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Abstract. Finite State Machines (FSMs) are widely used as formal models for solving 

numerous tasks in software engineering, VLSI design, development of telecommunication 

systems, etc. To describe the behavior of a real-time system one could supply FSM model 

with clocks — a continuous time parameters with real values. In a Timed FSM (TFSM) 

inputs and outputs have timestamps, and each transition is equipped with a timed guard and 

an output delay to indicate time interval when the transition is active and how much time 

does it take to produce an output. A variety of algorithms for equivalence checking, 

minimization and test generation were developed for TFSMs in many papers. A 

distinguishing feature of TFSMs studied in these papers is that the order in which output 

letters occur in an output timed word does not depend on their timestamps. We think that 

such behavior of a TFSM is not realistic from the point of view of an outside observer. In this 

paper we consider a more advanced and adequate TFSM functioning; in our model the order 

in which outputs become visible to an outsider is determined not only by the order of inputs, 

but also by de lays required for their processing. When the same sequence of transitions is 

performed by a TFSM modified in a such way, the same outputs may follow in different 

order depending on the time when corresponding inputs become available to the machine. A 

TFSM is called strictly deterministic if every input timed word activates no more than one 

sequence of transitions (trace) and for any input timed word which activates this trace the 

letters in the output words always follows in the same order (but, maybe, with different 

timestamps). We studied the problem of checking whether a behavior of an improved model 

of TFSM is strictly deterministic. To this end we showed how to verify whether an arbitrary 

given trace in a TFSM is steady, i.e. preserves the same order of output letters for every input 

timed word which activates this trace. Further, having the criterion of trace steadiness, we 

developed an exhaustive algorithm for checking the property of strict determinacy of TFSMs. 

Exhaustive search in this case can hardly be avoided: we proved that determinacy checking 

problem for our model of TFSM is co-NP-hard. 

Keywords: Timed Finite State Machines; strictly deterministic behavior  

DOI: 10.15514/ISPRAS-2018-30(3)-22 

For citation: Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic 

behaviour of Timed Finite State Machines. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 

2018, pp. 325-340. DOI: 10.15514/ISPRAS-2018-30(3)-22 



Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines. 

Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340 

326 

1. Introduction 

Finite State Machines (FSMs) are widely used as formal models for analysis and 

synthesis of information processing systems in software engineering, VLSI design, 

telecommunication, etc. The most attractive feature of this model of computation is 

its simplicity — many important synthesis and analysis problems (equivalence 

checking, minimization, test derivation, etc.) for classical FSMs can be solved in 

time which is almost linear or quadratic of the size of an FSM under consideration. 

The concept of FSM is rather flexible. Since in many applications time aspects such 

as durations, delays, timeouts are very important, FSMs can be augmented with 

some additional features to describe the dependence of the behavior of a system on 

events occurring in real time. One of the most advanced timed extension of FSMs is 

the concept of Timed Automata which was developed and studied in [1]. Timed 

Automata are supplied with clocks (timers) for indicating real time moments, 

measuring durations of events, providing timeout effects. Transitions in such 

automata depends not only on the incoming of the outside messages and signals but 

also on the values of clocks. Further research showed that this model of 

computation is very expressive and captures many important features of real-time 

systems behavior. On the other side, Timed Automata in the full scope of their 

computing power are very hard for analysis and transformations. The reachability 

problem for Timed Automata is decidable [2], and, therefore, this model of 

computation is suitable for formal verification of real-time computer systems. But 

many other problems such as universality, inclusion, determinability, etc. are 

undecidable (see [2], [8]), and this hampers considerably formal analysis of Timed 

Automata. 

When a Timed Automaton is capable to selectively reset timers, it can display rather 

sophisticated behavior which is very difficult for understanding and analysis. In 

some cases, such ability is very important; see, e.g. [9]. But a great deal of real-time 

programs and devices operate with timers much more simply: as soon as such a 

device switches to a new mode of operation (new state), it resets all timers. Timed 

Finite State Machines (TFSM) of this kind were studied in [5], [10], [13], [14]. 

TFSM has the only timer which it resets "automatically” as soon as it moves from 

one state to another. On the other hand, TFSMs, in contrast to Timed Automata 

introduced in [1], operate like transducers: they receive a sequence of input signals 

augmented with their timestamps (input timed word) and output a sequence of 

responses also labeled by timestamps (output timed word). The timestamps are real 

numbers which indicate the time when an input signal becomes available to a TFSM 

or an output response is generated. Transitions of a TFSM are equipped with time 

guards to indicate time intervals when transitions are active. Therefore, a reaction of 

a TFSM to an input signal depends not only on the signal but also on its timestamp. 

Some algorithms for equivalence checking, minimization and test generation were 

developed for TFSMs in [6], [5], [13], [14], [15]. It can be recognized that this 

model of TFSM combines a sufficient expressive power for modeling a wide class 

of real-time information processing systems and a developed algorithmic support. 
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As it was noticed above a behavior of a TFSM is characterized by a pair sequences: 

an input timed word and a corresponding output timed word. A distinguishing 

feature of TFSMs studied in [5], [10], [13], [14], [15] is that an output timed word is 

formed of timestamped output letters that follows in the same order as the 

corresponding input letters regardless of their timestamps. Meanwhile, suppose that 

a user of some file management system gives a command «Save» and immediately 

after that a command «Exit». Then if a file to be saved is small then the user will 

observe first a response «File is saved» and then a notification «File Management 

System is closed». But if a file has a considerable size then it takes a lot of time to 

close it. Therefore, it can happen that a user will detect first a notification «File 

Management System is closed» and then, some time later, he/she will be surprised 

to find an announcement «File is saved». Of course, the user may regard such 

behavior of the system enigmatic. But much worse if the order in which these 

notifications appear may vary in different sessions of the system. If a File 

Management System interacts with other service programs such an interaction will 

almost certainly lead to errors. However, if a behavior of TFSMs is defined as in the 

papers referred above then such a model can not adequately capture behavioral 

defects of real-time systems, similar to the one that was considered in the example. 

