
29

An Interactive Specializer Based on
Partial Evaluation for a Java Subset

1
I. A. Adamovich <i.a.adamovich@gmail.com>

2
And. V. Klimov <klimov@keldysh.ru>

1
Ailamazyan Program Systems Institute of Russian Academy of Sciences,

4a Peter the First str., Veskovo, Yaroslavl region, 152021, Russia
2
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences,

4 Miusskaya sq., Moscow, 125047, Russia

Abstract. Specialization is a program optimization approach that implies the use of a priori

information about values of some variables. Specialization methods are being developed

since 1970s (mixed computations, partial evaluation, supercompilation). However, it is

surprising, that even after three decades, these promising methods have not been put into the

wide programming practice. One may wonder: What is the reason? Our hypothesis is that the

task of specialization requires much greater human involvement into the specialization

process, the analysis of its results and conducting computer experiments than in the case of

common program optimization in compilers. Hence, specializers should be embedded into

integrated development environments (IDE) familiar to programmers and appropriate

interactive tools should be developed. In this paper we provide a work-in-progress report on

results of development of an interactive specializer based on partial evaluation for a subset of

the Java programming language. The specializer has been implemented within the popular

Eclipse IDE. Scenarios of the human-machine dialogue with the specializer and interactive

tools to compose the specialization task and to control the process of specialization are under

development. An example of application of the current version of the specializer is shown.

The residual program runs several times faster than the source one.

Keywords: program analysis, program transformation, interactive program specialization,

partial evaluation, object-oriented language, integrated development environment.

DOI: 10.15514/ISPRAS-2018-30(4)-2

For citation: Adamovich I.A., Klimov And.V. An Interactive Specializer Based on Partial

Evaluation for a Java Subset. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018. pp.

29-44. DOI: 10.15514/ISPRAS-2018-30(4)-2

1 Supported by RFBR research project No. 18-37-00454 (contribution: development of

interactive methods of partial evaluation, design of the architecture and implementation of the

specializer, analysis of related works).
2 Supported by RFBR research project No. 16-01-00813 (contribution: problem statement,

design of methods based on the existing approaches, supervision, analysis of related works).

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP

RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

30

1. Introduction

The method of program specialization known as partial evaluation was invented

more than 30 years ago along with the achievement of the famous result [1], [2] of

evaluation of the First, Second and Third Futamura projections [3]–[5] for a tiny

List subset. The first round of research was completed in early 1990s when the main

textbook on partial evaluation had been published [2]. A lot of programming

problems were found to be solved by program specialization (the most known being

the generation of a compiler from an interpreter by the Second Futamura Projection)

and the emergence of a new class of program development tools based on

specialization were expected. Some other program specialization techniques, e.g.,

supercompilation [6], [7], has been developed in parallel as well. However, it is

surprising that even after three decades these promising methods have not been put

into the wide programming practice. One may wonder: What is the reason?

Our hypothesis is that the main expectation that governed the development of

specializers was wrong. The developers of these methods hoped that specializers

could work in fully automatic mode and they just needed to invent some finitely

many features and improvements that solve the problem, after which “the great

goal” would be achieved and happy programmers started using the new tools. They

expected that specializers could work in the similar “black-box mode” as optimizing

compilers. However this did not happen. The time and space complexity of the

program transformations that were necessary for specialization, turned out to be

much higher than the complexity of program optimizations that can be used as

“black boxes” with short and predictable run time and consumed memory.

We argue that automatic methods of program optimization have reached certain

inherent limits. In order to develop and use more powerful tools, we must give up

the expectations that the program analysis and transformation systems will operate

in automatic mode without human intervention. Program specializers possess too

many degrees of freedom and choice, which cannot be resolved by the algorithms of

their kind and, therefore, should use human help.

Based on this observation, we put forward the goal of construction of an interactive

specializer embedded in a habitual integrated development environment (IDE) such

as Eclipse [8]. Eclipse provides a rich open-source toolkit referred to as Java

development tools (JDT) [9], which allows a developer to deal only with essential

tasks of analysis, visualization and transformation of Java code. Adequate human-

machine dialogue tools to control the specializer and deal with the results of

specialization are to be developed. We would like to emphasize that there is strict

separation of concerns between the machine and the human: the specializer

guaranties the functional equivalence of program transformation and the user is

responsible for the control of the specializer in such a way that it produces the code

that satisfied user’s goals and needs (which the machine does not know).

Адамович И.А., Климов Анд.В. Интерактивный специализатор подмножества языка Java основанный на методе

частичных вычислений. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 29-44

31

Fig.1. Source code of Ackermann function

We think that partial evaluation is better suited than other specialization methods

(like supercompilation) for human-machine dialogue organized in such a way that

the user comprehends what is happing in the specializer, receives valuable and

interesting information about his code, is capable of adjusting the source code to be

better specialized and controls the specializer. The reason is that the method of

partial evaluation consists of two stages:

 binding-time analysis (BTA) of source code that selects the parts of the

code that are to be evaluated at specialization time, and

 residual program generation (RPG) that follows the information supplied

by BTA, performs specialization proper and produces the resulting code

(referred to as residual).

A pleasant feature of BTA is that its result (called BT annotation) may be naturally

shown on the source code by highlighting and due to such visualization the residual

code is intuitively predictable. We hope that this will allow for easy adoption of

specializers as new programming tools by rank-and-file programmers.

