Ony (un' vn)' dn)
be atrace tr in a TFSM M. Then the following theorem holds.
Theorem 1. A trace tr is steady iff for all pairs of integers k,m such that 1 < k <
m < n at least one of the two inequalities dy — d,, < Xy, u; OF dy — d,, >
Yjmk+1V;j holds.
Proof. (=) Suppose that there exists a pair k,m such that 1 <k <m <n, and a
double inequality holds:

m m
Z uj<d,-d,< Z V.
j=k+1 j=k+1

Then we use two positive numbers r =d; —d,, — Yjlx 4 and & =£ and
consider a behaviour of a TFSM M in the input timed words

k k k m
a' = (i, vq), ""(i"’z v}), (ik“’z Vj+ Upyq +), ...,(im,z v + Z u; + ¢€),
j=1 j=1 j=1 j=k+1
k k+1 m
a’ = (il' 171), vy (ik,z 17]'), (ik+1, Z v]'), ey (im,z 17])
j=1 j=1 j=1

It is easy to see that both words activate tr.
The trace tr converts the timed input word a to the timed output word
conv(tr,a’) = -, (0, T'), ..., (01, T'1), ...
such that T'y, = ¥jC 1 vj + Xty 1 (U + €) + dyy, and T’y = ¥, v; + d. In this
timed output word, the output letter o, follows the output letter o,, since

’ ’ - r(m—k)
T~ T, =dy—dy, Z w+(m-ke=r-——" 250,

j=k+1

n

332

Bunapcxkuit E.M., 3axapos B.A. K nposepke cTporo JIeTepMUHUPOBAHHOTO MOBEICHHS BPEMEHHBIX KOHEUHbBIX
aBTomatoB. Ipyosr UCII PAH, Tom 30, Bem. 3, 2018 1., cTp. 325-340

Hence, resp(tr,a’) = -+, 0., ..., O, ...
On the other hand, the trace tr converts the timed input word a” to the timed output
word

conv(tr,a”) =, (0;, T"), o, (03, T"), ...
such that T", = 2}‘:1 vj+dgand T",, = Y121 vj + dyy,. In this timed output word
the output letter o,,, follows the output letter oy, since

m
T"m—T"kzdm—dkz Z VIZO
j=k+1
Therefore, resp(tr,a”) = -, 04, ..., 0, ...
Thus, we got evidence that the trace tr is not steady.
(<) Suppose that the trace tr is not steady. Then there exists a pair of timed input
words a' = (iq,t'1), ..., (ip, t'n) and a” = (iy, t"y), ..., (i, t",) such that both
words activate the trace tr and resp(tr,a’) # resp(tr, a"). Consequently, there
exists a pair of output letters o, and oy, such that
conv(tr,a’) =, (0, T's), e, (O, '), -
conv(tr,a”) =, (0, T"), s (01, T"1), v
Such permutation of output letters is possible iff the following inequalities hold
ty+d, =T, <T',,=t,+d,

t+dy =T, >T',=t", +d,,.
But since both input timed words a' and a” activate tr, we have the following
chain of inequalities:

m m
Z u <T' —T' <dpy—dp <T,, — Ty < Z v;.
j=k+1 j=k+1
Thus, if tr is not steady then there exists a pair of integers such that 1 < k <m <
n and

m m
Z u<dg—d,< Z v;
j=k+1 j=k+1
holds.
End proof.

Now, having the criterion for steadiness of traces, we can give a solution to SDCP
for TFSMs. Let TFSM M = (S, s;,,, G, p) be a deterministic TFSM. Denote by u,,in,
the greatest lower bound of all left boundaries used in the time guards of M. In our
model of TFSM u,,;;, > 0. Let d,,,;, and d,;, be the minimum and the maximum

333

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

output delays occurred in the transitions of M. A theorem below gives necessary
and sufficient conditions for the behaviour of M to be strictly deterministic.

Theorem 2. A deterministic TFSM M is strictly deterministic iff all its traces of
dmax dmm
length p, where p = [u—] are steady.

min

Proof. The necessity of conditions is obvious.