To avoid this shortcoming of conventional TFSMs and to make their behavior more 

“realistic” from the point of view of an outside observer we offer some technical 

change to this model. We will assume that an output timed word consists of 

timestamped letters, and these letters always follow in ascending order of their 

timestamps regardless of an order in which the corresponding input letters entered a 

TFSM. In this model it may happen so that an input 𝒃 follows an input 𝒂 but a 

response to 𝒃 appears before a response to 𝒂 is computed. Clearly, the defect with 

File Management System discussed above becomes visible to an outside observer 

“through” the model of TFSMs thus modified. 

At first sight, it may seem that this change only slightly complicates the analysis of 

the behavior of such models. But this is a false impression. In the initial model of 

TFSM the formation of an output timed word is carried out by local means for each 

state of the system. In our model this is a global task since to find the proper 

position of a timestamped output letter one should consider the run of TFSM as a 

whole. Therefore, even the problem of checking whether a behavior of an improved 

model of TFSM is deterministic can not be solved as easy and straightforwardly as 

in the case of the initial model of TFSM. 

It should be noticed that the property of deterministic behavior is very important in 

theory real-time machines. As it was said above, universality, inclusion and 

equivalence checking problems are undecidable for Timed Automata in general case 

[2] but all these problems have been shown to be decidable for deterministic Timed 

Automata [3], [11]. However, testing whether a Timed Automaton is determinable 

has been proved undecidable [8]. Understanding and coping with these weaknesses 

have attracted lots of research, and classes of timed automata have been exhibited, 

that can be effectively determinized [3], [12]. A generic construction that is 
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applicable to every Timed Automaton, and which, under certain conditions, yields a 

deterministic Timed Automaton, which is language-equivalent to the original timed 

automaton, has been developed in [4]. 

We studied the determinacy checking problem for improved TFSMs and present the 

results of our research in this paper. First, we offer a criterion to determine whether 

a given sequence of transition (trace) in a TFSM is steady, i.e. for any input timed 

word which activates this trace the letters of output words always follow in the same 

order (but, maybe, with different timestamps). Then, using this criterion we 

developed an exhaustive algorithm for checking the property of strict determinacy 

of TFSMs. This property means that every input timed word activates no more than 

one trace and all traces in a TFSM are steady. Exhaustive search, although been 

time consuming, can hardly be avoided in this case: we proved that determinacy 

checking problem for improved version of TFSMs is co-NP-hard by polynomially 

reducing to its complement the subset-sum problem [7] which is known to be NP-

complete. 

The structure of the paper is as follows. In Section II we define the basic notions 

and introduce an improved concept of TFSM (or, it would be better said, a concept 

of TFSM with an improved behavior). In Section III we present necessary and 

sufficient conditions for steadiness of traces in a TFSM and show how to use this 

criterion to check whether a given TFSM is strictly deterministic. Section IV 

contains the results on the complexity of checking the properties of strictly 

deterministic behavior of TFSM. In the Conclusion we briefly outline the 

consequences of our results and topics for further research. 

2. Formatting overview 

Consider two non-empty finite alphabets 𝐼 and 𝑂; the alphabet 𝐼 is an input alphabet 

and the alphabet 𝑂 is an output alphabet. The letters from 𝐼 can be regarded as 

control signals received by some real-time computing system, whereas the letters 

from 𝑂 may be viewed as responses (actions) generated by the system. A finite 

sequence 𝑤 = 𝑖1, 𝑖2, … , 𝑖𝑛 of input letters is called an input word, whereas a 

sequence 𝑧 = 𝑜1 , 𝑜2, … , 𝑜𝑛 of output letters is called an output word. As usual, the 

time domain is represented by the set of non-negative reals ℝ0
+. The set of all 

positive real numbers will be denoted by ℝ+. When such a system receives a control 

signal (a letter 𝑖) its output depends not only on the input signal 𝑖 but also on 

 a current internal state of the system, 

 a time instance when 𝒊 becomes available to a system, and 

 time required to process the input (output delay). 

These aspects of real-time behavior can be formalized with the help of timestamps, 

time guards and delays. A timestamp as well as a delay is a real number from ℝ+. A 

timestamp indicates a time instance when the system receives an input signal or 

generates a response to it. A delay is time the system needs to generate an output 

response after receiving an input signal. A time guard is an interval 𝑔 = ⟨𝑢, 𝑣⟩, 
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where ⟨∈ {(, [}, ⟩ ∈ {), ]}, and 𝑢, 𝑣 are timestamps such that 0 < 𝑢 < 𝑣. Time 

intervals indicate the periods of time when transitions of a system are active for 

processing input signals. As usual, the term time sequences is reserved for an 

increasing sequence of timestamps. For the sake of simplicity we will deal only with 

time guards of the form (𝑢, 𝑣]: all the results obtained in this paper can be adapted 

with minor changes to arbitrary time guards. 

Let 𝒘 = 𝒙𝟏, 𝒙𝟐, … 𝒙𝒏 and 𝝉 = 𝒕𝟏, 𝒕𝟐, … , 𝒕𝒏 be an input (output) word and a time 

sequence, respectively, of the same length. Then a pair (𝒘, 𝝉) is called a timed 

word. Every pair of corresponding elements 𝒙𝒋 and 𝒕𝒋, 𝟏 ≤ 𝒋 ≤ 𝒏, indicates that an 

input signal (or an output response) 𝒙𝒋 appears at time instance 𝒕𝒋. In order to make 

this correspondence clearer we will often write timed words as sequences of pairs 

(𝒘, 𝝉) = (𝒊𝟏, 𝒕𝟏), (𝒊𝟐, 𝒕𝟐), … , (𝒊𝒏, 𝒕𝒏) whose components are input signals (or output 

responses) and their timestamps. 