Terminological remark. In the theory of partial evaluation the parts of source code

to be evaluated during specialization are called static. The other source code that is

transferred to the residual program (residualized) is referred to as dynamic. The

term static conflicts with the static modifier in Java and the term dynamic may

be confused with the run-time notions. That is why we avoid using these words in

the partial evaluation sense and use abbreviations S and D instead, e.g.,

S-annotation, D-annotation, S-code, D-code, S-part and D-part of a program.

The contributions of this paper are as follows.

 We show the first results of development of the Java specializer, where

partially evaluated code is restricted to operations on primitive types.

 We demonstrate the work of the specializer by an example of specialization

of the Ackermann function with respect to the first argument.

 We discuss some of the details of implementation in Eclipse and the

methods and features to be implemented in future.

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP

RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

32

Fig. 2. Residual code of Ackermann function

The outline of the paper is as follows. In Section 2 we present the basics of partial

evaluation for Java by an example of specialization of the Ackermann function. In

Section 3 a bird-eye view of the implementation of the specializer in the Eclipse

IDE is presented. Section 4 contains a survey of related works in comparison with

our specializer. In Section 5 we conclude.

2. Java Specialization by Example

Fig. 1 and 2 contain screenshots of the source and residual code of the Ackermann

function made from the running specializer in Eclipse IDE.

The method A implements the Ackermann function and the method test invokes it

with the first constant argument 3. The Java annotation @Specialize at the

method test specifies that it should be specialized, i.e., its body is to be replaced

with the residual code and the specialized versions of the methods that it invokes are

to be generated and added to the program. The names of the methods A and test in

their headers are marked in orange in order to show that they are involved in BTA.

The bodies of these methods are analyzed and annotated: green highlighting marks

S-parts of code. (You see gray highlighting in fig. 1 if you read this paper in a

monochrome print).

Адамович И.А., Климов Анд.В. Интерактивный специализатор подмножества языка Java основанный на методе

частичных вычислений. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 29-44

33

2.1. Binding-Time Analysis

The BTA algorithm for variables and operations of primitive types is rather

straightforward. First, all constants are annotated with S. Then recursively: a

subexpression containing only S-parts becomes S; a local variable declaration and

an assignment with S right-hand sides become S; a method parameter that

correspond to S arguments at all points of invocation becomes S; in case of conflict

of several invocations of the same method the conflicting parameter becomes D; a

conflict on several assignments to a local variable turns it to D as well; an if

statement with the S conditional expression is annotated with S regardless of the

annotation of its branches (this means that if-else will disappear while one of

the branches will be residualized); other control statements are analyzed and

annotated similarly. When the recursion reaches the fixed point, the remaining parts

of code are annotated with D. D-parts are not highlighted in Figure 1.

This mode of operation of BTA, when each code fragment gets univocal annotation

S or D, is referred to as monovariant. The more general mode when several versions

of annotation are allowed is called polyvariant. The current version of BTA is

monovariant. In future we plan to implement polyvariant BTA for classes and

reference types according the theory developed in [10]–[18].

Monovariant BTA on primitive types can be defined formally as abstract

interpretation on a lattice with 3 elements: undefined < S < D.

As an illustration of monovariance, notice that in figure 1 method A is invoked 3

times in the source code, one of which has both S arguments, another 2 invocations

have the first S argument and the second one is D. The first invocation is processed

in the same way as the other two with the second S argument assigned to the D

formal parameter.

2.2. Residual Program Generation

At the generation stage, partial evaluation starts from the method with the

@Specialize annotation and recursively visits all invoked methods in turn.

Notice that, since all statements and methods with side effects are considered D and

hence are residualized rather than executed at specialization time, the order of

specialization of methods does not matter. For each of the specialized methods,

several residual versions can be produced — one for each combination of values of

S arguments. They got different names of the form (in the current version):

source-name_number. They have only those parameters that correspond to D

parameters in the source code.

The current version of the specializer can loop forever if infinitely many values of S

arguments are generated. The production version of the specializer should contain

special debugging means to gracefully leave such situations. This is our future

work. In Figure 2 there are 4 versions of residual method A corresponding to values

0, 1, 2, 3 of its first argument. Notice that because of monovariance the invocations

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP

RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

34

A_2(1), A_1(1), and A_0(1) have not being evaluated, since the constant 1

correspond to the D parameter of method A.

2.3. Running Source and Residual Programs

We have chosen this example for presentation, since it demonstrates all main

features of the current version of the specializer. We did not expect a significant

speed-up as it seemed that asymptotically the number of method invocations was

almost the same and the invocations were the most expensive operations in this

example. Thus we were very surprised when the speed-up was about 3 times.

The obtained acceleration can be explained by several reasons. First, calculation

showed that the specialized version performs 1.86 times less Java byte code

instructions. Second and more important, it is natural to suppose that the JIT

compiler in JVM performs inlining of those specialized method that are simpler and

more compact than in the source code.

This example illustrates the principle, which we observed many times in

experiments with various specializers: a specializer does not replace the classic

optimizing compilers. Rather, we observe “composition” of optimizations by a

specializer and a low-level optimizing compiler and hence multiplication of speed-

ups. Residual code produced by specializers is more amendable for classic

optimizations than code written by a human being. We may conclude that

specialization opens up additional opportunities for program optimization.

