An Interactive Specializer Based on
Partial Evaluation for a Java Subset

1. A. Adamovich <i.a.adamovich@gmail.com>
2 And. V. Klimov <klimov@keldysh.ru>
! Ailamazyan Program Systems Institute of Russian Academy of Sciences,
4a Peter the First str., Veskovo, Yaroslavl region, 152021, Russia
?Keldysh Institute of Applied Mathematics of Russian Academy of Sciences,
4 Miusskaya sq., Moscow, 125047, Russia

Abstract. Specialization is a program optimization approach that implies the use of a priori
information about values of some variables. Specialization methods are being developed
since 1970s (mixed computations, partial evaluation, supercompilation). However, it is
surprising, that even after three decades, these promising methods have not been put into the
wide programming practice. One may wonder: What is the reason? Our hypothesis is that the
task of specialization requires much greater human involvement into the specialization
process, the analysis of its results and conducting computer experiments than in the case of
common program optimization in compilers. Hence, specializers should be embedded into
integrated development environments (IDE) familiar to programmers and appropriate
interactive tools should be developed. In this paper we provide a work-in-progress report on
results of development of an interactive specializer based on partial evaluation for a subset of
the Java programming language. The specializer has been implemented within the popular
Eclipse IDE. Scenarios of the human-machine dialogue with the specializer and interactive
tools to compose the specialization task and to control the process of specialization are under
development. An example of application of the current version of the specializer is shown.
The residual program runs several times faster than the source one.

Keywords: program analysis, program transformation, interactive program specialization,
partial evaluation, object-oriented language, integrated development environment.

DOI: 10.15514/ISPRAS-2018-30(4)-2

For citation: Adamovich I.A., Klimov And.V. An Interactive Specializer Based on Partial
Evaluation for a Java Subset. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018. pp.
29-44. DOI: 10.15514/ISPRAS-2018-30(4)-2

! Supported by RFBR research project No. 18-37-00454 (contribution: development of

interactive methods of partial evaluation, design of the architecture and implementation of the

specializer, analysis of related works).

2 Supported by RFBR research project No. 16-01-00813 (contribution: problem statement,

design of methods based on the existing approaches, supervision, analysis of related works).
29

Adamovich ILA., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

1. Introduction

The method of program specialization known as partial evaluation was invented
more than 30 years ago along with the achievement of the famous result [1], [2] of
evaluation of the First, Second and Third Futamura projections [3]-[5] for a tiny
List subset. The first round of research was completed in early 1990s when the main
textbook on partial evaluation had been published [2]. A lot of programming
problems were found to be solved by program specialization (the most known being
the generation of a compiler from an interpreter by the Second Futamura Projection)
and the emergence of a new class of program development tools based on
specialization were expected. Some other program specialization techniques, e.g.,
supercompilation [6], [7], has been developed in parallel as well. However, it is
surprising that even after three decades these promising methods have not been put
into the wide programming practice. One may wonder: What is the reason?

Our hypothesis is that the main expectation that governed the development of
specializers was wrong. The developers of these methods hoped that specializers
could work in fully automatic mode and they just needed to invent some finitely
many features and improvements that solve the problem, after which “the great
goal” would be achieved and happy programmers started using the new tools. They
expected that specializers could work in the similar “black-box mode” as optimizing
compilers. However this did not happen. The time and space complexity of the
program transformations that were necessary for specialization, turned out to be
much higher than the complexity of program optimizations that can be used as
“black boxes” with short and predictable run time and consumed memory.

We argue that automatic methods of program optimization have reached certain
inherent limits. In order to develop and use more powerful tools, we must give up
the expectations that the program analysis and transformation systems will operate
in automatic mode without human intervention. Program specializers possess too
many degrees of freedom and choice, which cannot be resolved by the algorithms of
their kind and, therefore, should use human help.

Based on this observation, we put forward the goal of construction of an interactive
specializer embedded in a habitual integrated development environment (IDE) such
as Eclipse [8]. Eclipse provides a rich open-source toolkit referred to as Java
development tools (JDT) [9], which allows a developer to deal only with essential
tasks of analysis, visualization and transformation of Java code. Adequate human-
machine dialogue tools to control the specializer and deal with the results of
specialization are to be developed. We would like to emphasize that there is strict
separation of concerns between the machine and the human: the specializer
guaranties the functional equivalence of program transformation and the user is
responsible for the control of the specializer in such a way that it produces the code
that satisfied user’s goals and needs (which the machine does not know).

30

Anamosny MNL.A., Kniumos Anj.B. MHTepaKTHBHBI CrielHaIn3aTop MOAMHOXKECTBA s3bIKa JaVa OCHOBAHHBINH HA METOJIC
4acTUYHBIX BeraucieHuit. Tpyovt UCIT PAH, Tom 30, Beim. 4, 2018 r., cTp. 29-44

public class AckermannExample {
public final static long A (long x, long y) {
if (x == @) return y + 1;
else if (y == @) return A(x - 1, 1);
else return A(x - 1, A(X, v - 1));
}

@Specialize

public static long test(long y) {
return A(3, vy);

}

Fig.1. Source code of Ackermann function

We think that partial evaluation is better suited than other specialization methods
(like supercompilation) for human-machine dialogue organized in such a way that
the user comprehends what is happing in the specializer, receives valuable and
interesting information about his code, is capable of adjusting the source code to be
better specialized and controls the specializer. The reason is that the method of
partial evaluation consists of two stages:

o binding-time analysis (BTA) of source code that selects the parts of the
code that are to be evaluated at specialization time, and

o residual program generation (RPG) that follows the information supplied
by BTA, performs specialization proper and produces the resulting code
(referred to as residual).