A Finite State Machine (FSM) over the alphabets 𝑰 and 𝑶 is a triple 𝑴 = ⟨𝑺, 𝒔𝒊𝒏, 𝝆⟩ 
where 𝑺 is a finite non-empty set of states, 𝒔𝒊𝒏 is an initial state, 𝝆 ⊆ (𝑺 × 𝑰 × 𝑶 ×
𝑺) is a transition relation. A transition (𝒔, 𝒊, 𝒐, 𝒔′) means that FSM 𝑴 when being at 

the state 𝒔 and receiving an input signal 𝒊 moves to the state 𝒔′ and generates the 

output response 𝒐. 

FSMs can not measure time and, therefore, they are unsuitable for modeling the 

behavior of real-time systems. The authors of [1] proposed to equip FSMs with 

clocks — variables which take non-negative real values. To manipulate with clocks 

machines use reset instructions, timed guards and output delays. Time guards 

indicate time intervals when transitions are active for processing input signals. An 

output delay indicates how much time does it take to process an input. Thus, every 

transition in such a machine is a quadruple 

⟨𝒊𝒏𝒑𝒖𝒕, 𝒕𝒊𝒎𝒆𝒅 𝒈𝒖𝒂𝒓𝒅, 𝒐𝒖𝒕𝒑𝒖𝒕, 𝒅𝒆𝒍𝒂𝒚⟩. Input signals and output responses are 

accompanied by timestamps. If an input is marked by a timestamp which satisfies 

the time guard then the transition fires, the machine moves to the next state and 

generates the output. This output is marked by a timestamp which is equal to the 

timestamp of the input plus the delay. For real-time machines of this kind usual 

problems from automata theory (equivalence and containment checking, 

minimization, etc.) may be set up and solved. The minimization problem for real-

time machines is very important, since the complexity of many analysis and 

synthesis algorithms depend on the size of machines. In [14] this problem was 

studied under the so called "slow environment assumption”: next input becomes 

available only after an output response to the previous one is generated. 

In this paper, we consider a more advanced real-time machine; in this model the 

order in which outputs become visible to an outside observer is determined not only 

by the order in which inputs follow, but also by the delay required for their 

processing. When the same sequence of transitions is performed by such a machine 

the same outputs may follow in different order depending on the arriving time of the 

corresponding inputs. Our main goal is to develop equivalence checking and 
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minimization algorithms for real-time machines of this kind. But, as the results of 

Automata Theory show, these problems may have efficient solution only for 

deterministic machines. Thus, our first step toward the solution of these problems is 

to find a way to check if the behavior of a machine is deterministic. 

But there is also another reason to study the problem of checking the determinism of 

the behavior of real-time machines. Unlike traditional discrete models of 

computation, the behavior of real-time machines depends not only on the control 

signals as such, but also on the time of their arrival. However, the latter factor has a 

greater degree of uncertainty. In most cases, in practice, it is desirable to reduce the 

effect of this uncertainty to a minimum. Therefore, the determinacy checking 

problem for real-time machines can be considered as a special version of the 

verification problem — checking that the time factor does not have an unforeseen 

influence on the behavior of the system. 

Formally, by Timed FSM (TFSM) over the alphabets 𝑰 and 𝑶 we mean a quadruple 

𝑴 = (𝑺, 𝒔𝒊𝒏, 𝑮, 𝝆) where: 

 𝑺 is a finite non-empty set of states, 

 𝒔𝒊𝒏 is an initial state. 

 𝑮 is a set of timed guards, 

 𝝆 ⊆ (𝑺 × 𝑰 × 𝑶 × 𝑺 × 𝑮 × ℝ+) is a transition relation. 

A transition (𝑠, 𝑖, 𝑜, 𝑠′, 𝑔, 𝑑) should be understood as follows. Suppose that TFSM 

receives the input letter 𝑖 marked by a timestamp 𝑡 when being at the state 𝑠. If the 

previous letter has been delivered to the TFSM at time �̂�  such that 𝛥𝑡 = 𝑡 − �̂� ∈ 𝑔 

then the TFSM moves to the state 𝑠′ and outputs the letter 𝑜 marked with the 

timestamp 𝜏 = 𝑡 + 𝑑. When algorithmic and complexity issues of TFSM’s analysis 

and synthesis are concerned then we assume that time guards and delays are rational 

numbers, and the size of a TFSM is the length of a binary string which encodes all 

transitions in the TFSM. 

A trace 𝒕𝒓 in TFSM 𝑴 is a sequence of transitions 

(𝒔𝟎, 𝒂𝟏, 𝒃𝟏, 𝒔𝟏, (𝒖𝟏, 𝒗𝟏], 𝒅𝟏), … , (𝒔𝒏−𝟏, 𝒂𝒏, 𝒃𝒏, 𝒔𝒏, (𝒖𝒏, 𝒗𝒏], 𝒅𝒏), where every state 

𝒔𝒋, 𝟎 < 𝒋 < 𝒏, is an arrival state of one transition and a departure state of the next 

transition. We say that the trace 𝒕𝒓 converts an input timed word 

𝜶 = (𝒂𝟏, 𝒕𝟏), (𝒂𝟐, 𝒕𝟐), … , (𝒂𝒏, 𝒕𝒏) to the timed output word 

𝜷 = (𝒃𝒋𝟏
, 𝝉𝟏), (𝒃𝒋𝟐

, 𝝉𝟐), … , (𝒃𝒋𝒏
, 𝝉𝒏), iff 

• 𝑡𝑗 − 𝑡𝑗−1 ∈ (𝑢𝑗 , 𝑣𝑗] holds for all 𝑗, 1 ≤ 𝑖 ≤ 𝑛 (it is assumed that 𝑡0 = 0); 

• 𝛽 is such a permutation of the sequence 𝛾 = (𝑏1, 𝑡1 + 𝑑1), (𝑏2, 𝑡2 +
𝑑2), … , (𝑏𝑛 , 𝑡𝑛 + 𝑑𝑛) that the second components of the pairs 𝜏1, 𝜏2, … , 𝜏𝑛 

constitute a time sequence. 