3. Architecture of Specializer

The specializer has been implemented in the Eclipse development environment

(IDE) [8]. The IDE has open source code and provides points and tools to extend it.

The basis for Eclipse extension is the concept of a plug-in. Each plug-in is an

archive JAR file containing a so-called manifest, a set of files describing the

dependencies of the plug-in and the possibility of its extension (extension points).

Other plug-ins can add their functionality to these extension points. For example,

one might want to add his toolbar extensions to an already implemented toolbar

plug-in.

A small tool is usually implemented as a one plug-in, while a large one is often

provided as a set of plug-ins. Our specializer is implemented as three Eclipse plug-

ins.

The specializer consists of the following plug-ins:

 a plug-in SpecCore is the core of the specializer, which implements its

main functionality;

 a plug-in SpecMarkers is responsible for text highlighting in the Eclipse

editor in accordance with the annotation produced by the SpecCore plug-in;

 a plug-in SpecMenus implements interactions with various menus

(including context menus) and toolbars to provide a user-friendly interface.

Адамович И.А., Климов Анд.В. Интерактивный специализатор подмножества языка Java основанный на методе

частичных вычислений. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 29-44

35

The SpecCore implements the binding-time analysis (BTA) and the generation of a

residual program. When analyzing the source program the plug-in SpecCore uses

the abstract syntax tree (AST) built by the Eclipse Java development tools (JDT).

JDT is a set of plug-ins that provides us with an easy way to manipulate Java source

code.

The second of the three plug-ins that form the specializer is the SpecMarkers plug-

in. It is responsible for highlighting the source code, which allows the programmer

to see which parts of the program are evaluated at specialization time and which are

residualized. This helps him to understand how to change the code to provide better

specialization.

The last part of the specializer is the SpecMenus plug-in. This plug-in uses the

extension points of other plug-ins to add the necessary elements to some menus. It

adds two new buttons to the main toolbar of Eclipse: Enable/Disable the

highlighting and the “Generate optimized Java files” button. Also this plug-in adds

items to the context menu of the Project Explorer and Package Explorer views.

4. Related Work and Comparison

A lot of works are devoted to partial evaluation for functional languages. The book

[2] summarizes the first wave of development of this method.

Later on, research into partial evaluation for imperative “Algol-like” languages [19],

[20] and C [21] was performed. In early 1990's, the first (to our knowledge)

specializer for C was developed, called C-MIX [21], [22]. Chapter 11 of the book

[2] contains its detailed presentation. C-MIX specializes a program in three stages.

The first stage is the analysis of references. For each reference variable, a set of the

variables that it could refer to is built. If the analysis finds that several reference

variables can refer to the same memory, they are labeled identically. The second

stage is the construction of a binding-time annotation of the source code. References

to the same memory area are annotated identically. In case of conflicts, the

annotation is reduced to D as usual. The third stage is the generation of the residual

program.

Specialization of reference types in Java can be similar to elaboration of pointers in

C-MIX. However, Java stricter typing and managed run-time can be leveraged for

deeper specialization. The current version of our specializer annotates all reference

variables D and, therefore, they are left unchanged. Our future work is to add the

binding-time analysis of reference types. Unlike C-MIX, we expect that our

specializer will still work in two stages — without the reference analysis phase.

Further development of ideas of C-MIX led to the creation of a specializer of

programs written in C, called Tempo [23], [24]. This specializer is much like C-

MIX.

The next important step was the development of the first specializer for an object-

oriented language — JSpec for Java [25]. JSpec uses the Harissa compiler [26] to

translate the Java program into C. Then the Tempo specializer mentioned above

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP

RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

36

transforms the program. The obtained C-representation of a specialized Java

program is mapped back into Java using the Assirah translator [25]. Finally, the

AspectJ tool weaves the specialized program with the source program to get the

executable Java bytecode. The main limitation of JSpec is that it is capable of

partially evaluating only immutable classes and objects, while mutable objects are

always residualized. Our goal is to waive this restriction.

The most advanced (to our knowledge) partial evaluation method for object-

oriented languages like C# and Java has been developed in CILPE [10]–[18], a

partial evaluator for Common Intermediate Language (CIL), the bytecode of the

Microsoft .NET Framework. It supports almost all of the basic constructs of object-

oriented languages such as C# and Java. In CILPE, a new concept of a binding-time

heap (BT heap) has been introduced. A BT heap is an abstract description of the

state of a run-time heap, which allows us to separate reference type data into

evaluated at specialization time and residualized ones and to avoid the use of the

reference analysis stage as in C-MIX. As a result of specialization, some of the

objects are no longer created in the residual program, and if necessary, local

variables are used instead of object fields. We will base on the results of this

research in our future work to implement BTA of classes and partial evaluation of

objects.

A relatively new specializer of Java programs is Civet [27]. Civet is based on a so-

called Hybrid Partial Evaluation (HPE) approach. Specialization in HPE is

performed in online mode, i.e., in one pass, while the programmer can specify

which parts of the program have S-annotation. On the contrary, in our specializer

we choose the offline approach, i.e., the residual program is built at the stage of

generation of the residual program after the completion of the binding-time analysis,

where information about the S-parts of the program is collected automatically rather

than specified by the user as in Civet
1
.

