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Abstract. Embedded platforms with heterogeneous architecture, considered in this paper,
consist of one primary and one or more secondary processors. Development of software
systems for these platforms poses substantial difficulties, requiring a distinct set of tools for
each constituent of the heterogeneous system. It also makes achieving high efficiency the
more difficult task. Moreover, many use cases of embedded systems require runtime
configuration, that cannot be easily achieved with usual approaches. This work presents a C-
like metaprogramming DSL and a library that provides a unified interface for programming
secondary processors of heterogeneous systems with this DSL. Together they help to resolve
aforementioned problems. The DSL is embedded in C++ and allows to freely manipulate its
expressions and thus embodies the idea of generative programming, when the expressive
power of high-level C++ language is used to compose pieces of low-level DSL code.
Together with other features, such as generic DSL functions, it makes the DSL a flexible and
powerful tool for dynamic code generation. The approach behind the library is dynamic
compilation: the DSL is translated to LLVM IR and then compiled to native executable code
at runtime. It opens a possibility of dynamic code optimizations, e.g. runtime function
specialization for specific parameters known only at runtime. Flexible library architecture
allows simple extensibility to any target platform supported by LLVM. At the end of the
paper a system approbation on different platforms and a demonstration of dynamic
optimizations capability are presented.
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1. Introduction

Embedded systems have been in a widespread use a long time, and today they
become even more relevant because of the rapid development and adoption of new
application fields, for example, Internet-of-Things, ”smart houses” and robotics.
Many of the embedded systems used in these areas have heterogeneous
architectures due to nature of their tasks. Typically, they consist of one primary,
more powerful processor that executes the main program and performs common
control, and one or several secondary microcontrollers or processors that provide
read/write access to sensors and peripheral devices or may perform some other
special functions. Examples of such systems may be: Raspberry Pi (main) +
Arduino with Atmel AVR (peripheral) and Odroid XU4 (main) + stm32f4
microcontroller (peripheral).
Heterogeneity of these systems causes noticeable overhead. Traditional
development workflow requires use of IDEs and toolchains that are specific for
each part of the system. This need to develop each part of the system in a separate
project using a different set of platform-specific tools makes system development
processes more complex and expensive. The amounts of resources required for
support and changes also grow.
The efficiency of the system suffers too. Due to specificities of each
microcontroller and their limited hardware capabilities they often have only basic
firmware, which only capabilities are reading sensors, communicating results back
to main processor, receiving data and control commands from it and writing the
received data to special registers of peripheral devices. All core program logic is
contained on the primary processor, and, as secondary processors/microcontrollers
do not contain even a part of this logic, constant communication between them is
unavoidable (because of the nature of control cycle: request sensor data, wait for it
to arrive, compute control output, send it back to the secondary processors, repeat).
This work is based on preliminary results of [1] that showed the viability of the idea
of dynamic code generation. We revise previous architectural choices, fully
reimplement the library because of shortcomings of existing implementation and
substantially extend it in terms of functionality and possible applications/uses.
In particular, the new DSL is completely abstracted from other parts of the library
and can be used independently in other projects based on the idea of
metaprogramming. Moreover, the new DSL implementation allows employing
various dynamic optimizations, which are not possible in heterogeneous systems
using traditional programming techniques. The contribution of this work is twofold.
We present:

e C++ embedded DSL for dynamic metaprogramming;

e a library that simplifies development of programs for heterogeneous
systems providing unified programming interface; it also allows to achieve
higher efficiency of the system and implement better organizations of work
between its parts.
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The library is based on the idea of a dynamic compilation of programs for
peripheral processors.

We also demonstrate system’s capabilities on a number of examples that show
important features of the new DSL and some applications in embedded systems
domain. Source code with build instructions can be found in the project repository™.