Clearly, for every trace 𝑡𝑟 and an input timed word 𝛼 its conversion 𝛽 (if any) is 

determined uniquely; such a conversion will be denoted as 𝑐𝑜𝑛𝑣(𝑡𝑟, 𝛼). If 
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𝑐𝑜𝑛𝑣(𝑡𝑟, 𝛼) is defined then we say that the input timed word 𝛼 activates the trace 

𝑡𝑟. We will say that the output word 𝑏𝑗1
, 𝑏𝑗2

, … , 𝑏𝑗𝑛
 is a plain response to the input 

timed word 𝛼 on the trace 𝑡𝑟; it will be denoted as 𝑟𝑒𝑠𝑝(𝑡𝑟, 𝛼). 

 
Fig.1 TFSM 𝑴 

Consider, for example, a TFSM 𝑴 depicted in Fig. 1 and a trace  

𝒕𝒓 = (𝒔𝟎, 𝒊, 𝒔𝟏, 𝒐𝟏, (𝟎. 𝟓, 𝟐], 𝟒), (𝒔𝟏, 𝒊, 𝒔𝟐, 𝒐𝟐, (𝟏. 𝟓, 𝟐], 𝟑),

(𝒔𝟐, 𝒊, 𝒔𝟑, 𝒐𝟑, (𝟏, 𝟏. 𝟓], 𝟏)
 

in this TFSM. Then this trace 

1. accepts an input timed word 𝛼1 = (𝑖, 1), (𝑖, 2.7), (𝑖, 4.1) and converts it to the 

output timed word 𝛽1 = (𝑜1, 5), (𝑜3, 5.1), (𝑜2, 5.7); thus, the plain response of 

𝑀 to 𝛼1 is 𝑤1 = 𝑜1, 𝑜3, 𝑜2; 

2. accepts an input timed word 𝛼2 = (𝑖, 1.5), (𝑖, 3.2), (𝑖, 4.3) and converts it to 

the output timed word 𝛽2 = (𝑜3, 5.3), (𝑜1, 5.5), (𝑜2, 6.2), and the plain 

response of 𝑀 to 𝛼2 is 𝑤2 = 𝑜3, 𝑜1, 𝑜2 which is different from 𝑤1; 

does not accept an input timed word 𝛼3 = (𝑖, 2.3), (𝑖, 4), (𝑖, 6). 

3. Steady traces and strictly deterministic TFSMs 

As can be seen from the above example, a pair of input timed words that differ only 

in timestamps of input signals may activate the same trace in a TFSM, although 

plain responses of TFSM to these words are different. Generally speaking, there is 

nothing unusual in this: in real-time models not only the input signals, but also the 

values of timers influence a run of a model. Nevertheless, in many applications it is 

critically important to be sure that the behavior of a real-time system is predictable: 

once a system choose a mode of computation (i.e. a trace in TFSM) it will behave in 

a similar way (i.e. give the same plain response) in all computations of this mode. 

Traditionally, computer systems in which for any input data the processing mode is 

uniquely determined by the system are called deterministic. But for our model of 

real-time systems this requirement should be clarified and strengthened. For this 

purpose, we introduce the notion of steady traces and the property of strict 

determinacy of a real-time system. 

A trace 𝒕𝒓 in TFSM 𝑴 is called steady if 𝒓𝒆𝒔𝒑(𝒕𝒓, 𝜶𝟏) = 𝒓𝒆𝒔𝒑(𝒕𝒓, 𝜶𝟐) holds for 

every pair of input timed words 𝜶𝟏 and 𝜶𝟐 that activate 𝒕𝒓. Thus, the order of the 

output letters generated by a steady trace does not depend on the small deviations of 

the timestamps of the input signals. A TFSM 𝑴 = (𝑺, 𝒔𝒊𝒏, 𝑮, 𝝆) is called 

deterministic iff for every pair of transitions (𝒔, 𝒊𝟏, 𝒐𝟏, 𝒔′, (𝒖𝟏, 𝒗𝟏], 𝒅𝟏) and 

(𝒔, 𝒊𝟐, 𝒐𝟐, 𝒔″, (𝒖𝟐, 𝒗𝟐], 𝒅𝟐) in 𝝆 either 𝒊𝟏 ≠ 𝒊𝟐, or (𝒖𝟏, 𝒗𝟏] ∩ (𝒖𝟐, 𝒗𝟐] = ∅. This 

requirement means that every timestamped input letter can activate no more than 
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one transition from an arbitrary given state 𝒔. It also implies that every input timed 

word can activate no more than one trace in 𝑴. A deterministic TFSM is called 

strictly deterministic iff every initial trace in 𝑴 which starts from the initial state 𝒔𝒊𝒏 

is steady. It is easy to see that TFSM, depicted in Fig. 1, is not strictly deterministic. 

The Strict Determinacy Checking Problem (in what follows, SDCP) is that of 

checking, given a TFSM, if it is strictly deterministic. It is easy to check whether a 

TFSM is deterministic by considering one by one all pairs of transitions that emerge 

from the same state. But local means alone are not enough to check whether a given 

trace in a TFSM is steady. A simple criterion for steadiness of traces is presented as 

a Theorem below. 

Let a sequence of transitions 

(𝒔𝟎, 𝒊𝟏, 𝒔𝟏, 𝒐𝟏, ⟨𝒖𝟏, 𝒗𝟏⟩, 𝒅𝟏), … , (𝒔𝒏−𝟏, 𝒊𝒏, 𝒔𝒏, 𝒐𝒏, ⟨𝒖𝒏, 𝒗𝒏⟩, 𝒅𝒏) 

 be a trace 𝒕𝒓 in a TFSM 𝑴. Then the following theorem holds. 