We prove the sufficiency of conditions by contradiction. Suppose that all traces of
length less or equal p are steady but TFSM M is not. Then there exists such a trace
tr in M which is not steady. Then, by Theorem 1, this trace is a sequence of
transitions (sj_q,i;, 55, bj, (W;,v5],d;),1 < j <mn, such that for some pair of
integers m and k where 1< k < m < n, two inequalities

m m
Z u<dy—d,< Z v;
j=k+1 j=k+1
hold. It should be noticed, that, by the same Theorem 1, the trace ¢r’ which
includes only the transitions (s;_4, ij, s;, bj, (W;, v;], d;), m < j < k, is not steady as

well. Hence, m — k > p, and we have the following sequence of inequalities
m

dmax_dmin 2 dm_dk 2 Z uj > P * Upin
j=k+1
which contradicts our choice of p = [M].
Umin
End of proof.

As it follows from Theorems 1 and 2, to guarantee that a given TFSM M =
(8,50, G, p) is strictly deterministic it is sufficient to consider all traces
(59, a1, by, 51, (U1, V1], d1), -, (Sn—1, An, by, Sp, (U, V], dy) In M, whose length

n does not exceed the value p = [Ld"”'"] defined in Theorem 2, and for every

Umin

such trace check that one of the inequalities dy —d,, < Yj_,u; or dy —d,, >
Yj=2 vj holds. Thus, we arrive at

Corollary 1. Strict Determinacy Checking Problem for TFSMs is decidable.

4. Strict Determinacy Checking Problem for TFESMs is co-NP-
hard

Clearly, the decision procedure, based on Theorem 2, is time consuming since p
may be exponential of the size of M and the number of traces of length p in TFSM
M is exponential of p. In this section we show that such an exhaustive search can
hardly be avoided because SDCP for improved version of TFSMs is co-NP-hard.

We are aimed to show that the complement of SDCP is NP-hard. To this end we
consider the Subset-Sum Problem (see [7]) which is known to be NP-complete and

334

Bunapcxkuit E.M., 3axapos B.A. K nposepke cTporo JIeTepMUHUPOBAHHOTO MOBEICHHS BPEMEHHBIX KOHEUHbBIX
aBTomatoB. Ipyosr UCII PAH, Tom 30, Bem. 3, 2018 1., cTp. 325-340

demonstrate that this problem can be reduced in polynomial time to the complement
of SDCP for TFSMs.

The Subset-Sum Problem (SSP) is that of checking, given a set of integers @ and an
integer L, whether there is any subset Q',Q' € Q, such that the sum of all its
elements is equal to L. More formally, the variant of the SSP we are interested in is
defined as follows. Let Q = m4, m,, ..., my be a sequence of positive integers, and
L be also a positive integer. A solution to (Q, L)-instance of SSP is a binary tuple
z = (04,0, ..., 0y) such that Z}"zl o;m; = L. In [7] it was proved that the problem
of checking the existence of a solution to a given (Q, L)-instance of SSP is NP-
complete.

0, (6, €]/(0, &)

0,(1,21/(0, L + D)

0, (6,€l/(0, D) Li{mp | —,mp_ +€]/(1,8)

Fig.2 TFSM M

Now, given a (Q, L)-instance of SSP, we show how to build a deterministic TFSM
My, such that it has an initial trace which is not strictly determined iff this instance
of SSP has a solution. Let D = Z}":l m;, and £ and & be positive rational numbers
such that £ = 0(1/N?) and & = o(g/N?). Consider a TFSM depicted in Fig. 2.
This machine operates over alphabets I =0 =1{0,1}. It has N+ 2 states
50,51, -»Sn Sy+1- The only transition (sg,0,0,s4,(1,2],L + D) leads from the
initial state so to s;. From each state s;,1<j <N, two transitions
(s, 1,1,8544,(m; —g,m; + €],8) and (s5;,0,0,s;,4,(8,£],6) lead to the state
Sj+1- The state sy is different: two transitions (sy, 1,1, sy, (my — &, my + €], D)
and (sy,0,0,sy.1, (8, €], D) lead this state to sy,q.

First, we make some observations.

1) Since all transitions outgoing from the states s;, 1 < j < N, have the same delay

&, every trace from a state s, to a state s,, where 0 < k < £ < N, is strictly
deterministic.