A pleasant feature of BTA is that its result (called BT annotation) may be naturally
shown on the source code by highlighting and due to such visualization the residual
code is intuitively predictable. We hope that this will allow for easy adoption of
specializers as new programming tools by rank-and-file programmers.
Terminological remark. In the theory of partial evaluation the parts of source code
to be evaluated during specialization are called static. The other source code that is
transferred to the residual program (residualized) is referred to as dynamic. The
term static conflicts with the static modifier in Java and the term dynamic may
be confused with the run-time notions. That is why we avoid using these words in
the partial evaluation sense and use abbreviations S and D instead, e.g.,
S-annotation, D-annotation, S-code, D-code, S-part and D-part of a program.

The contributions of this paper are as follows.

e We show the first results of development of the Java specializer, where
partially evaluated code is restricted to operations on primitive types.

e We demonstrate the work of the specializer by an example of specialization
of the Ackermann function with respect to the first argument.

e We discuss some of the details of implementation in Eclipse and the
methods and features to be implemented in future.

31

Adamovich ILA., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

public class AckermannExample {
public long test(long y) {
return A_3(vy);
}

public final long A_3(long y) {
if (y == ©) return A_2(1);
else return A_2(A_3(y - 1));
}

public final long A_2(long y) {
if (y == 8) return A_1(1);
else return A_1(A_2(y - 1));

}

public final long A_1(long y) {
if (y == 8) return A_8(1);
else return A_B(A_1(y - 1));

}

public final long A_©(long y) {
return y + 1;
}

Fig. 2. Residual code of Ackermann function

The outline of the paper is as follows. In Section 2 we present the basics of partial
evaluation for Java by an example of specialization of the Ackermann function. In
Section 3 a bird-eye view of the implementation of the specializer in the Eclipse
IDE is presented. Section 4 contains a survey of related works in comparison with
our specializer. In Section 5 we conclude.

2. Java Specialization by Example

Fig. 1 and 2 contain screenshots of the source and residual code of the Ackermann
function made from the running specializer in Eclipse IDE.

The method 2 implements the Ackermann function and the method test invokes it
with the first constant argument 3. The Java annotation @Specialize at the
method test specifies that it should be specialized, i.e., its body is to be replaced
with the residual code and the specialized versions of the methods that it invokes are
to be generated and added to the program. The names of the methods 2 and test in
their headers are marked in orange in order to show that they are involved in BTA.
The bodies of these methods are analyzed and annotated: green highlighting marks
S-parts of code. (You see gray highlighting in fig. 1 if you read this paper in a
monochrome print).

32

Anamosny MNL.A., Kniumos Anj.B. MHTepaKTHBHBI CrielHaIn3aTop MOAMHOXKECTBA s3bIKa JaVa OCHOBAHHBINH HA METOJIC
4acTUYHBIX BeraucieHuit. Tpyovt UCIT PAH, Tom 30, Beim. 4, 2018 r., cTp. 29-44

2.1. Binding-Time Analysis

The BTA algorithm for variables and operations of primitive types is rather
straightforward. First, all constants are annotated with S. Then recursively: a
subexpression containing only S-parts becomes s; a local variable declaration and
an assignment with s right-hand sides become s; a method parameter that
correspond to S arguments at all points of invocation becomes s; in case of conflict
of several invocations of the same method the conflicting parameter becomes D; a
conflict on several assignments to a local variable turns it to D as well; an if
statement with the S conditional expression is annotated with S regardless of the
annotation of its branches (this means that i f-else will disappear while one of
the branches will be residualized); other control statements are analyzed and
annotated similarly. When the recursion reaches the fixed point, the remaining parts
of code are annotated with D. D-parts are not highlighted in Figure 1.

This mode of operation of BTA, when each code fragment gets univocal annotation
S or D, is referred to as monovariant. The more general mode when several versions
of annotation are allowed is called polyvariant. The current version of BTA is
monovariant. In future we plan to implement polyvariant BTA for classes and
reference types according the theory developed in [10]-[18].

Monovariant BTA on primitive types can be defined formally as abstract
interpretation on a lattice with 3 elements: undefined < s < D.

As an illustration of monovariance, notice that in figure 1 method 2 is invoked 3
times in the source code, one of which has both s arguments, another 2 invocations
have the first S argument and the second one is D. The first invocation is processed
in the same way as the other two with the second s argument assigned to the D
formal parameter.

2.2. Residual Program Generation

At the generation stage, partial evaluation starts from the method with the
@Specialize annotation and recursively visits all invoked methods in turn.
Notice that, since all statements and methods with side effects are considered D and
hence are residualized rather than executed at specialization time, the order of
specialization of methods does not matter. For each of the specialized methods,
several residual versions can be produced — one for each combination of values of
S arguments. They got different names of the form (in the current version):
source-name_number. They have only those parameters that correspond to D
parameters in the source code.

The current version of the specializer can loop forever if infinitely many values of S
arguments are generated. The production version of the specializer should contain
special debugging means to gracefully leave such situations. This is our future
work. In Figure 2 there are 4 versions of residual method 2 corresponding to values
0, 1, 2, 3 of its first argument. Notice that because of monovariance the invocations

33

Adamovich ILA., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

A 2(1), A 1(1),anda 0(1) have not being evaluated, since the constant 1
correspond to the D parameter of method 2.

2.3. Running Source and Residual Programs

We have chosen this example for presentation, since it demonstrates all main
features of the current version of the specializer. We did not expect a significant
speed-up as it seemed that asymptotically the number of method invocations was
almost the same and the invocations were the most expensive operations in this
example. Thus we were very surprised when the speed-up was about 3 times.

The obtained acceleration can be explained by several reasons. First, calculation
showed that the specialized version performs 1.86 times less Java byte code
instructions. Second and more important, it is natural to suppose that the JIT
compiler in JVM performs inlining of those specialized method that are simpler and
more compact than in the source code.

This example illustrates the principle, which we observed many times in
experiments with various specializers: a specializer does not replace the classic
optimizing compilers. Rather, we observe “composition” of optimizations by a
specializer and a low-level optimizing compiler and hence multiplication of speed-
ups. Residual code produced by specializers is more amendable for classic
optimizations than code written by a human being. We may conclude that
specialization opens up additional opportunities for program optimization.