PE-KeY [28] is a partial evaluator for Java programs based on the KeY verification

system [29]. PE-Key works in two stages. At the first stage, the program is executed

in a symbolic form with the application of a special set of rules. At the second stage,

a residual program is synthesized, while the rules are applied in the opposite

direction. The PE-KeY approach is similar to the classical offline specialization that

our specializer uses: a specialized program is produced in two stages. However, in

the first stage of PE-KeY, the program is executed symbolically, while our binding-

time analysis performs an abstract interpretation of the program. In addition, due to

limitations of the KeY verification system, PE-KeY does not support floating-point

arithmetic, while our specializer supports.

JSpec, Civet, PE-Key deal with objects at specialization time, while the current

version of our specializer annotates classes and variables of reference types with D

1
 For discussion of the features of and differences between online and offline partial

evaluation see [2, Chapter 7].

Адамович И.А., Климов Анд.В. Интерактивный специализатор подмножества языка Java основанный на методе

частичных вычислений. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 29-44

37

and thus residualizes them unchanged. The extension of our specializer to partial

evaluation of classes and objects is our future work.

The specializers considered above interact with the user through the command line,

so it's extremely difficult to use them. In order for the specialization to be widely

used, it is required to develop the methods of interaction with the user and to embed

the specializer into an integrated development environment convenient for the

programmer, what we are implementing in our specializer. This is a crucial

difference.

We know about just one work on partial evaluation carried out in a practical setting

– the GraalVM toolkit in Oracle Labs [30], [31]. The toolkit is designed for defining

domain-specific languages by interpreters and, nevertheless, achieving high-

performance by using a specializer. The first Futamura projection provides an

opportunity for such acceleration (see [3], [4] and [2, Chapter 1.5.1]): given a

program and an interpreter that executes the program, GraalVM specializes the

interpreter with respect to a part of the given program and produces the machine

code of this part. The resulting code is executed much faster than the original one in

the interpreter. The main goal of GraalVM is to provide a technology similar to just-

in-time (JIT) compilation for the developer of a programming language without the

need to implement the complex machinery of JIT. The interpreter specialization in

GraalVM is not automatic and uses prompts by the interpreter developer. This case

of implementation of partial evaluation confirms that practical application of

specialization requires guidance from the programmer. We conduct our research in

the same direction: methods and tools are being developed to provide the

programmer with information about program behavior under specialization and

levers to control the partial evaluation processes.

5. Conclusion

In this paper we put forward the task of development of an interactive specializer.

We argue that the current stage of program specialization methods has reached

certain limits because the previously implemented specializers do not imply the

participation of the user in the process of specialization. Our specializer uses the

offline partial evaluation approach, where the program transformation if performed

in two stages — binding-time analysis (BTA) and residual program generation

(RPG). We briefly described the architecture of our interactive specializer in the

Eclipse development environment.

We illustrated the work of the specializer with the famous example of the

Ackermann function and the result of its specialization with respect to its first

argument. The specialized program runs several times (about three) faster than the

original one.

We see the following directions for further development of the specializer:

 to develop and implement binding-time analysis and residual program

generation for classes and objects;

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP

RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

38

 to implement interactive tools for composing a specialization task and

controlling the process of binding-time analysis and residual program

generation;

 to implement tools to visualize the correspondence between source and

residual code;

 to demonstrate that a well-developed specializer can convert

well-structured high-level human-oriented code, which can not be

automatically parallelized, into code that can be parallelized by existing

methods and tools;

 to prepare demo programs that benefit from specialization, for example,

building a compiler from an interpreter;

 to generalize the binding-time analysis from monovariant to polyvariant;

 to develop an interactive tracer (similar to run-time debuggers) that allows

the user to observe the analysis and generation processes in order to

improve the behavior of his code under specialization.

Availability. The current version of our specializer is available at

ftp://ftp.botik.ru/rented/iaadamovich/Specializer/.

Acknowledgment

We are grateful to our friends and colleagues Yuri Klimov, Arkady Klimov, Sergei

Romanenko, Sergei Abramov for valuable advices on specialization methods in

general and partial evaluation in particular and constructive feedback on the design

of our specializer system.

References
[1]. Jones N.D., Sestoft P. and Søndergaard H. An experiment in partial evaluation: the

generation of a compiler generator. Rewriting Techniques and Applications, Lecture

Notes in Computer Science, J.-P. Jouannaud, (Ed.), vol. 202. Springer-Verlag, 1985, pp.

124–140

[2]. Jones N.D., Gomard C.K., and Sestoft P. Partial Evaluation and Automatic Program

Generation. Prentice-Hall, 1993, 415 p. Available at:

http://www.itu.dk/~sestoft/pebook/pebook.html, accessed 20.06.2018

[3]. Futamura Y. Partial evaluation of computation process — an approach to a compiler-

compiler. Systems, Computers, Controls, vol. 2, no. 5, 1971, pp. 45–50

[4]. Futamura Y. Partial evaluation of computation process — an approach to a compiler-

compiler. Higher-Order and Symbolic Computation, vol. 12, no. 4, Dec 1999, pp. 381–

391. Updated and revised version of [3]. Available at:

http://doi.org/10.1023/A:1010095604496, accessed 20.06.2018

[5]. Futamura Y. EL1 Partial Evaluator (Progress Report). Center for Research in Computing