335

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

2) Since & = o(1/N*) and 0 < &£ = 0(1/N?), for every k,1<k <N, and a
binary tuple z = (o), 0441, --., Oy) the inequalities
N
§—-D<O0<NS< Z (0,(m; — &) + (1 — 5))6)
j=k+1
hold. By Theorem 1, this implies that every trace from a state s,, 1 < k < N, to the
state sy, is strictly deterministic.
3) For the same reason the inequalities

k k
D+L—8>ij + ks=2(6;(mi+€)+(1— j)€)
=1 =1

hold for every k,1 < k < N, and a binary tuple z = (a4, 6, ..., 0). By Theorem 1,
this guarantees that every initial trace leading to a state s,,1 < k < N is strictly
deterministic.

As for the initial traces that lead to the state sy, due to our choice of € and &, we
can trust the following chain of reasoning. By definition, a (@, L)-instance of SSP
has a solution z = (a4, 05, ..., o) iff Z}"zl o;m; = L. The latter is possible iff two

following inequalities hold:
N N

Zajmj—£+N6<L<Zaj(mj)+Ns (1)
j=1 j=1
By taking into account the relationships below
N N
D (o)amy =) + (1= 0)8) <) oym; — £+ N8
j=1 j=1
N N
Z o, (m;) + Ne = Z(a,(mj +&)+(1-0)e),
j=1 j=1

we can conclude that (1) holds iff another pair of inequalities hold:
N N
Z(a,-(m,- —e)+(1-0)8) <L< Z(aj(m,- +&)+(1-0)s)
j=1 j=1

But in the context of observations 1) — 3) above, the latter inequalities, as it follows
from Theorem 1, provide the necessary and sufficient conditions that the initial trace
in TFSM My, activated by the input word z = (g4,05,...,0y) is not strictly
deterministic.

Thus, a (Q,L)-instance of SSP has a solution iff TFSM M, is not strictly
deterministic.

The considerations above bring us to

Theorem 3. SDCP for TFSMs is co-NP-hard.

336

Bunapcxkuit E.M., 3axapos B.A. K nposepke cTporo JIeTepMUHUPOBAHHOTO MOBEICHHS BPEMEHHBIX KOHEUHbBIX
aBTomatoB. Ipyosr UCII PAH, Tom 30, Bem. 3, 2018 1., cTp. 325-340

5. Conclusion

The main contributions of this paper are

1. the development of a modified version of TFSM which, in our opinion,
provides a more adequate model of real-time computing systems;

2. the introduction of the notion of strict deterministic behaviour of TFSM
and setting up the Strict Determinacy Checking Problem (SDCP) for a
modified version of TFSMs;

3. the establishing of an effectively verifiable criterion for the strict
determinacy property of TFSMs;

4. the proving that SDCP for TFSMs is co-NP-hard.

However, some problems concerning strict deterministic behavior of TFSMs still

remain open. They will be topics for our further research.

1. In Sections [Sect3] and [Sect4] it was shown that SDCP for TFSMs is co-NP-
hard and in the worst case it can be solved in double exponential time by
means of a naive exhaustive searching algorithm based on Theorems 1 and 2.
We think that this complexity upper bound estimate is too much high. The
question arises, for what complexity class € SDCP for TFSMs is a &
complete problem. By some indications we assume that SDCP for TFSMs is
PSPACE-complete problem.

2. As it can be seen from the proof of Theorem 3, SDCP for TFSMs is
intractable only if timed parameters of transitions (time guards and delays)
depend on the number of states in TFSM. But this is not a typical
phenomenon in real-time systems since in practice the performance of
individual components of a system does not depend on the size of the system.
Therefore, it is reasonable to confine ourselves to considering only such
TFSMs, in which the time guards and the delays are chosen from some fixed
finite set. As it follows from Theorem 2, for this class of TFSMs SDCP is
decidable in polynomial time. One may wonder what is the degree of such a
polynomial, or, in other words, how efficiently the strict determinacy property
can be checked for TFSMs corresponded to real systems.