3. Architecture of Specializer

The specializer has been implemented in the Eclipse development environment
(IDE) [8]. The IDE has open source code and provides points and tools to extend it.

The basis for Eclipse extension is the concept of a plug-in. Each plug-in is an
archive JAR file containing a so-called manifest, a set of files describing the
dependencies of the plug-in and the possibility of its extension (extension points).
Other plug-ins can add their functionality to these extension points. For example,
one might want to add his toolbar extensions to an already implemented toolbar
plug-in.

A small tool is usually implemented as a one plug-in, while a large one is often
provided as a set of plug-ins. Our specializer is implemented as three Eclipse plug-
ins.

The specializer consists of the following plug-ins:

e aplug-in SpecCore is the core of the specializer, which implements its
main functionality;

e aplug-in SpecMarkers is responsible for text highlighting in the Eclipse
editor in accordance with the annotation produced by the SpecCore plug-in;

e aplug-in SpecMenus implements interactions with various menus
(including context menus) and toolbars to provide a user-friendly interface.

34

Anamosny MNL.A., Kniumos Anj.B. MHTepaKTHBHBI CrielHaIn3aTop MOAMHOXKECTBA s3bIKa JaVa OCHOBAHHBINH HA METOJIC
4acTUYHBIX BeraucieHuit. Tpyovt UCIT PAH, Tom 30, Beim. 4, 2018 r., cTp. 29-44

The SpecCore implements the binding-time analysis (BTA) and the generation of a
residual program. When analyzing the source program the plug-in SpecCore uses
the abstract syntax tree (AST) built by the Eclipse Java development tools (JDT).
JDT is a set of plug-ins that provides us with an easy way to manipulate Java source
code.

The second of the three plug-ins that form the specializer is the SpecMarkers plug-
in. It is responsible for highlighting the source code, which allows the programmer
to see which parts of the program are evaluated at specialization time and which are
residualized. This helps him to understand how to change the code to provide better
specialization.

The last part of the specializer is the SpecMenus plug-in. This plug-in uses the
extension points of other plug-ins to add the necessary elements to some menus. It
adds two new buttons to the main toolbar of Eclipse: Enable/Disable the
highlighting and the “Generate optimized Java files” button. Also this plug-in adds
items to the context menu of the Project Explorer and Package Explorer views.

4. Related Work and Comparison

A lot of works are devoted to partial evaluation for functional languages. The book
[2] summarizes the first wave of development of this method.

Later on, research into partial evaluation for imperative “Algol-like” languages [19],
[20] and C [21] was performed. In early 1990's, the first (to our knowledge)
specializer for C was developed, called C-MIX [21], [22]. Chapter 11 of the book
[2] contains its detailed presentation. C-MIX specializes a program in three stages.
The first stage is the analysis of references. For each reference variable, a set of the
variables that it could refer to is built. If the analysis finds that several reference
variables can refer to the same memory, they are labeled identically. The second
stage is the construction of a binding-time annotation of the source code. References
to the same memory area are annotated identically. In case of conflicts, the
annotation is reduced to D as usual. The third stage is the generation of the residual
program.

Specialization of reference types in Java can be similar to elaboration of pointers in
C-MIX. However, Java stricter typing and managed run-time can be leveraged for
deeper specialization. The current version of our specializer annotates all reference
variables D and, therefore, they are left unchanged. Our future work is to add the
binding-time analysis of reference types. Unlike C-MIX, we expect that our
specializer will still work in two stages — without the reference analysis phase.
Further development of ideas of C-MIX led to the creation of a specializer of
programs written in C, called Tempo [23], [24]. This specializer is much like C-
MIX.

The next important step was the development of the first specializer for an object-
oriented language — JSpec for Java [25]. JSpec uses the Harissa compiler [26] to
translate the Java program into C. Then the Tempo specializer mentioned above

35

Adamovich ILA., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

transforms the program. The obtained C-representation of a specialized Java
program is mapped back into Java using the Assirah translator [25]. Finally, the
Aspect] tool weaves the specialized program with the source program to get the
executable Java bytecode. The main limitation of JSpec is that it is capable of
partially evaluating only immutable classes and objects, while mutable objects are
always residualized. Our goal is to waive this restriction.

The most advanced (to our knowledge) partial evaluation method for object-
oriented languages like C# and Java has been developed in CILPE [10]-[18], a
partial evaluator for Common Intermediate Language (CIL), the bytecode of the
Microsoft .NET Framework. It supports almost all of the basic constructs of object-
oriented languages such as C# and Java. In CILPE, a new concept of a binding-time
heap (BT heap) has been introduced. A BT heap is an abstract description of the
state of a run-time heap, which allows us to separate reference type data into
evaluated at specialization time and residualized ones and to avoid the use of the
reference analysis stage as in C-MIX. As a result of specialization, some of the
objects are no longer created in the residual program, and if necessary, local
variables are used instead of object fields. We will base on the results of this
research in our future work to implement BTA of classes and partial evaluation of
objects.

A relatively new specializer of Java programs is Civet [27]. Civet is based on a so-
called Hybrid Partial Evaluation (HPE) approach. Specialization in HPE is
performed in online mode, i.e., in one pass, while the programmer can specify
which parts of the program have s-annotation. On the contrary, in our specializer
we choose the offline approach, i.e., the residual program is built at the stage of
generation of the residual program after the completion of the binding-time analysis,

where information about the S-parts of the program is collected automatically rather
than specified by the user as in Civet.

PE-KeY [28] is a partial evaluator for Java programs based on the KeY verification
system [29]. PE-Key works in two stages. At the first stage, the program is executed
in a symbolic form with the application of a special set of rules. At the second stage,
a residual program is synthesized, while the rules are applied in the opposite
direction. The PE-KeY approach is similar to the classical offline specialization that
our specializer uses: a specialized program is produced in two stages. However, in
the first stage of PE-KeY, the program is executed symbolically, while our binding-
time analysis performs an abstract interpretation of the program. In addition, due to
limitations of the KeY verification system, PE-KeY does not support floating-point
arithmetic, while our specializer supports.