Several possible use cases of this library can be imagined. First use case is avoiding
the overhead of constant communication between processors. Of course, it’s
possible to accomplish it without this library: move part of the program logic to
peripheral processors on top of their basic firmware. However, with usual tools, it
incurs additional costs for development and support because with this approach
there is no more single point of change in core logic of the system. There is
unavoidable need to support several projects and ensure proper integration. Whereas
presented library allows avoiding both communication overhead and unnecessary
complexity of the development process.

The second use case is to allow dynamic specialization of heterogeneous systems
for their operating environment. Some types of embedded heterogeneous systems
can be deployed in a wide range of environments with various conditions. When
their operation depends on these conditions, developers of programs for such
systems must anticipate in the code all possible conditions. It may be implemented
through constant monitoring of the environment. Another alternative is on-place
configuration or tuning of each particular system. However, it may not be possible
due to nature of the task or too often or rapid (for manual operating) changes of the
environment. Another variation of dynamic specialization scenario is a runtime
configuration for specific peripheral devices (e.g. different models of sensors and
actuators).

Our library can help there in the case of sufficiently slowly changing environment
(relative to a number of control cycles, when the time required for dynamic
recompilation will pay off). It can be better shown on the specific example of PID
controller tuning. Firstly, PID controller with tuning subpro gram is loaded on the
peripheral microcontroller. Then, when optimal parameters are found,
microcontroller program can be recompiled with these particular coefficients, thus
yielding system that is maximally suited for its operating conditions. For the
specific case of not changing environment this tuning and dynamic recompilation
can be executed only once on deployment. This example is elaborated on in greater
detail in the section Demonstration.

The paper is organized as follows. The next section discusses similar works that are
based on the similar ideas. The third section describes main architectural decisions
and presents the architecture of the system. The fourth section is devoted to the DSL
and provides a reader with a number of examples. The following section describes
other parts of the system and their functionality in greater detail. The Approbation
section describes test setups and the Demonstration section shows benefits of

Yhttps://github.com/gkirgizov/hetarch
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dynamic recompilation on a specific example and discusses scope and applicability
of the library. The paper is closed with conclusion and discussion of possible
directions of further work.

2. Similar Work

The difficulties, which heterogeneous systems cause, are not unique for the
embedded software engineering. Programming of heterogeneous systems is an old
problem, and there are several conceptual approaches to aforementioned difficulties.
The most known area that faces it is programming with graphical processors. In this
case, heterogeneous system consists of CPU and one or more GPUs. (The case of
graphics programming, i.e. using shaders and graphics pipelines, is further from
heterogeneous programming and is not considered here.) It is an old problem in this
field: how to effectively and, not less importantly, conveniently use GPU in usual,
CPU-centric programs? There are two main examples of systems that answer this
question: Open Computing Language (OpenCL) [2] and CUDA framework from
Nvidia [3]. Both these frameworks propose the use of C and C++ languages
extended with special functions and attributes for writing device code (code to be
executed on secondary processors). It can be written, depending on user’s aims and
requirements, either in separate files or in the main program files together with
usual C/C++ host code that is intended to be executed on CPU. OpenCL uses
dynamic compilation (at runtime) of device code; some device vendors provide
offline compilers for their devices (for example, Intel Code Builder for OpenCL
API). CUDA similarly provides both possibilities: Nvidia has an offline compiler
called NVCC and a runtime compilation library NVRTC.

The motivation behind these examples and presented in this paper library is
essentially the same: use of the same programming interface for all constituents of a
heterogeneous system.

Another area that this work touches is the ideas of generative, multi-stage
programming and runtime code generation. A good discussion of general
motivations and trade-offs behind these ideas, as well as examples of some actual
realizations and a number of references provides [4].

Among their examples Delite—a heterogeneous parallel framework for domain-
specific languages [5], [6]—is of particular interest. Delite’s focus is on the
performance of parallel heterogeneous systems, e.g. mixed CPU/GPU architectures
and clusters. It is built on top of Lightweight Modular Staging (LMS) [7] system,
that makes use of a form of metaprogramming to construct a symbolic
representation of a DSL program. LMS provides a basis for DSLs embedded in
Scala. On top of this layer, Delite is structured into a compiler framework and a
runtime component. The framework provides primitives for parallel operations and
generates Scala, CUDA or C++ code from DSLs.