3. In the model of TFSM besides the usual transitions there are also possible
timeout transitions. A timeout transition fires when a timestamped input letter
(i,t) can not activate any usual transition from a current state. In it was
shown that in some cases such timeout transitions can not be replaced by any
combination of ordinary transitions. In the future we are going to study how
SDCP can be solved for TFSMs with timeouts.

Acknowledgments

The authors of the article express their deep gratitude to V.V. Podymov and the
anonymous reviewers for their valuable comments and advice on improving the
article. This work was supported by the Russian Foundation for Basic Research,
Grant N 18-01-00854.

337

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

References

[1].
2.

3].

[4].

[5].

[6].
[7].
(8]

[a].
[10].

[11].

[12].

[13].

[14].

[15].

338

Alur R., Dill D. A Theory of Timed Automata. Theoretical Computer Science, vol. 126,
1994, pp. 183-235.

Alur R., Madhusudan P. Decision Problems for Timed Automata: A Survey. In
Proceedings of the 4-th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems (SFM’04), 2004, pp. 1-24.

Alur R., Fix L., Henzinger Th. A. A Determinizable Class of Timed Automata. In
Proceedings of the 6-th International Conference on Computer Aided Verification
(CAV’94), 1994, p 1-13.

Baier C., Bertrand N., Bouyer P., Brihaye T. When are Timed Automata
Determinizable? In Proceedings of the 36-th International Colloquium on Automata,
Languages, and Programming (ICALP 2009), 2009, p. 43-54.

Bresolin D., El-Fakih K., Villa T., Yevtushenko N. Deterministic Timed Finite State
Machines: Equivalence Checking and Expressive Power. In Proceedings of the
International Conference GANDALF, 2014, p. 203-216.

Cardell-Oliver R. Conformance Tests for Real-Time Systems with Timed Automata
Specifications. Formal Aspects of Computing, vol. 12, no. 5, 2000, p. 350-371.

Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. 35.5: The subset-sum problem.
Introduction to Algorithms (2-nd ed.), 2001.

Finkel O. Undecidable Problems about Timed Automata. In Proceedings of 4th
International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS’06), 2006, p. 187-199.

Fletcher J. G., Watson R. W. Mechanism for Reliable Timer-Based Protocol. Computer
Networks, vol. 2, 1978, pp. 271-290.

Merayo M.G., Nuunez M., Rodriguez |. Formal Testing from Timed Finite State
Machines. Computer Networks, vol. 52, no 2, 2008, pp. 432-460.

Ouaknine J., Worrell J. On the Language Inclusion Problem for Timed Automata:
Closing a Decidability Gap. In Proceedings of the 19-th Annual Symposium on Logic in
Computer Science (LICS’04), 2004, pp. 54-63.

Suman P.V., Pandya P.K., Krishna S.N., Manasa L. Timed Automata with Integer
Resets: Language Inclusion and Expressiveness. In Proceedings of the 6-th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’08),
2008, pp. 78-92.

Tvardovskii A., Yevtushenko N. Minimizing Timed Finite State Machines. Tomsk State
University Journal of Control and Computer Science, No 4 (29), 2014, pp. 77-83 (in
Russian).

Tvardovskii A., Yevtushenko N., M. Gromov. Minimizing Finite State Machines with
Time Guards and Timeouts. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017,
pp. 139-154 (in Russian).

Zhigulin M., Yevtushenko N., Maag S., Cavalli A. FSM-Based Test Derivation
Strategies for Systems with Timeouts. In Proceedings of the 11-th International
Conference on Quality Software, 2011, p. 141-149.

Bunapcxkuit E.M., 3axapos B.A. K nposepke cTporo JIeTepMUHUPOBAHHOTO MOBEICHHS BPEMEHHBIX KOHEUHbBIX
aBTomatoB. Ipyosr UCII PAH, Tom 30, Bem. 3, 2018 1., cTp. 325-340

K npoBepke cTporo neTepMMHUPOBAHHOIO NoBeAeHUs
BpeMeHHbIX KOHe4YHbIX aBTOMaTOB

E.M.Bunapckuii <vinevg2015@gmail.com>
B.A. 3axapos < zakh@cs.msu.su >.
Mockosckuii 2ocyoapcmeennuiii yHusepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue eopwl, 0. 1