JSpec, Civet, PE-Key deal with objects at specialization time, while the current
version of our specializer annotates classes and variables of reference types with D

! For discussion of the features of and differences between online and offline partial
evaluation see [2, Chapter 7].

36

Anamosny MNL.A., Kniumos Anj.B. MHTepaKTHBHBI CrielHaIn3aTop MOAMHOXKECTBA s3bIKa JaVa OCHOBAHHBINH HA METOJIC
4acTUYHBIX BeraucieHuit. Tpyovt UCIT PAH, Tom 30, Beim. 4, 2018 r., cTp. 29-44

and thus residualizes them unchanged. The extension of our specializer to partial
evaluation of classes and objects is our future work.

The specializers considered above interact with the user through the command line,
so it's extremely difficult to use them. In order for the specialization to be widely
used, it is required to develop the methods of interaction with the user and to embed
the specializer into an integrated development environment convenient for the
programmer, what we are implementing in our specializer. This is a crucial
difference.

We know about just one work on partial evaluation carried out in a practical setting
— the GraalVM toolkit in Oracle Labs [30], [31]. The toolkit is designed for defining
domain-specific languages by interpreters and, nevertheless, achieving high-
performance by using a specializer. The first Futamura projection provides an
opportunity for such acceleration (see [3], [4] and [2, Chapter 1.5.1]): given a
program and an interpreter that executes the program, GraalVM specializes the
interpreter with respect to a part of the given program and produces the machine
code of this part. The resulting code is executed much faster than the original one in
the interpreter. The main goal of GraalVM is to provide a technology similar to just-
in-time (JIT) compilation for the developer of a programming language without the
need to implement the complex machinery of JIT. The interpreter specialization in
GraalVM is not automatic and uses prompts by the interpreter developer. This case
of implementation of partial evaluation confirms that practical application of
specialization requires guidance from the programmer. We conduct our research in
the same direction: methods and tools are being developed to provide the
programmer with information about program behavior under specialization and
levers to control the partial evaluation processes.

5. Conclusion

In this paper we put forward the task of development of an interactive specializer.
We argue that the current stage of program specialization methods has reached
certain limits because the previously implemented specializers do not imply the
participation of the user in the process of specialization. Our specializer uses the
offline partial evaluation approach, where the program transformation if performed
in two stages — binding-time analysis (BTA) and residual program generation
(RPG). We briefly described the architecture of our interactive specializer in the
Eclipse development environment.

We illustrated the work of the specializer with the famous example of the
Ackermann function and the result of its specialization with respect to its first
argument. The specialized program runs several times (about three) faster than the
original one.

We see the following directions for further development of the specializer:

o to develop and implement binding-time analysis and residual program
generation for classes and objects;

37

Adamovich ILA., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

o to implement interactive tools for composing a specialization task and
controlling the process of binding-time analysis and residual program
generation;

¢ to implement tools to visualize the correspondence between source and
residual code;

¢ to demonstrate that a well-developed specializer can convert
well-structured high-level human-oriented code, which can not be
automatically parallelized, into code that can be parallelized by existing
methods and tools;

e to prepare demo programs that benefit from specialization, for example,
building a compiler from an interpreter;

o to generalize the binding-time analysis from monovariant to polyvariant;

¢ to develop an interactive tracer (similar to run-time debuggers) that allows
the user to observe the analysis and generation processes in order to
improve the behavior of his code under specialization.

Availability. The current version of our specializer is available at
ftp://ftp.botik.ru/rented/iaadamovich/Specializer/.

Acknowledgment

We are grateful to our friends and colleagues Yuri Klimov, Arkady Klimov, Sergei
Romanenko, Sergei Abramov for valuable advices on specialization methods in
general and partial evaluation in particular and constructive feedback on the design
of our specializer system.

References

[1].

[2].

3.
[41.

[5].

38

Jones N.D., Sestoft P. and Sendergaard H. An experiment in partial evaluation: the
generation of a compiler generator. Rewriting Techniques and Applications, Lecture
Notes in Computer Science, J.-P. Jouannaud, (Ed.), vol. 202. Springer-Verlag, 1985, pp.
124-140

Jones N.D., Gomard C.K., and Sestoft P. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993, 415 p. Available at:
http://www.itu.dk/~sestoft/pebook/pebook.html, accessed 20.06.2018

Futamura Y. Partial evaluation of computation process — an approach to a compiler-
compiler. Systems, Computers, Controls, vol. 2, no. 5, 1971, pp. 45-50

Futamura Y. Partial evaluation of computation process — an approach to a compiler-
compiler. Higher-Order and Symbolic Computation, vol. 12, no. 4, Dec 1999, pp. 381—
391. Updated and revised version of [3]. Available at:
http://doi.org/10.1023/A:1010095604496, accessed 20.06.2018

Futamura Y. EL1 Partial Evaluator (Progress Report). Center for Research in Computing
Technology, Harvard University, Tech. Rep., 1973. Available at:
http://fi.ftmr.info/PE-Museum/EL1.PDF, accessed 20.06.2018

Anamosny MNL.A., Kniumos Anj.B. MHTepaKTHBHBI CrielHaIn3aTop MOAMHOXKECTBA s3bIKa JaVa OCHOBAHHBINH HA METOJIC
4acTUYHBIX BeraucieHuit. Tpyovt UCIT PAH, Tom 30, Beim. 4, 2018 r., cTp. 29-44

[6].
[71.

[8l.
[9].
[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].