Theorem 1. A trace 𝒕𝒓 is steady iff for all pairs of integers 𝒌, 𝒎 such that 𝟏 ≤ 𝒌 <
𝒎 ≤ 𝒏 at least one of the two inequalities 𝒅𝒌 − 𝒅𝒎 ≤ ∑ 𝒖𝒋

𝒎
𝒋=𝒌+𝟏  or 𝒅𝒌 − 𝒅𝒎 >

∑ 𝒗𝒋
𝒎
𝒋=𝒌+𝟏  holds. 

Proof. (⇒) Suppose that there exists a pair 𝒌, 𝒎 such that 𝟏 ≤ 𝒌 < 𝒎 ≤ 𝒏, and a 

double inequality holds:  

∑ 𝒖𝒋

𝒎

𝒋=𝒌+𝟏

< 𝒅𝒌 − 𝒅𝒎 ≤ ∑ 𝒗𝒋

𝒎

𝒋=𝒌+𝟏

 . 

 Then we use two positive numbers 𝒓 = 𝒅𝒌 − 𝒅𝒎 − ∑ 𝒖𝒋
𝒎
𝒋=𝒌+𝟏  and 𝜺 =

𝒓

𝒏
 and 

consider a behaviour of a TFSM 𝑴 in the input timed words  

𝜶′ = (𝒊𝟏, 𝒗𝟏), … , (𝒊𝒌, ∑ 𝒗𝒋

𝒌

𝒋=𝟏

), (𝒊𝒌+𝟏, ∑ 𝒗𝒋

𝒌

𝒋=𝟏

+ 𝒖𝒌+𝟏 + 𝜺), … , (𝒊𝒎, ∑ 𝒗𝒋

𝒌

𝒋=𝟏

+ ∑ 𝒖𝒋

𝒎

𝒋=𝒌+𝟏

+ 𝜺),

𝜶″ = (𝒊𝟏, 𝒗𝟏), … , (𝒊𝒌, ∑ 𝒗𝒋

𝒌

𝒋=𝟏

), (𝒊𝒌+𝟏, ∑ 𝒗𝒋

𝒌+𝟏

𝒋=𝟏

), … , (𝒊𝒎, ∑ 𝒗𝒋

𝒎

𝒋=𝟏

).

 

 It is easy to see that both words activate 𝒕𝒓. 

The trace 𝒕𝒓 converts the timed input word 𝜶𝟏 to the timed output word  

𝒄𝒐𝒏𝒗(𝒕𝒓, 𝜶′) = ⋯ , (𝒐𝒎, 𝑻′𝒎), … , (𝒐𝒌, 𝑻′𝒌), … 

 such that 𝑻′𝒎 = ∑ 𝒗𝒋
𝒌
𝒋=𝟏 + ∑ (𝒎

𝒋=𝒌+𝟏 𝒖𝒋 + 𝜺) + 𝒅𝒎, and 𝑻′𝒌 = ∑ 𝒗𝒋
𝒌
𝒋=𝟏 + 𝒅𝒌. In this 

timed output word, the output letter 𝒐𝒌 follows the output letter 𝒐𝒎 since  

𝑻′𝒌 − 𝑻′𝒎 = 𝒅𝒌 − 𝒅𝒎 − ∑ 𝒖𝒋

𝒎

𝒋=𝒌+𝟏

+ (𝒎 − 𝒌)𝜺 = 𝒓 −
𝒓(𝒎 − 𝒌)

𝒏
> 𝟎. 
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 Hence, 𝒓𝒆𝒔𝒑(𝒕𝒓, 𝜶′) = ⋯ , 𝒐𝒎, … , 𝒐𝒌, …. 

On the other hand, the trace 𝒕𝒓 converts the timed input word 𝜶″ to the timed output 

word  

𝒄𝒐𝒏𝒗(𝒕𝒓, 𝜶″) = ⋯ , (𝒐𝒌, 𝑻″𝒌), … , (𝒐𝒎, 𝑻″𝒎), … 

 such that 𝑻″𝒌 = ∑ 𝒗𝒋
𝒌
𝒋=𝟏 + 𝒅𝒌 and 𝑻″𝒎 = ∑ 𝒗𝒋

𝒎
𝒋=𝟏 + 𝒅𝒎. In this timed output word 

the output letter 𝒐𝒎 follows the output letter 𝒐𝒌 since  

𝑻″𝒎 − 𝑻″𝒌 = 𝒅𝒎 − 𝒅𝒌 = ∑ 𝒗𝒋

𝒎

𝒋=𝒌+𝟏

≥ 𝟎 

Therefore, 𝒓𝒆𝒔𝒑(𝒕𝒓, 𝜶″) = ⋯ , 𝒐𝒌, … , 𝒐𝒎, …. 

Thus, we got evidence that the trace 𝒕𝒓 is not steady. 

(⇐) Suppose that the trace 𝒕𝒓 is not steady. Then there exists a pair of timed input 

words 𝜶′ = (𝒊𝟏, 𝒕′𝟏), … , (𝒊𝒏, 𝒕′𝒏) and 𝜶″ = (𝒊𝟏, 𝒕″𝟏), … , (𝒊𝒏, 𝒕″𝒏) such that both 

words activate the trace 𝒕𝒓 and 𝒓𝒆𝒔𝒑(𝒕𝒓, 𝜶′) ≠ 𝒓𝒆𝒔𝒑(𝒕𝒓, 𝜶″). Consequently, there 

exists a pair of output letters 𝒐𝒎 and 𝒐𝒌 such that  

𝒄𝒐𝒏𝒗(𝒕𝒓, 𝜶′) = ⋯ , (𝒐𝒌, 𝑻′𝒌), … , (𝒐𝒎, 𝑻′𝒎), …

𝒄𝒐𝒏𝒗(𝒕𝒓, 𝜶″) = ⋯ , (𝒐𝒎, 𝑻″𝒎), … , (𝒐𝒌, 𝑻″𝒌), … .
 