Technology, Harvard University, Tech. Rep., 1973. Available at:

http://fi.ftmr.info/PE-Museum/EL1.PDF, accessed 20.06.2018

Адамович И.А., Климов Анд.В. Интерактивный специализатор подмножества языка Java основанный на методе

частичных вычислений. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 29-44

39

[6]. Turchin V.F. The concept of a supercompiler. ACM Transactions on Programming

Languages and Systems, vol. 8, no. 3, 1986, pp. 292–325

[7]. Turchin V.F. Supercompilation: techniques and results. Perspectives of System

Informatics, Second International Andrei Ershov Memorial Conference,

Akademgorodok, Novosibirsk, Russia, June 25-28, 1996. Proceedings, Lecture Notes in

Computer Science, D. Bjørner, M. Broy, and I.V. Pottosin, (Eds.), vol. 1181. Springer,

1996, pp. 227–248

[8]. Eclipse Foundation. Eclipse Integrated Development Environment (IDE). Available at:

https://www.eclipse.org, accessed 20.06.2018

[9]. Eclipse Foundation. Eclipse Java development tools (JDT). Available at:

https://www.eclipse.org/jdt, accessed 20.06.2018

[10]. Klimov Yu.A. An approach to polyvariant binding time analysis for a stack-based

language. First International Workshop on Metacomputation in Russia, Proceedings.

Pereslavl-Zalessky, Russia, July 2–5, 2008. Pereslavl-Zalessky: Ailamazyan University

of Pereslavl, 2008, pp. 78–84. Available at: http://meta2008.pereslavl.ru/accepted-

papers/paper-info-6.html, accessed 20.06.2018

[11]. Klimov Yu.A. [Program specialization for object-oriented languages by partial

evaluation: approaches and problems]. Preprinty` IPM im. M.V. Keldy`sha [Keldysh

Institute Preprints], no. 12, 2008 (in Russian). Available at:

http://library.keldysh.ru/preprint.asp?id=2008-12, accessed 20.06.2018

[12]. Klimov Yu.A. [Specializer CILPE: examples of object-oriented program specialization].

Preprinty` IPM im. M.V. Keldy`sha [Keldysh Institute Preprints], no. 30, 2008 (in

Russian). Available at: http://library.keldysh.ru/preprint.asp?id=2008-30, accessed

20.06.2018

[13]. Klimov Yu.A. [SOOL: an object-oriented stacked-based language for specification and

implementation of program specialization techniques]. Preprinty` IPM im. M.V.

Keldy`sha [Keldysh Institute Preprints], no. 44, 2008 (in Russian). Available at:

http://library.keldysh.ru/preprint.asp?id=2008-44, accessed 20.06.2018

[14]. Klimov Yu.A. [Specializer CILPE: binding time analysis]. Preprinty` IPM im. M.V.

Keldy`sha [Keldysh Institute Preprints], no. 7, 2009 (in Russian). Available at:

http://library.keldysh.ru/preprint.asp?id=2009-07, accessed 20.06.2018

[15]. Klimov Yu.A. [Specializer CILPE: residual program generation]. Preprinty` IPM im.

M.V. Keldy`sha [Keldysh Institute Preprints], no. 8, 2009 (in Russian). Available at:

http://library.keldysh.ru/preprint.asp?id=2009-08, accessed 20.06.2018

[16]. Klimov Yu.A. [Specializer CILPE: correctness proof]. Preprinty` IPM im. M.V.

Keldy`sha [Keldysh Institute Preprints], no. 33, 2009, (in Russian). Available at:

http://library.keldysh.ru/preprint.asp?id=2009-33, accssed 20.06.2018

[17]. Klimov Yu.A. [Specialization of programs in object-oriented languages by partial

evaluation]. Ph.D. dissertation, Keldysh Institute of Applied Mathematics of RAS,

Moscow, Russia, Nov 2009, 183 p. (in Russian). Available at:

http://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-

Specializacia_programm_na_ob'ektno-orientirovannyx_yazykah.pdf, accessed

20.06.2018

[18]. Klimov Yu.A. [Specializer CILPE: Partial evaluation for object-oriented languages].

Programmny`e sistemy`: teoriia i prilozheniia [Program Systems: Theory and

Applications], no. 3(3), pp. 13–36, 2010 (in Russian). Available at:

http://psta.psiras.ru/read/psta2010_3_13-36.pdf, accessed 20.06.2018

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP

RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

40

[19]. Bulyonkov M.A. and Kochetov D.V. Practical aspects of specialization of Algol-like

programs. Dagstuhl Seminar on Partial Evaluation, Lecture Notes in Computer Science,

O. Danvy, R. Gluck, and P. Thiemann, (Eds.), vol. 1110. Springer, 1996, pp. 17–32

[20]. Ershov A.P. and Itkin V.E. Correctness of mixed computation in Algol-like programs.

MFCS, Lecture Notes in Computer Science, J. Gruska, (Ed.), vol. 53. Springer, 1977,

pp. 59–77

[21]. Andersen L.O. Program analysis and specialization for the C programming language.