Turchin V.F. The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems, vol. 8, no. 3, 1986, pp. 292-325

Turchin V.F. Supercompilation: techniques and results. Perspectives of System
Informatics, Second International ~ Andrei Ershov Memorial Conference,
Akademgorodok, Novosibirsk, Russia, June 25-28, 1996. Proceedings, Lecture Notes in
Computer Science, D. Bjegrner, M. Broy, and L.V. Pottosin, (Eds.), vol. 1181. Springer,
1996, pp. 227-248

Eclipse Foundation. Eclipse Integrated Development Environment (IDE). Available at:
https://www.eclipse.org, accessed 20.06.2018

Eclipse Foundation. Eclipse Java development tools (JDT). Available at:
https://www.eclipse.org/jdt, accessed 20.06.2018

Klimov Yu.A. An approach to polyvariant binding time analysis for a stack-based
language. First International Workshop on Metacomputation in Russia, Proceedings.
Pereslavl-Zalessky, Russia, July 2-5, 2008. Pereslavl-Zalessky: Ailamazyan University
of Pereslavl, 2008, pp. 78-84. Awvailable at: http://meta2008.pereslavl.ru/accepted-
papers/paper-info-6.html, accessed 20.06.2018

Klimov Yu.A. [Program specialization for object-oriented languages by partial
evaluation: approaches and problems]. Preprinty” IPM im. M.V. Keldy'sha [Keldysh
Institute Preprints], no. 12, 2008 (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2008-12, accessed 20.06.2018

Klimov Yu.A. [Specializer CILPE: examples of object-oriented program specialization].
Preprinty” IPM im. M.V. Keldy'sha [Keldysh Institute Preprints], no. 30, 2008 (in
Russian). Available at: http://library.keldysh.ru/preprint.asp?id=2008-30, accessed
20.06.2018

Klimov Yu.A. [SOOL: an object-oriented stacked-based language for specification and
implementation of program specialization techniques]. Preprinty IPM im. M.V.
Keldy'sha [Keldysh Institute Preprints], no. 44, 2008 (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2008-44, accessed 20.06.2018

Klimov Yu.A. [Specializer CILPE: binding time analysis]. Preprinty” IPM im. M.V.
Keldy sha [Keldysh Institute Preprints], no. 7, 2009 (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2009-07, accessed 20.06.2018

Klimov Yu.A. [Specializer CILPE: residual program generation]. Preprinty” IPM im.
M.V. Keldy'sha [Keldysh Institute Preprints], no. 8, 2009 (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2009-08, accessed 20.06.2018

Klimov Yu.A. [Specializer CILPE: correctness proof]. Preprinty” IPM im. M.V.
Keldy sha [Keldysh Institute Preprints], no. 33, 2009, (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2009-33, accssed 20.06.2018

Klimov Yu.A. [Specialization of programs in object-oriented languages by partial
evaluation]. Ph.D. dissertation, Keldysh Institute of Applied Mathematics of RAS,
Moscow, Russia, Nov 2009, 183 p. (in Russian). Available at:
http://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-
Specializacia_programm_na_ob'ektno-orientirovannyx_yazykah.pdf, accessed
20.06.2018

Klimov Yu.A. [Specializer CILPE: Partial evaluation for object-oriented languages].
Programmny’e sistemy’: teoriia i prilozheniia [Program Systems: Theory and
Applications], no. 3(3), pp. 13-36, 2010 (in Russian). Available at:
http://psta.psiras.ru/read/psta2010_3 13-36.pdf, accessed 20.06.2018

39

Adamovich ILA., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

[19].

[20].

[21].

[22].

[23].

[24].

[25].

[26].

[27].

[28].

[29].

[30].

[31].

40

Bulyonkov M.A. and Kochetov D.V. Practical aspects of specialization of Algol-like
programs. Dagstuhl Seminar on Partial Evaluation, Lecture Notes in Computer Science,
0. Danvy, R. Gluck, and P. Thiemann, (Eds.), vol. 1110. Springer, 1996, pp. 17-32
Ershov A.P. and Itkin V.E. Correctness of mixed computation in Algol-like programs.
MFCS, Lecture Notes in Computer Science, J. Gruska, (Ed.), vol. 53. Springer, 1977,
pp. 59-77

Andersen L.O. Program analysis and specialization for the C programming language.
Ph.D. dissertation, DIKU, University of Copenhagen, May 1994, (DIKU report 94/19)
Andersen L.O. Binding-time analysis and the taming of C pointers. Proceedings of the
1993 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM '93). ACM, 1993, pp. 47-58. Awvailable at:
http://dx.doi.org/10.1145/154630.154636, accessed: 20.06.2018

Consel C., Lawall J.L., and Meur A.-F.L. A tour of Tempo: a program specializer for the
C language. Sci. Comput. Program., vol. 52, no. 1-3, 2004, pp. 341-370

Meur A.L., Lawall J.L. and Consel C. Towards bridging the gap between programming
languages and partial evaluation. Proceedings of the 2002 ACM SIGPLAN Workshop
on Partial Evaluation and Semantics-Based Program Manipulation (PEPM ’02),
Portland, Oregon, USA, January 14-15, 2002, P. Thiemann, (Ed.). ACM, 2002, pp. 9-
18. Available at: http://doi.acm.org/10.1145/503032.503033, accessed 20.06.2018
Schultz U.P., Lawall J.L. and Consel C. Automatic program specialization for Java.
ACM Trans. Program. Lang. Syst., vol. 25, no. 4, 2003, pp. 452-499

Muller G., Moura B., Bellard F. and Consel C. Harissa: A flexible and efficient Java
environment mixing bytecode and compiled code. Proceedings of the Third USENIX
Conference on Object-Oriented Technologies (COOTS), June 16-20, 1997, Portland,
Oregon, USA, S. Vinoski, (Ed.). USENIX, 1997, pp. 1-20. Available at:
http://www.usenix.org/publications/library/proceedings/coots97/muller.html, accessed
20.06.2018.

Shali A. and Cook W.R. Hybrid partial evaluation. SIGPLAN Not., vol. 46, no. 10, Oct.
2011, pp. 375-390. Available at: http://doi.acm.org/10.1145/2076021.2048098,
accessed 20.06.2018.