Such permutation of output letters is possible iff the following inequalities hold  

𝒕′𝒌 + 𝒅𝒌 = 𝑻′𝒌 < 𝑻′𝒎 = 𝒕′𝒎 + 𝒅𝒎,

𝒕″𝒌 + 𝒅𝒌 = 𝑻″𝒌 > 𝑻″𝒎 = 𝒕″𝒎 + 𝒅𝒎 .
 

But since both input timed words 𝜶′ and 𝜶″ activate 𝒕𝒓, we have the following 

chain of inequalities: 

 

∑ 𝒖𝒋

𝒎

𝒋=𝒌+𝟏

< 𝑻″𝒎 − 𝑻″𝒌 < 𝒅𝒌 − 𝒅𝒎 < 𝑻′𝒎 − 𝑻′𝒌 ≤ ∑ 𝒗𝒋

𝒎

𝒋=𝒌+𝟏

. 

Thus, if 𝒕𝒓 is not steady then there exists a pair of integers such that 𝟏 ≤ 𝒌 < 𝒎 ≤
𝒏 and  

∑ 𝒖𝒋

𝒎

𝒋=𝒌+𝟏

< 𝒅𝒌 − 𝒅𝒎 ≤ ∑ 𝒗𝒋

𝒎

𝒋=𝒌+𝟏

 

holds. 

End proof. 

Now, having the criterion for steadiness of traces, we can give a solution to SDCP 

for TFSMs. Let TFSM 𝑴 = (𝑺, 𝒔𝒊𝒏, 𝑮, 𝝆) be a deterministic TFSM. Denote by 𝒖𝒎𝒊𝒏 

the greatest lower bound of all left boundaries used in the time guards of 𝑴. In our 

model of TFSM 𝒖𝒎𝒊𝒏 > 𝟎. Let 𝒅𝒎𝒊𝒏 and 𝒅𝒎𝒂𝒙 be the minimum and the maximum 
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output delays occurred in the transitions of 𝑴. A theorem below gives necessary 

and sufficient conditions for the behaviour of 𝑴 to be strictly deterministic. 

Theorem 2. A deterministic TFSM 𝑴 is strictly deterministic iff all its traces of 

length 𝒑, where 𝒑 = ⌈
𝒅𝒎𝒂𝒙−𝒅𝒎𝒊𝒏

𝒖𝒎𝒊𝒏
⌉, are steady.  

Proof. The necessity of conditions is obvious. 

We prove the sufficiency of conditions by contradiction. Suppose that all traces of 

length less or equal 𝒑 are steady but TFSM 𝑴 is not. Then there exists such a trace 

𝒕𝒓 in 𝑴 which is not steady. Then, by Theorem 1, this trace is a sequence of 

transitions (𝒔𝒋−𝟏, 𝒊𝒋, 𝒔𝒋, 𝒃𝒋, (𝒖𝒋, 𝒗𝒋], 𝒅𝒋), 𝟏 ≤ 𝒋 ≤ 𝒏, such that for some pair of 

integers 𝒎 and 𝒌, where 𝟏 ≤ 𝒌 < 𝒎 ≤ 𝒏, two inequalities  

∑ 𝒖𝒋

𝒎

𝒋=𝒌+𝟏

≤ 𝒅𝒌 − 𝒅𝒎 ≤ ∑ 𝒗𝒋

𝒎

𝒋=𝒌+𝟏

 

 hold. It should be noticed, that, by the same Theorem 1, the trace 𝒕𝒓′ which 

includes only the transitions (𝒔𝒋−𝟏, 𝒊𝒋, 𝒔𝒋, 𝒃𝒋, (𝒖𝒋, 𝒗𝒋], 𝒅𝒋), 𝒎 ≤ 𝒋 ≤ 𝒌, is not steady as 

well. Hence, 𝒎 − 𝒌 > 𝒑, and we have the following sequence of inequalities  

𝒅𝒎𝒂𝒙 − 𝒅𝒎𝒊𝒏 ≥ 𝒅𝒎 − 𝒅𝒌 ≥ ∑ 𝒖𝒋

𝒎

𝒋=𝒌+𝟏

> 𝒑 ∗ 𝒖𝒎𝒊𝒏 

which contradicts our choice of 𝒑 = ⌈
𝒅𝒎𝒂𝒙−𝒅𝒎𝒊𝒏

𝒖𝒎𝒊𝒏
⌉. 

End of proof. 

As it follows from Theorems 1 and 2, to guarantee that a given TFSM 𝑴 =
(𝑺, 𝒔𝒊𝒏, 𝑮, 𝝆) is strictly deterministic it is sufficient to consider all traces 

(𝒔𝟎, 𝒂𝟏, 𝒃𝟏, 𝒔𝟏, (𝒖𝟏, 𝒗𝟏], 𝒅𝟏), … , (𝒔𝒏−𝟏, 𝒂𝒏, 𝒃𝒏, 𝒔𝒏, (𝒖𝒏, 𝒗𝒏], 𝒅𝒏) in 𝑴, whose length 

𝒏 does not exceed the value 𝒑 = ⌈
𝒅𝒎𝒂𝒙−𝒅𝒎𝒊𝒏

𝒖𝒎𝒊𝒏
⌉ defined in Theorem 2, and for every 

such trace check that one of the inequalities 𝒅𝟏 − 𝒅𝒏 < ∑ 𝒖𝒋
𝒏
𝒋=𝟐  or 𝒅𝟏 − 𝒅𝒏 >

∑ 𝒗𝒋
𝒏
𝒋=𝟐  holds. Thus, we arrive at 

Corollary 1. Strict Determinacy Checking Problem for TFSMs is decidable. 