Although both we and the authors of Delite start from the same idea of multi-stage
programming, our systems significantly differ in the approaches and application
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domains. Most importantly, we use dynamic code generation and thus employ the
generative programming at runtime to achieve dynamic optimizations. The authors
of Delite, on the other hand, require static compilation of DSLs—they promote the
use of additional compilation stage to perform domain-specific optimizations.

3. High Level Description

Further in the text by the word host is meant primary processor, by target—one of
the peripheral processors or microcontrollers, by the user—developer who uses this
library.

3.1 Main Architectural Decisions

The following decisions have shown themselves as reasonable and grounded and
thus are inherited from the previous work [1]. They are discussed here to provide
better context.

Runtime changes in executable code on targets can be achieved by two approaches:
dynamic compilation, which happens on the host, and code interpretation which
happens on targets. Because modern interpreted languages generally have higher
requirements and cause more overhead, the first decision is to use dynamic
compilation on the more powerful host.

The second decision is to use embedded domain specific language (DSL) as a basis
for dynamic code generation. An alternative of using code attributes with compiler
extension (e.g. as used by OpenCL) is less viable due to several reasons. First, code
defined in a such way can be manipulated at the runtime only as a string of
characters. It complicates analysis and dynamic code specialization, requiring
additional step of semantic analysis before that, whereas DSL approach gives
semantic information ’for free’. Second, it is more demanding to maintain the
compiler extension to keep it up-to-date with the needed compiler versions. In
addition, it is still necessary to use dynamic compilation tools. It seems excessive to
support both the compiler extension and the dynamic compilation tools. Moreover,
it would restrict library users to only one compiler, which can be especially
inconvenient in the world of embedded systems.

LLVM [8] is used as a compilation backend. There is no real alternative, and its
excellent design and convenience of use made this work possible.

C++ is chosen as a language of implementation by several reasons: firstly, it is a
natural choice for embedded systems domain; secondly, it allows to avoid overhead
of interfacing with LLVM; and, most importantly, with template metaprogramming
it provides the necessary expressive power for implementation of the DSL, which
itself must be very expressive and general to be applicable in a wide range of use
cases. Specifically, the latest C++17 standard is used.

49



Kirgizov G.V., Kirilenko I.A. Heterogeneous Architectures Programming Library. Trudy ISP RAN/Proc. ISP RAS, vol.
30, issue 4, 2018, pp. 45-62

|IRModuleJ<"""1 CodeGen r _______ )l Ohj(nde‘

IRTranslator | LLVM o Codeloader

DSL : : 5 Connection

Function <<Interface>> ResidentCode f._ TR B S - T
Callable H = ConnlmplBase
: 7 s
Hvate [ ResidentGlobal | *[ 7777777 T
>

—1

Memory

hv) v
>
m m ‘ MemResident |-->| MemoryManager | ‘ LinuxConn | |5erlallmpl ‘

Fig. 1. UML class diagram of the system. DSL class hierarchy is shown only approximately
because of its breadth and dynamic nature. IRTranslator together with non-resident DSL
constructs constitute independent and reusable DSL subsystem.

3.2 Architecture Overview

DSL allows the user to describe the code, which will be executed on targets.
CodeGen module provides a simplified interface to LLVM compilation and
optimization facilities. CodeLoader, Execution and Connection modules let user
load code on targets, communicate with them (for example, using global variables)
and control the code execution. Management of the target’s memory is provided by
the host through MemoryManager module.

Fig. 1 shows the structure of the system.

This architecture has a benefit of simple extensibility. Each of the following parts of
the library can be extended independently from others:

e DSL constructs and operations (for example, support array slicing or
exponentiation at the language level);

e communication protocols;
e target runtime functionality;
e most importantly, target platforms.
For details on these points, the reader can proceed to the following sections.