Ph.D. dissertation, DIKU, University of Copenhagen, May 1994, (DIKU report 94/19)

[22]. Andersen L.O. Binding-time analysis and the taming of C pointers. Proceedings of the

1993 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program

Manipulation (PEPM '93). ACM, 1993, pp. 47-58. Available at:

http://dx.doi.org/10.1145/154630.154636, accessed: 20.06.2018

[23]. Consel C., Lawall J.L., and Meur A.-F.L. A tour of Tempo: a program specializer for the

C language. Sci. Comput. Program., vol. 52, no. 1-3, 2004, pp. 341–370

[24]. Meur A.L., Lawall J.L. and Consel C. Towards bridging the gap between programming

languages and partial evaluation. Proceedings of the 2002 ACM SIGPLAN Workshop

on Partial Evaluation and Semantics-Based Program Manipulation (PEPM ’02),

Portland, Oregon, USA, January 14-15, 2002, P. Thiemann, (Ed.). ACM, 2002, pp. 9–

18. Available at: http://doi.acm.org/10.1145/503032.503033, accessed 20.06.2018

[25]. Schultz U.P., Lawall J.L. and Consel C. Automatic program specialization for Java.

ACM Trans. Program. Lang. Syst., vol. 25, no. 4, 2003, pp. 452–499

[26]. Muller G., Moura B., Bellard F. and Consel C. Harissa: A flexible and efficient Java

environment mixing bytecode and compiled code. Proceedings of the Third USENIX

Conference on Object-Oriented Technologies (COOTS), June 16-20, 1997, Portland,

Oregon, USA, S. Vinoski, (Ed.). USENIX, 1997, pp. 1–20. Available at:

http://www.usenix.org/publications/library/proceedings/coots97/muller.html, accessed

20.06.2018.

[27]. Shali A. and Cook W.R. Hybrid partial evaluation. SIGPLAN Not., vol. 46, no. 10, Oct.

2011, pp. 375–390. Available at: http://doi.acm.org/10.1145/2076021.2048098,

accessed 20.06.2018.

[28]. Ji R. and Bubel R. PE-KeY: A partial evaluator for Java programs. Proceedings of the

9th International Conference on Integrated Formal Methods, IFM’12. Berlin,

Heidelberg: Springer-Verlag, 2012, pp. 283– 295. Available at:

http://dx.doi.org/10.1007/978-3-642-30729-4_20, accessed 20.06.2018

[29]. Ahrendt W., Beckert B., Bubel R., Hahnle R., Schmitt P.H. and Ulbrich M., (Eds.).

Deductive Software Verification – The KeY Book – From Theory to Practice. Lecture

Notes in Computer Science. Springer, 2016, vol. 10001. Available at:

https://doi.org/10.1007/978-3-319-49812-6, accessed 20.06.2018

[30]. Würthinger T., Wimmer C., Wöß A., Stadler L., Duboscq G., Humer C., Richards G.,

Simon D., and Wolczko M. One VM to rule them all. Proceedings of the 2013 ACM

International Symposium on New Ideas, New Paradigms, and Reflections on

Programming & Software, Onward! 2013. New York, NY, USA: ACM, 2013, pp. 187–

204. Available at: http://doi.acm.org/10.1145/2509578.2509581, accessed 20.06.2018

[31]. Würthinger T., Wimmer C., Humer C., Wöß A., Stadler L., Seaton C., Duboscq G.,

Simon D., and Grimmer M. Practical partial evaluation for high-performance dynamic

language runtimes. SIGPLAN Not., vol. 52, no. 6, Jun. 2017, pp. 662–676. Available at:

http://doi.acm.org/10.1145/3140587.3062381, accessed 20.06.2018.

Адамович И.А., Климов Анд.В. Интерактивный специализатор подмножества языка Java основанный на методе

частичных вычислений. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 29-44

41

Интерактивный специализатор подмножества языка
Java, основанный на методе частичных вычислений

1
И.А. Адамович <i.a.adamovich@gmail.com>

2
Анд.В. Климов <klimov@keldysh.ru>

1
Институт программных систем им. А.К. Айламазяна РАН,

152021, Россия, Ярославская обл., с. Веськово, ул. Петра Первого, д. 4а
2
Институт прикладной математики им. М.В. Келдыша РАН,

125047, Россия, Москва, Миусская пл., д. 4

Аннотация. Специализация — это оптимизация программ на основе использования

наперёд заданной информации о значении части переменных. Методы специализации

программ развиваются с 1970-х годов (смешанные вычисления, частичные

вычисления, суперкомпиляция). Однако удивительно, что после трёх десятилетий

разработанные специализаторы до сих пор не достигли того уровня, когда они станут

пригодны для широкого практического применения. Возникает вопрос: в чём же

причина? Наша гипотеза состоит в том, что задача специализации требуют гораздо

большего участия человека в управлении процессом специализации, анализе

результатов, проведении компьютерных экспериментов, чем в случае обычной

оптимизации программы в компиляторах. Требуется погружение специализаторов в

привычные для программистов интегрированные среды разработки, включая создание

соответствующих диалоговых средств. В данной статье описываются результаты

разработки и реализации методов интерактивной специализации на основе частичных

вычислений для подмножества языка Java. Реализация выполнена в рамках популярной

среды разработки (IDE) Eclipse. Разрабатываются сценарии человеко-машинного

диалога с подсистемой специализации, интерактивные средства для составления

задания на специализацию и управление процессом специализации. Приводится

пример успешного применения разработанного специализатора. Остаточная программа

работает в несколько раз быстрее чем исходная.