Ji R. and Bubel R. PE-KeY: A partial evaluator for Java programs. Proceedings of the
9th International Conference on Integrated Formal Methods, IFM’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 283— 295. Available at:
http://dx.doi.org/10.1007/978-3-642-30729-4_20, accessed 20.06.2018

Ahrendt W., Beckert B., Bubel R., Hahnle R., Schmitt P.H. and Ulbrich M., (Eds.).
Deductive Software Verification — The KeY Book — From Theory to Practice. Lecture
Notes in Computer Science. Springer, 2016, vol. 10001. Available at:
https://doi.org/10.1007/978-3-319-49812-6, accessed 20.06.2018

Wiirthinger T., Wimmer C., W6 A., Stadler L., Duboscq G., Humer C., Richards G.,
Simon D., and Wolczko M. One VM to rule them all. Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! 2013. New York, NY, USA: ACM, 2013, pp. 187—
204. Awvailable at: http://doi.acm.org/10.1145/2509578.2509581, accessed 20.06.2018
Wiirthinger T., Wimmer C., Humer C., W6 A., Stadler L., Seaton C., Duboscq G.,
Simon D., and Grimmer M. Practical partial evaluation for high-performance dynamic
language runtimes. SIGPLAN Not., vol. 52, no. 6, Jun. 2017, pp. 662-676. Available at:
http://doi.acm.org/10.1145/3140587.3062381, accessed 20.06.2018.

Anamosny MNL.A., Kniumos Anj.B. MHTepaKTHBHBI CrielHaIn3aTop MOAMHOXKECTBA s3bIKa JaVa OCHOBAHHBINH HA METOJIC
4acTUYHBIX BeraucieHuit. Tpyovt UCIT PAH, Tom 30, Beim. 4, 2018 r., cTp. 29-44

MHTepaKTMBHbIVI cneuuvanun3aTop NnogmMHoOXecTBa A3blKa
Java, OCHOBaHHbIW Ha MeToAe YaCTUYHbIX BbIYUCNEHUN

Y 1.A. Avamosuu <i.a.adamovich@gmail.com>
2 410.B. Knumos <klimov@keldysh.ru>
1H)Ltcmumym npozpammnuix cucmem um. A.K. Avnamasana PAH,
152021, Poccusa, Apocrasckas oba., c. Becvroso, yn. [lempa Ilepsoeo, 0. 4a
2HHcmumym npuxnaono mamemamuru um. M.B. Kenoviua PAH,
125047, Poccus, Mocksa, Muycckas na., 0. 4

AnHotaums. Crenuanusanis — 3TO ONTUMH3ALMS IPOrpaMM Ha OCHOBE MCIIOJIB30BaHHS
Hanepéz 3aJaHHON MHGOPMALMH O 3HAYCHHH YacTH IEPEeMEHHBIX. MeTo/bl CIennaIn3ani
mporpaMMm pasBuBaioTca ¢ 1970-X rogoB (CMEIIaHHBIC BBIYUCICHHSA, YaCTHYHBIC
BBIYMCIICHUS, cynepkoMmwisinys). OAHAKo yIWBUTENBHO, YTO MOCHE TPEX NeCATHICTHH
pa3paboTaHHbIE CHEHAIN3aTOPHl O CUX MOP HE JOCTHIJIH TOTO YPOBHS, KOTJIa OHM CTaHYT
HPUTOJHBI ISl IIMPOKOTO IPAKTHYECKOTO IpHMEHEHHs. BosHuKaeT Bompoc: B 4éM ke
npuunHa? Harma rumore3a COCTOMT B TOM, YTO 3ajada CIICHHAIN3aLUH TPEOYIOT ropaslo
OONbBIIET0 y4acTHs 4YeJNOBeKa B YNPABICHHH IPOLECCOM CHEHMAIM3ALUH, aHAIIH3e
pe3yJIbTaToOB, IPOBEJCHUH KOMIBIOTEPHBIX OSKCIICPHUMEHTOB, YeM B Cliydyae OOBIYHOM
ONTUMH3AIMU MPOTPaMMBI B KOMIMILITOpaX. Tpebyercss MOrpyKeHue CIHELHaau3aTopoB B
TIPUBBIYHBIC JUISL TPOTPAMMHUCTOB HHTETPUPOBAHHBIC CPEBbl Pa3pabOTKH, BKIIFOYAs CO3aHUC
COOTBETCTBYIOIINX JWAJOTOBBIX CPEACTB. B JaHHOW cTaThe ONMMUCHIBAIOTCS PE3YIBTATHI
pa3paboTKM M peaan3alliid METOJI0B MHTEPAKTUBHOM CIIeNHaNM3allid HA OCHOBE YaCTUYHBIX
BBIYMCIICHUH /IS TIOZIMHOJKECTBA si3bIKa Java. Peannzanys BEINOJIHEHA B paMKax MOMYJISIPHOM
cpenbl paspabotku (IDE) Eclipse. Pa3pabarkiBaroTcsi CIieHapUH YENIOBEKO-MAIIHMHHOTO
JManora ¢ MOJCHCTEMOIl CHeLMaNu3allii, WHTEPaKTHBHBIC CPEACTBA JUISL COCTABIICHHS
3aJaHUs Ha CHELHUAIM3AIMI0 M YIpaBJICHHE IMPOLECCOM CIeNHaan3anuu. IIpuBoauTCs
TPUMEp YCIEIIHOr0 MPUMEHEeHNs pa3paboTaHHOro crerpanuiaropa. OcraTtodHas mporpamma
paboTaeT B HECKOJBKO pa3 ObICTpee YeM UCXOIHAS.