AHHoTanus. KoHeyHble aBTOMAThl IIMPOKO MPUMEHAIOTCA B KayeCTBE MAaTeMaTHUECKHX
MoJelell TpH pemIeHMH MHOTOYMCIEHHBIX 3ajad B 00NacTH IpOrpaMMHPOBAHUSA,
MIPOEKTHPOBAHUSI MHKPOIIEKTPOHHBIX CXEM M TEIEKOMMYHHKAIIMOHHBIX cHCTeM. Jlis
OIIHCAHMUS TTOBEACHHS CUCTEM PEAIbHOTO BPEMEHH MOJIeb KOHETHOTO aBTOMATa MOXET OBITh
pacmmpeHa no0OaBIeHHEM B He€ 4YacoB - IapamMeTpa HENpPEpHIBHOTO BPEMEHH,
MOJEIMPYEMOT0 BELIECTBEHHOM mepeMeHHOH. B aBromarax peanbHOro BpeMEHH MJIs
BXOJHBIX M BBIXOAHBIX CHIHAJIOB YKa3bIBA€TCSI BPEMS HX IOCTYIUIGHHS M BBLAAYH, a
Hepexo/sl aBTOMAaTa CHA0XKEHBI ONMCAHHEM 3aJIepP)KEeK, CBA3AHHBIX C OXKHIAHHUEM BXOJHBIX
CUTHAIOB W ()OPMHUPOBAHUEM BBIXOJHBIX CHTHAJIOB. Tak ke, KaK M U KJIACCHYECKUX
aBTOMATOB JUCKPETHOTO BPEMEHH, 3a7jada MUHMMH3ALMM KOHEUHBIX aBTOMATOB PEajbHOTO
BPEMEHM BO3HHUKAaeT BO MHOTMX IPWIOKCHHUAX OTOH Mojenu BbluuciaeHuil. s
KIIACCHYECKOH MOJEIH aBTOMAaTOB pEalbHOTO BPEMEHH 3Ta 3aJada ykKe MOJApOOHO
paccMoTtpeHa. B Hameit paboTe Mbl mpemiaraeM Ooliee CIIOKHYIO MOJENb: B HEl MOPSAIOK
CIICOBAaHMSI BBIXOJHBIX CHTHAJIOB OIPEAENSCTCS HE TONBKO IIOPSIKOM MOCTYIUICHUS
BXOJIHBIX CHTHAJIOB, HO TAaKXe W 3a/IEP)KKOU, CBA3aHHOU ¢ MX 00paboTkoifl. B aToif Monenn
IIpU BBINOJHEHUM OJHOW U TOH k€ MOCIe0BaTeNbHOCTH NEPEXOJ0B BBIXOJHbBIE CUTHAJIBI
MOTYT BBIJABaThCS B PA3HOM MOPSAAKE B 3aBUCHUMOCTH OT BPEMEHM INOCTYIUIEHHS BXOJIHBIX
CUTHaJIOB. B HOBOI MOzenM aBTOMAaTOB peaJbHOT0 BPEMEHH PELICHUIO 3a1a4d MUHUMU3ALUI
JIOJDKHO — IpPEAIeCTBOBaTh H3ydEHHE BOIPOCAa CTPOrOM JAETEPMUHUPOBAHHOCTH -
OJHO3HAYHOCTH MOBEJECHHUS aBTOMAaTa HA OJHUX U TeX XK€ MOCIIeI0BATENbHOCTSIX MePEXOI0B.
B mpexacraBneHHON cTaThe NPHBEAEHBHI M OOOCHOBAHBI HEOOXOMMMBIE M JIOCTATOYHBIE
YCIOBHSL CTPOTOH HETEPMHHMPOBAHHOCTH aBTOMAaTOB pPEATbHOTO BPEMEHH, a TakKxke
HCCIEI0BAHBI BOIPOCHI, CBSI3aHHbIE C PEIIEHHEM 337a4i MUHUMH3AIIH 3TONH pa3HOBHIHOCTH
aBTOMATOB.