Ключевые слова: анализ программ; преобразование программ; интерактивная

специализация программ; частичные вычисления; объектно-ориентированный язык;

среда разработки программ

DOI: 10.15514/ISPRAS-2018-30(4)-2

Для цитирования: Адамович И.А., Климов Анд.В. Интерактивный специализатор

подмножества языка Java основанный на методе частичных вычислений. Труды ИСП

РАН, том 30, вып. 4, 2018 г., стр. 29-44 (на английском языке). DOI: 10.15514/ISPRAS-

2018-30(4)-2

Список литературы

[1]. Jones N.D., Sestoft P. and Søndergaard H. An experiment in partial evaluation: the

generation of a compiler generator. Rewriting Techniques and Applications, Lecture

Notes in Computer Science, J.-P. Jouannaud, (Ed.), vol. 202. Springer-Verlag, 1985, pp.

124–140

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP

RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

42

[2]. Jones N.D., Gomard C.K., and Sestoft P. Partial Evaluation and Automatic Program

Generation. Prentice-Hall, 1993. Доступно по ссылке:

http://www.itu.dk/~sestoft/pebook/pebook.html, дата обращения: 20.06.2018

[3]. Futamura Y. Partial evaluation of computation process — an approach to a compiler-

compiler. Systems, Computers, Controls, vol. 2, no. 5, 1971, pp. 45–50

[4]. Futamura Y. Partial evaluation of computation process — an approach to a compiler-

compiler. Higher-Order and Symbolic Computation, vol. 12, no. 4, Dec 1999, pp. 381–

391. Updated and revised version of [3]. Доступно по ссылке:

http://doi.org/10.1023/A:1010095604496, дата обращения: 20.06.2018

[5]. Futamura Y. EL1 Partial Evaluator (Progress Report). Center for Research in Computing

Technology, Harvard University, Tech. Rep., 1973. Доступно по ссылке:

http://fi.ftmr.info/PE-Museum/EL1.PDF, дата обращения: 20.06.2018

[6]. Turchin V.F. The concept of a supercompiler. ACM Transactions on Programming

Languages and Systems, vol. 8, no. 3, 1986, pp. 292–325

[7]. Turchin V.F. Supercompilation: techniques and results. Perspectives of System

Informatics, Second International Andrei Ershov Memorial Conference,

Akademgorodok, Novosibirsk, Russia, June 25-28, 1996. Proceedings, Lecture Notes in

Computer Science, D. Bjørner, M. Broy, and I.V. Pottosin, (Eds.), vol. 1181. Springer,

1996, pp. 227–248

[8]. Eclipse Foundation. Eclipse Integrated Development Environment (IDE). Доступно по

ссылке: https://www.eclipse.org, дата обращения: 20.06.2018

[9]. Eclipse Foundation. Eclipse Java development tools (JDT). Доступно по ссылке:

https://www.eclipse.org/jdt, дата обращения: 20.06.2018

[10]. Klimov Yu.A. An approach to polyvariant binding time analysis for a stack-based

language. First International Workshop on Metacomputation in Russia, Proceedings.

Pereslavl-Zalessky, Russia, July 2–5, 2008. Pereslavl-Zalessky: Ailamazyan University

of Pereslavl, 2008, pp. 78–84. Доступно по ссылке:

http://meta2008.pereslavl.ru/accepted-papers/paper-info-6.html, дата обращения:

20.06.2018

[11]. Климов Ю.А. Особенности применения метода частичных вычислений к

специализации программ на объектно-ориентированных языках. Препринты ИПМ

им. М.В. Келдыша, № 12, 2008. Доступно по ссылке:

http://library.keldysh.ru/preprint.asp?id=2008-12, дата обращения: 20.06.2018

[12]. Климов Ю.А. Возможности специализатора CILPE и примеры его применения к

программам на объектно-ориентированных языках. Препринты ИПМ им. М.В.

Келдыша, № 30, 2008. Доступно по ссылке:

http://library.keldysh.ru/preprint.asp?id=2008-30, дата обращения: 20.06.2018

[13]. Климов Ю.А. SOOL: объектно-ориентированный стековый язык для формального

описания и реализации методов специализации программ. Препринты ИПМ им.

М.В. Келдыша, № 44, 2008. Доступно по ссылке:

http://library.keldysh.ru/preprint.asp?id=2008-44, дата обращения: 20.06.2018

[14]. Климов Ю.А. Специализатор CILPE: анализ времен связывания. Препринты ИПМ

им. М.В. Келдыша, № 7, 2009. Доступно по ссылке:

http://library.keldysh.ru/preprint.asp?id=2009-07, дата обращения: 20.06.2018

[15]. Климов Ю.А. Специализатор CILPE: генерация остаточной программы.

Препринты ИПМ им. М.В. Келдыша, № 8, 2009. Доступно по ссылке:

http://library.keldysh.ru/preprint.asp?id=2009-08, дата обращения: 20.06.2018

Адамович И.А., Климов Анд.В. Интерактивный специализатор подмножества языка Java основанный на методе

частичных вычислений. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 29-44

43

[16]. Климов Ю.А. Специализатор CILPE: доказательство корректности. Препринты

ИПМ им. М.В. Келдыша, № 33, 2009. Доступно по ссылке:

http://library.keldysh.ru/preprint.asp?id=2009-33, дата обращения: 20.06.2018

[17]. Климов Ю.А. Специализация программ на объектно-ориентированных языках

методом частичных вычислений. Дис. к.ф.-м.н., Институт прикладной математики

им. М.В. Келдыша РАН, Москва, Россия, ноябрь 2009, 183 стр.