KnawoueBble cioBa: aHamu3 MOporpaMM; TMpeoOpa3oBaHHE MPOrpaMM; WHTEPAKTHBHAS
CTCIUATH3AIUS TIPOTPaMM; YaCTHUHBIC BBIUHCICHHS; OOBEKTHO-OPHUCHTHPOBAHHBIA S3bIK;
cpena pa3paboTKH MporpaMm

DOI: 10.15514/ISPRAS-2018-30(4)-2

Jas uuTupoBanusi: Anamosuu M.A., KnumoB Aua.B. MHTepakTuBHBIN cnenuanuzaTop
TTOJIMHO’KECTBA S3bIKa Java OCHOBaHHBIN Ha METOJe YacTHYHBIX BbraucieHuil. Tpymsr UCIT
PAH, tom 30, Beim. 4, 2018 1., ctp. 29-44 (Ha anrmuiickom si3bike). DOI: 10.15514/ISPRAS-
2018-30(4)-2

Cnucok nutepatypbl

[1]. Jones N.D., Sestoft P. and Sendergaard H. An experiment in partial evaluation: the
generation of a compiler generator. Rewriting Techniques and Applications, Lecture
Notes in Computer Science, J.-P. Jouannaud, (Ed.), vol. 202. Springer-Verlag, 1985, pp.
124-140

41

Adamovich ILA., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

2.

3].
[41.

[5].

[6].
[71.

[8].

[9].

[10].

[11].

[12].

[13].

[14].

[15].

42

Jones N.D., Gomard C.K., and Sestoft P. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993. ToctymHo 1o ccbuike:
http://www.itu.dk/~sestoft/pebook/pebook.html, nara o6parenus: 20.06.2018

Futamura Y. Partial evaluation of computation process — an approach to a compiler-
compiler. Systems, Computers, Controls, vol. 2, no. 5, 1971, pp. 45-50

Futamura Y. Partial evaluation of computation process — an approach to a compiler-
compiler. Higher-Order and Symbolic Computation, vol. 12, no. 4, Dec 1999, pp. 381—
391. Updated and revised version of [3]. JocTymHo 10 ccbLIKe:
http://doi.org/10.1023/A:1010095604496, nata obpaienus: 20.06.2018

Futamura Y. EL1 Partial Evaluator (Progress Report). Center for Research in Computing
Technology, Harvard University, Tech. Rep., 1973. JTocTynHO 10 CCBUIKE:
http:/fi.ftmr.info/PE-Museum/EL1.PDF, nara o6pamenus: 20.06.2018

Turchin V.F. The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems, vol. 8, no. 3, 1986, pp. 292325

Turchin V.F. Supercompilation: techniques and results. Perspectives of System
Informatics, Second International ~Andrei Ershov Memorial Conference,
Akademgorodok, Novosibirsk, Russia, June 25-28, 1996. Proceedings, Lecture Notes in
Computer Science, D. Bjogrner, M. Broy, and L.V. Pottosin, (Eds.), vol. 1181. Springer,
1996, pp. 227-248

Eclipse Foundation. Eclipse Integrated Development Environment (IDE). TocrymHo 1o
cesuike: https://www.eclipse.org, nara obparuenus: 20.06.2018

Eclipse Foundation. Eclipse Java development tools (JDT). JIoCTyIHO 110 CCBLIKE:
https://www.eclipse.org/jdt, nata o6pamenus: 20.06.2018

Klimov Yu.A. An approach to polyvariant binding time analysis for a stack-based
language. First International Workshop on Metacomputation in Russia, Proceedings.
Pereslavl-Zalessky, Russia, July 2-5, 2008. Pereslavl-Zalessky: Ailamazyan University
of Pereslavl, 2008, pp. 78-84. JlocTyIHO MO CCBUIKE:
http://meta2008.pereslavl.ru/accepted-papers/paper-info-6.html, mata oGpamenwus:
20.06.2018

Kmumor 10.A. OcoOeHHOCTH TpUMEHEHHsS METOJa YaCTUYHBIX BBIUHCICHUH K
CrieHaTN3alyy IPOorpaMM Ha 00BEKTHO-OPHEHTHPOBAHHEIX s3bIKax. [Ipenpunter UTIM
uM. M.B. Kenzpima, Ne 12, 2008. JIocTyImHO 1O CChIIKE:
http://library.keldysh.ru/preprint.asp?id=2008-12, nara o6paruenus: 20.06.2018

Kimumos 10.A. Bo3moxuoctr crnermanuzaropa CILPE u npuMeps! ero nmpuMeHeHHs K
nporpaMmam Ha OOBEKTHO-OPHEHTHPOBaHHBIX s3bikax. IIpempuntsl UIIM um. M.B.
Kennmpmra, Ne 30, 2008. JfocTymHO 110 CCBUIKE:
http://library.keldysh.ru/preprint.asp?id=2008-30, nara o6pamenus: 20.06.2018

Kmmos 10.A. SOOL: 06beKTHO-OpHEHTHPOBAHHBIH CTEKOBBIN S3bIK I (YOPMATBEHOTO
ONMCaHUsl U pealu3aluyd MeTOAOB creuuanuzauuu nporpamm. IIpenpunter UIIM um.
M.B. Kenapia, Ne 44, 2008. JIocTyImHO 1Mo CCBLIKeE:
http://library.keldysh.ru/preprint.asp?id=2008-44, nara o6paruenus: 20.06.2018

Kiumos 10.A. Crnenuanuzarop CILPE: ananu3 Bpemen csizeiBanus. [Ipenpuntsr UTIM
M. M.B. Kengpima, Ne 7, 2009. [locTymHO 1O CCBUIKE:
http://library.keldysh.ru/preprint.asp?id=2009-07, nara o6paruenus: 20.06.2018

Kmamo FO.A. Cremmammsarop CILPE: renepammst OCTaTOYHOH IpOrpamMMBI.
IIpenpunter UTIM nm. M.B. Kennsima, Ne 8, 2009. locTymHO 1O CCBUIKE:
http://library.keldysh.ru/preprint.asp?id=2009-08, nara o6paruenus: 20.06.2018

Anamosny MNL.A., Kniumos Anj.B. MHTepaKTHBHBI CrielHaIn3aTop MOAMHOXKECTBA s3bIKa JaVa OCHOBAHHBINH HA METOJIC
4acTUYHBIX BeraucieHuit. Tpyovt UCIT PAH, Tom 30, Beim. 4, 2018 r., cTp. 29-44

[16].

[17].