KiioueBble cjI0oBa: KOHEYHEIC BPCMCHHBIC aBTOMAThl; CTPOr0 JACTCPMHUHHUPOBAHHOC
IIOBCACHUC

DOI: 10.15514/ISPRAS-2018-30(3)-22

Jas murupoBanmsi: Bumapckmit E.M., 3axapoB B.A. K mposepke crtporo
JIETepMUHHPOBAHHOTO TIOBEJICHHSI BpPEMEHHBIX KOHEUHBIX aBToMaToB. Tpynst UCITI PAH, Tom
30, Boim. 3, 2018 r., crp. 325-340 (Ha anrmmiickoM s3bike). DOI: 10.15514/ISPRAS-2018-
30(3)-22

339

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

Cnucok nutepatypbl

[1].
2.

[3].

[4].

[5].

[6].
[7].
[8].

[a].
[10].

[11].

[12].

[13].

[14].

[15].

340

Alur R., Dill D. A Theory of Timed Automata. Theoretical Computer Science, vol. 126,
1994, pp. 183-235.

Alur R., Madhusudan P. Decision Problems for Timed Automata: A Survey. In
Proceedings of the 4-th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems (SFM’04), 2004, pp. 1-24.

Alur R., Fix L., Henzinger Th. A. A Determinizable Class of Timed Automata. In
Proceedings of the 6-th International Conference on Computer Aided Verification
(CAV’94), 1994, p 1-13.

Baier C., Bertrand N., Bouyer P., Brihaye T. When are Timed Automata
Determinizable? In Proceedings of the 36-th International Colloquium on Automata,
Languages, and Programming (ICALP 2009), 2009, p. 43-54.

Bresolin D., El-Fakih K., Villa T., Yevtushenko N. Deterministic Timed Finite State
Machines: Equivalence Checking and Expressive Power. In Proceedings of the
International Conference GANDALF, 2014, p. 203-216.

Cardell-Oliver R. Conformance Tests for Real-Time Systems with Timed Automata
Specifications. Formal Aspects of Computing, vol. 12, no. 5, 2000, p. 350-371.

Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. 35.5: The subset-sum problem.
Introduction to Algorithms (2-nd ed.), 2001.

Finkel O. Undecidable Problems about Timed Automata. In Proceedings of 4th
International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS’06), 2006, p. 187-199.

Fletcher J. G., Watson R. W. Mechanism for Reliable Timer-Based Protocol. Computer
Networks, vol. 2, 1978, pp. 271-290.

Merayo M.G., Nuunez M., Rodriguez I. Formal Testing from Timed Finite State
Machines. Computer Networks, vol. 52, no 2, 2008, pp. 432-460.

Ouaknine J., Worrell J. On the Language Inclusion Problem for Timed Automata:
Closing a Decidability Gap. In Proceedings of the 19-th Annual Symposium on Logic in
Computer Science (LICS’04), 2004, pp. 54-63.

Suman P.V., Pandya P.K., Krishna S.N., Manasa L. Timed Automata with Integer
Resets: Language Inclusion and Expressiveness. In Proceedings of the 6-th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’08),
2008, pp. 78-92.

A.C. Tappmosckuif, H.B. Eprymenko. K MuHUMM3ammm aBTOMAaTOB C BpPEMEHHBIMH
OrpaHUYCHUAMU. Bectunk TomMckoro ToCyaapCTBEHHOI'0 YHUBCPCUTETA. YHpaBHCHI/IC,
BBIYHCIIMTENIbHAS TeXHUKA U nHpopMmaruka, Vol. 29, no 4, 2014, pp. 77-83.

Teapnosckuit A.C., Eprymenko H.B., I'pomor M.JI. MunuMusamus aBTOMaTroB c
TaliMayTaMu M BpeMeHHbIMU orpaHnueHusiMu. Tpynsl UCIT PAH, tom 29, Bem. 4, 2017 r.,
ctp. 139-154. DOI: 10.15514/ISPRAS-2017-29(4)-8..

Zhigulin M., Yevtushenko N., Maag S., Cavalli A. FSM-Based Test Derivation
Strategies for Systems with Timeouts. In Proceedings of the 11-th International
Conference on Quality Software, 2011, p. 141-149.