4. Strict Determinacy Checking Problem for TFSMs is co-NP-
hard 

Clearly, the decision procedure, based on Theorem 2, is time consuming since 𝑝 

may be exponential of the size of 𝑀 and the number of traces of length 𝑝 in TFSM 

𝑀 is exponential of 𝑝. In this section we show that such an exhaustive search can 

hardly be avoided because SDCP for improved version of TFSMs is co-NP-hard. 

We are aimed to show that the complement of SDCP is NP-hard. To this end we 

consider the Subset-Sum Problem (see [7]) which is known to be NP-complete and 
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demonstrate that this problem can be reduced in polynomial time to the complement 

of SDCP for TFSMs. 

The Subset-Sum Problem (SSP) is that of checking, given a set of integers 𝑸 and an 

integer 𝑳, whether there is any subset 𝑸′, 𝑸′ ⊆ 𝑸, such that the sum of all its 

elements is equal to 𝑳. More formally, the variant of the SSP we are interested in is 

defined as follows. Let 𝑸 = 𝒎𝟏, 𝒎𝟐, … , 𝒎𝑵 be a sequence of positive integers, and 

𝑳 be also a positive integer. A solution to (𝑸, 𝑳)-instance of SSP is a binary tuple 

𝒛 = ⟨𝝈𝟏, 𝝈𝟐, … , 𝝈𝑵⟩ such that ∑ 𝝈𝒋
𝑵
𝒋=𝟏 𝒎𝒋 = 𝑳. In [7] it was proved that the problem 

of checking the existence of a solution to a given (𝑸, 𝑳)-instance of SSP is NP-

complete. 

 
Fig.2 TFSM 𝑀 

Now, given a (𝑸, 𝑳)-instance of SSP, we show how to build a deterministic TFSM 

𝑴𝑸,𝑳 such that it has an initial trace which is not strictly determined iff this instance 

of SSP has a solution. Let 𝑫 = ∑ 𝒎𝒋
𝑵
𝒋=𝟏 , and 𝜺 and 𝜹 be positive rational numbers 

such that 𝜺 = 𝒐(𝟏/𝑵𝟐) and 𝜹 = 𝒐(𝜺/𝑵𝟐). Consider a TFSM depicted in Fig. 2. 

This machine operates over alphabets 𝑰 = 𝑶 = {𝟎, 𝟏}. It has 𝑵 + 𝟐 states 

𝒔𝟎, 𝒔𝟏, … , 𝒔𝒏, 𝒔𝑵+𝟏. The only transition (𝒔𝟎, 𝟎, 𝟎, 𝒔𝟏, (𝟏, 𝟐], 𝑳 + 𝑫) leads from the 

initial state 𝒔𝟎 to 𝒔𝟏. From each state 𝒔𝒋, 𝟏 ≤ 𝒋 < 𝑵, two transitions 

(𝒔𝒋, 𝟏, 𝟏, 𝒔𝒋+𝟏, (𝒎𝒋 − 𝜺, 𝒎𝒋 + 𝜺], 𝜹) and (𝒔𝒋, 𝟎, 𝟎, 𝒔𝒋+𝟏, (𝜹, 𝜺], 𝜹) lead to the state 

𝒔𝒋+𝟏. The state 𝒔𝑵 is different: two transitions (𝒔𝑵, 𝟏, 𝟏, 𝒔𝑵+𝟏, (𝒎𝑵 − 𝜺, 𝒎𝑵 + 𝜺], 𝑫) 

and (𝒔𝑵, 𝟎, 𝟎, 𝒔𝑵+𝟏, (𝜹, 𝜺], 𝑫) lead this state to 𝒔𝑵+𝟏. 

First, we make some observations. 

1) Since all transitions outgoing from the states 𝒔𝒋, 𝟏 ≤ 𝒋 < 𝑵, have the same delay 

𝜹, every trace from a state 𝒔𝒌 to a state 𝒔𝓵, where 𝟎 < 𝒌 < 𝓵 ≤ 𝑵, is strictly 

deterministic. 
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2) Since 𝜹 = 𝒐(𝟏/𝑵𝟒) and 𝟎 < 𝜺 = 𝒐(𝟏/𝑵𝟐), for every 𝒌, 𝟏 < 𝒌 ≤ 𝑵, and a 

binary tuple 𝒛 = ⟨𝝈𝒌, 𝝈𝒌+𝟏, … , 𝝈𝑵⟩ the inequalities  

𝜹 − 𝑫 < 𝟎 < 𝑵𝜹 ≤ ∑ (

𝑵

𝒋=𝒌+𝟏

𝝈𝒋(𝒎𝒋 − 𝜺) + (𝟏 − 𝝈𝒋)𝜹) 

 hold. By Theorem 1, this implies that every trace from a state 𝒔𝒌, 𝟏 ≤ 𝒌 ≤ 𝑵, to the 

state 𝒔𝑵+𝟏 is strictly deterministic. 

3) For the same reason the inequalities  

𝑫 + 𝑳 − 𝜹 > ∑ 𝒎𝒋

𝒌

𝒋=𝟏

  +  𝒌𝜺 = ∑(

𝒌

𝒋=𝟏

𝝈𝒋(𝒎𝒋 + 𝜺) + (𝟏 − 𝝈𝒋)𝜺) 

hold for every 𝒌, 𝟏 ≤ 𝒌 < 𝑵, and a binary tuple 𝒛 = ⟨𝝈𝟏, 𝝈𝟐, … , 𝝈𝒌⟩. By Theorem 1, 

this guarantees that every initial trace leading to a state 𝒔𝒌, 𝟏 ≤ 𝒌 ≤ 𝑵 is strictly 

deterministic. 