[18].

[19].

[20].

[21].

[22].

[23].

[24].

[25].

[26].

[27].

[28].

Kmmos 10.A. Crenmammszatop CILPE: nokasarensctBo koppekTHOCTH. [IpempuHTEI
WIIM um. M.B. Kengpima, Ne 33, 2009. JIocTymHO 1O cCBUIKE:
http://library.keldysh.ru/preprint.asp?id=2009-33, nara o6paruenus: 20.06.2018

Kmumor 10.A. Cnenmanuzanuss mporpamMMm Ha OOBEKTHO-OPUEHTHUPOBAHHBIX S3BIKAX
METOJIOM YaCTHYHBIX Bbraucienuii. Jluc. K.¢.-M.H., ITHCTUTYT MpUKIaIHO MaTeMaTHKK
um. M.B. Kennsimma PAH, Mockga, Poccus, Hosops 2009, 183 crp.

HocrynHo o cceuike: http://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-
Specializacia_programm_na_ob'ektno-orientirovannyx_yazykah.pdf,

nata oopamenus: 20.06.2018

Kmumor 10.A. Cnenmamuzatop CILPE: 4gactwuHble BBIUUCICHHS IS OOBEKTHO-
OPUECHTUPOBAHHBIX SI3bIKOB. IIporpaMMHBIC cHCTeMbI Teopust u mpuioxkenus, Ne 3(3),
2010, crp. 13-36 JlocrynHo mo ceeuike: http://psta.psiras.ru/read/psta2010_3_13-36.pdf,
nara oopamenus: 20.06.2018

Bulyonkov M.A. and Kochetov D.V. Practical aspects of specialization of Algol-like
programs. Dagstuhl Seminar on Partial Evaluation, Lecture Notes in Computer Science,
O. Danvy, R. Gluck, and P. Thiemann, (Eds.), vol. 1110. Springer, 1996, pp. 17-32
Ershov A.P. and Itkin V.E. Correctness of mixed computation in Algol-like programs.
MFCS, Lecture Notes in Computer Science, J. Gruska, (Ed.), vol. 53. Springer, 1977,
pp. 59-77

Andersen L.O. Program analysis and specialization for the C programming language.
Ph.D. dissertation, DIKU, University of Copenhagen, May 1994, (DIKU report 94/19)
Andersen L.O. Binding-time analysis and the taming of C pointers. Proceedings of the
1993 ACM SIGPLAN symposium on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM '93). ACM, 1993, pp. 47-58. JIOCTYMHO 1O CCBUIKE:
http://dx.doi.org/10.1145/154630.154636, nara o6pamenus: 20.06.2018

Consel C., Lawall J.L., and Meur A.-F.L. A tour of Tempo: a program specializer for the
C language. Sci. Comput. Program., vol. 52, no. 1-3, 2004, pp. 341-370

Meur A.L., Lawall J.L. and Consel C. Towards bridging the gap between programming
languages and partial evaluation. Proceedings of the 2002 ACM SIGPLAN Workshop
on Partial Evaluation and Semantics-Based Program Manipulation (PEPM ’02),
Portland, Oregon, USA, January 14-15, 2002, P. Thiemann, (Ed.). ACM, 2002, pp. 9-
18. TocrynHo 1o cesuike: http://doi.acm.org/10.1145/503032.503033, nata oOpaiieHus:
20.06.2018

Schultz U.P., Lawall J.L. and Consel C. Automatic program specialization for Java.
ACM Trans. Program. Lang. Syst., vol. 25, no. 4, 2003, pp. 452499

Muller G., Moura B., Bellard F. and Consel C. Harissa: A flexible and efficient Java
environment mixing bytecode and compiled code. Proceedings of the Third USENIX
Conference on Object-Oriented Technologies (COOTS), June 16-20, 1997, Portland,
Oregon, USA, S. Vinoski, (Ed.). USENIX, 1997, pp. 1-20. JIoCTyITHO 1O CChUIKE:
http://www.usenix.org/publications/library/proceedings/coots97/muller.html,

nata obpamenus: 20.06.2018

Shali A. and Cook W.R. Hybrid partial evaluation. SIGPLAN Not., vol. 46, no. 10, Oct.
2011, pp. 375-390. JlocTymHO MO CCBIIKE:

http://doi.acm.org/10.1145/2076021.2048098, nara o6pamuienus: 20.06.2018

Ji R. and Bubel R. PE-KeY: A partial evaluator for Java programs. Proceedings of the
9th International Conference on Integrated Formal Methods, IFM’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 283— 295. JTocTynHO MO CCBLIKE:
http://dx.doi.org/10.1007/978-3-642-30729-4_20, nata obparuenus: 20.06.2018

43

Adamovich ILA., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

[29].

[30].

[31].

44

Ahrendt W., Beckert B., Bubel R., Hahnle R., Schmitt P.H. and Ulbrich M., (Eds.).
Deductive Software Verification — The KeY Book — From Theory to Practice. Lecture
Notes in Computer Science. Springer, 2016, vol. 10001. [locTymHO MO CCBUIKE:
https://doi.org/10.1007/978-3-319-49812-6, nara obparuenus: 20.06.2018

Wiirthinger T., Wimmer C., Wo6B A., Stadler L., Duboscq G., Humer C., Richards G.,
Simon D., and Wolczko M. One VM to rule them all. Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! 2013. New York, NY, USA: ACM, 2013, pp. 187-
204. JHocrymHo mo cceuike: http://doi.acm.org/10.1145/2509578.2509581, nara
obpamienus: 20.06.2018

Wiirthinger T., Wimmer C., Humer C., W6 A., Stadler L., Seaton C., Duboscq G.,
Simon D., and Grimmer M. Practical partial evaluation for high-performance dynamic
language runtimes. SIGPLAN Not., vol. 52, no. 6, Jun. 2017, pp. 662-676. {octyrHo
no ceeuike: http://doi.acm.org/10.1145/3140587.3062381, nara o6pamenus: 20.06.2018