Доступно по ссылке: http://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-

Specializacia_programm_na_ob'ektno-orientirovannyx_yazykah.pdf,

дата обращения: 20.06.2018

[18]. Климов Ю.А. Специализатор CILPE: частичные вычисления для объектно-

ориентированных языков. Программные системы теория и приложения, № 3(3),

2010, стр. 13–36 Доступно по ссылке: http://psta.psiras.ru/read/psta2010_3_13-36.pdf,

дата обращения: 20.06.2018

[19]. Bulyonkov M.A. and Kochetov D.V. Practical aspects of specialization of Algol-like

programs. Dagstuhl Seminar on Partial Evaluation, Lecture Notes in Computer Science,

O. Danvy, R. Gluck, and P. Thiemann, (Eds.), vol. 1110. Springer, 1996, pp. 17–32

[20]. Ershov A.P. and Itkin V.E. Correctness of mixed computation in Algol-like programs.

MFCS, Lecture Notes in Computer Science, J. Gruska, (Ed.), vol. 53. Springer, 1977,

pp. 59–77

[21]. Andersen L.O. Program analysis and specialization for the C programming language.

Ph.D. dissertation, DIKU, University of Copenhagen, May 1994, (DIKU report 94/19)

[22]. Andersen L.O. Binding-time analysis and the taming of C pointers. Proceedings of the

1993 ACM SIGPLAN symposium on Partial Evaluation and Semantics-Based Program

Manipulation (PEPM '93). ACM, 1993, pp. 47-58. Доступно по ссылке:

http://dx.doi.org/10.1145/154630.154636, дата обращения: 20.06.2018

[23]. Consel C., Lawall J.L., and Meur A.-F.L. A tour of Tempo: a program specializer for the

C language. Sci. Comput. Program., vol. 52, no. 1-3, 2004, pp. 341–370

[24]. Meur A.L., Lawall J.L. and Consel C. Towards bridging the gap between programming

languages and partial evaluation. Proceedings of the 2002 ACM SIGPLAN Workshop

on Partial Evaluation and Semantics-Based Program Manipulation (PEPM ’02),

Portland, Oregon, USA, January 14-15, 2002, P. Thiemann, (Ed.). ACM, 2002, pp. 9–

18. Доступно по ссылке: http://doi.acm.org/10.1145/503032.503033, дата обращения:

20.06.2018

[25]. Schultz U.P., Lawall J.L. and Consel C. Automatic program specialization for Java.

ACM Trans. Program. Lang. Syst., vol. 25, no. 4, 2003, pp. 452–499

[26]. Muller G., Moura B., Bellard F. and Consel C. Harissa: A flexible and efficient Java

environment mixing bytecode and compiled code. Proceedings of the Third USENIX

Conference on Object-Oriented Technologies (COOTS), June 16-20, 1997, Portland,

Oregon, USA, S. Vinoski, (Ed.). USENIX, 1997, pp. 1–20. Доступно по ссылке:

http://www.usenix.org/publications/library/proceedings/coots97/muller.html,

дата обращения: 20.06.2018

[27]. Shali A. and Cook W.R. Hybrid partial evaluation. SIGPLAN Not., vol. 46, no. 10, Oct.

2011, pp. 375–390. Доступно по ссылке:

http://doi.acm.org/10.1145/2076021.2048098, дата обращения: 20.06.2018

[28]. Ji R. and Bubel R. PE-KeY: A partial evaluator for Java programs. Proceedings of the

9th International Conference on Integrated Formal Methods, IFM’12. Berlin,

Heidelberg: Springer-Verlag, 2012, pp. 283– 295. Доступно по ссылке:

http://dx.doi.org/10.1007/978-3-642-30729-4_20, дата обращения: 20.06.2018

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP

RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

44

[29]. Ahrendt W., Beckert B., Bubel R., Hahnle R., Schmitt P.H. and Ulbrich M., (Eds.).

Deductive Software Verification — The KeY Book — From Theory to Practice. Lecture

Notes in Computer Science. Springer, 2016, vol. 10001. Доступно по ссылке:

https://doi.org/10.1007/978-3-319-49812-6, дата обращения: 20.06.2018

[30]. Würthinger T., Wimmer C., Wöß A., Stadler L., Duboscq G., Humer C., Richards G.,

Simon D., and Wolczko M. One VM to rule them all. Proceedings of the 2013 ACM

International Symposium on New Ideas, New Paradigms, and Reflections on

Programming & Software, Onward! 2013. New York, NY, USA: ACM, 2013, pp. 187–

204. Доступно по ссылке: http://doi.acm.org/10.1145/2509578.2509581, дата

обращения: 20.06.2018

[31]. Würthinger T., Wimmer C., Humer C., Wöß A., Stadler L., Seaton C., Duboscq G.,

Simon D., and Grimmer M. Practical partial evaluation for high-performance dynamic

language runtimes. SIGPLAN Not., vol. 52, no. 6, Jun. 2017, pp. 662–676. Доступно

по ссылке: http://doi.acm.org/10.1145/3140587.3062381, дата обращения: 20.06.2018