As for the initial traces that lead to the state 𝒔𝑵+𝟏, due to our choice of 𝜺 and 𝜹, we 

can trust the following chain of reasoning. By definition, a (𝑸, 𝑳)-instance of SSP 

has a solution 𝒛 = ⟨𝝈𝟏, 𝝈𝟐, … , 𝝈𝑵⟩ iff ∑ 𝝈𝒋
𝑵
𝒋=𝟏 𝒎𝒋 = 𝑳. The latter is possible iff two 

following inequalities hold:  

∑ 𝝈𝒋

𝑵

𝒋=𝟏

𝒎𝒋   −  𝜺 + 𝑵𝜹 < 𝑳 < ∑ 𝝈𝒋

𝑵

𝒋=𝟏

(𝒎𝒋)   + 𝑵𝜺 

By taking into account the relationships below  

∑(

𝑵

𝒋=𝟏

𝝈𝒋(𝒎𝒋 − 𝜺) + (𝟏 − 𝝈𝒋)𝜹) < ∑ 𝝈𝒋

𝑵

𝒋=𝟏

𝒎𝒋   −  𝜺 + 𝑵𝜹

∑ 𝝈𝒋

𝑵

𝒋=𝟏

(𝒎𝒋)   + 𝑵𝜺 = ∑(

𝑵

𝒋=𝟏

𝝈𝒋(𝒎𝒋 + 𝜺) + (𝟏 − 𝝈𝒋)𝜺),

 

we can conclude that (1) holds iff another pair of inequalities hold:  

∑(

𝑵

𝒋=𝟏

𝝈𝒋(𝒎𝒋 − 𝜺) + (𝟏 − 𝝈𝒋)𝜹) < 𝑳 < ∑(

𝑵

𝒋=𝟏

𝝈𝒋(𝒎𝒋 + 𝜺) + (𝟏 − 𝝈𝒋)𝜺) 

 But in the context of observations 1) – 3) above, the latter inequalities, as it follows 

from Theorem 1, provide the necessary and sufficient conditions that the initial trace 

in TFSM 𝑴𝑸,𝑳 activated by the input word 𝒛 = ⟨𝝈𝟏, 𝝈𝟐, … , 𝝈𝑵⟩ is not strictly 

deterministic. 

Thus, a (𝑸, 𝑳)-instance of SSP has a solution iff TFSM 𝑴𝑸,𝑳 is not strictly 

deterministic. 

The considerations above bring us to 

Theorem 3. SDCP for TFSMs is co-NP-hard. 

(1) 
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5. Conclusion 

The main contributions of this paper are 

1. the development of a modified version of TFSM which, in our opinion, 

provides a more adequate model of real-time computing systems; 

2. the introduction of the notion of strict deterministic behaviour of TFSM 

and setting up the Strict Determinacy Checking Problem (SDCP) for a 

modified version of TFSMs; 

3. the establishing of an effectively verifiable criterion for the strict 

determinacy property of TFSMs; 

4. the proving that SDCP for TFSMs is co-NP-hard. 

However, some problems concerning strict deterministic behavior of TFSMs still 

remain open. They will be topics for our further research. 

1. In Sections [Sect3] and [Sect4] it was shown that SDCP for TFSMs is co-NP-

hard and in the worst case it can be solved in double exponential time by 

means of a naive exhaustive searching algorithm based on Theorems 1 and 2. 

We think that this complexity upper bound estimate is too much high. The 

question arises, for what complexity class C SDCP for TFSMs is a C-

complete problem. By some indications we assume that SDCP for TFSMs is 

PSPACE-complete problem. 

2. As it can be seen from the proof of Theorem 3, SDCP for TFSMs is 

intractable only if timed parameters of transitions (time guards and delays) 

depend on the number of states in TFSM. But this is not a typical 

phenomenon in real-time systems since in practice the performance of 

individual components of a system does not depend on the size of the system. 

Therefore, it is reasonable to confine ourselves to considering only such 

TFSMs, in which the time guards and the delays are chosen from some fixed 

finite set. As it follows from Theorem 2, for this class of TFSMs SDCP is 

decidable in polynomial time. One may wonder what is the degree of such a 

polynomial, or, in other words, how efficiently the strict determinacy property 

can be checked for TFSMs corresponded to real systems. 

3. In the model of TFSM besides the usual transitions there are also possible 

timeout transitions. A timeout transition fires when a timestamped input letter 

(𝒊, 𝒕) can not activate any usual transition from a current state. In  it was 

shown that in some cases such timeout transitions can not be replaced by any 

combination of ordinary transitions. In the future we are going to study how 

SDCP can be solved for TFSMs with timeouts. 
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Аннотация. Конечные автоматы широко применяются в качестве математических 

моделей при решении многочисленных задач в области программирования, 

проектирования микроэлектронных схем и телекоммуникационных систем. Для 

описания поведения систем реального времени модель конечного автомата может быть 

расширена добавлением в неё часов - параметра непрерывного времени, 

моделируемого вещественной переменной. В автоматах реального времени для 

входных и выходных сигналов указывается время их поступления и выдачи, а 

переходы автомата снабжены описанием задержек, связанных с ожиданием входных 

сигналов и формированием выходных сигналов. Так же, как и для классических 

автоматов дискретного времени, задача минимизации конечных автоматов реального 

времени возникает во многих приложениях этой модели вычислений. Для 

классической модели автоматов реального времени эта задача уже подробно 

рассмотрена. В нашей работе мы предлагаем более сложную модель: в ней порядок 

следования выходных сигналов определяется не только порядком поступления 

входных сигналов, но также и задержкой, связанной с их обработкой. В этой модели 

при выполнении одной и той же последовательности переходов выходные сигналы 

могут выдаваться в разном порядке в зависимости от времени поступления входных 

сигналов. В новой модели автоматов реального времени решению задачи минимизации 

должно предшествовать изучение вопроса строгой детерминированности - 

однозначности поведения автомата на одних и тех же последовательностях переходов. 

В представленной статье приведены и обоснованы необходимые и достаточные 

условия строгой детерминированности автоматов реального времени, а также 

исследованы вопросы, связанные с решением задачи минимизации этой разновидности 

автоматов. 

Ключевые слова: конечные временные автоматы; строго детерминированное 

поведение 
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