4. DSL

4.1 Design

The core of this library is a powerful embedded C-like DSL. It is translated to
LLVM Intermediate Representation (IR) to allow code compilation for a wide range
of targets supported by LLVM. This design of the DSL as translated and compiled
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at runtime is directly motivated by the concept of generative (or multi-stage)
programming when the abstraction power of high-level languages is used to
compose pieces of low-level code [4]. It makes runtime code generation and
domain-specific optimization a fundamental part of the program logic.

As authors of [4] note, the usual appeal of DSLs is in increasing productivity by
providing a higher level, more intuitive programming model for domain experts,
who are not necessarily expert programmers (“’user-facing” DSLs). The other
direction, which is of interest for us in this paper, is in using DSL as a means for
exposing knowledge about high level program structures to a compiler.

This DSL implementation makes heavy use of powerful template metaprogramming
capabilities of C++, up to C++17 standard. The idea to leverage C++ templates to
cope with challenges that poses development of DSLs aimed at generative
programming goes back at least to the work of Czarnecki et al. [9].

4.2 Description and Examples
DSL provides all necessary language constructs with a familiar syntax:
*  basic types (possibly cv-qualified):
o arithmetic types;
o pointers;
o arrays of fixed length (possibly nested);
o structs (possibly nested);
»  operations:
o arithmetic operators (with the support of pointer arithmetic);
o logical operators;
o bitwise operators;
o C-like cast;
»  control flow expressions:
o sequential (comma operator expression);
o conditional (if-else expression);
o while loop;
» functions (with a fixed number of arguments; no recursion);

» literal values.
It is also easily extensible with other higher-level constructs (for example, Python-like
array slicing) which will be translated directly to LLVM IR (i.e. will be efficient).
To allow simpler organization of the language, every DSL construct models either
value or expression; there are no statements. For example, to return void from a
function user needs to use special DSL construct 'unit’. Loops naturally return
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value from their last cycle. If loop did not run it returns default-initialized value
(generally, zero-initialized).

Any DSL construct has a corresponding underlying C++ type, which determines
allowed operations on it and conversions to other types. Underlying C++ type can
be accessed through member type alias : : type which is present in every DSL type.
And the DSL value type can be obtained (if there is one) from C++ type using
to_dsl<T> type trait. In other words, there is a direct mapping between DSL types
and C++ types. Type trait to_ds1<T> can be used as a convenient type factory.

Type of the DSL constructs (real C++ type, not the underlying C++ type) encodes
how it was constructed and what child DSL constructs constitute it (for example see
listing 1).

1. Var<int> x, vy, z;

2. auto expr = (x + y) * z;

3. using expr type =

4. EBinOp< Instruction::FMul,

5. EBinOp< Instruction::Add,
6. Var<int>,

7. Var<int>

8. >,

9. Var<int>

10. >;

Listing 1. Type of some DSL expression

One of the most interesting features of the DSL is a separation of DSL abstract
syntax tree (AST) construction from DSL function instantiation. It is achieved
through the use of C++14 generic lambdas which play a role of DSL code
generators (AST builders). Example can be seen on the next listing.

1. auto max gen = [] (auto x, auto y) {
2. return If(x > vy, %, V)
3. };

4. auto dsl max = make dsl_ fun<int, int>(max gen);
It allows simple and effective reuse of needed DSL constructs, as in the next

example.
1. auto max3 gen = [&] (auto x1, auto x2, auto x3) {
2. return max gen(xl, max _gen(x2, x3));
3. };
4. auto dsl max3 = make dsl fun<int, int, int>(max3 gen);

This conceptually differs from simple function call as a means of code reuse and is
closer to function inlining. In this way the new DSL generator is constructed which,
in its turn, can be later reused. Moreover, on the point of DSL code generation user
can utilize C++ constructs to build more complex DSL expressions (Listing 2).
1. // note: accepts arbitrary DSL expressions
auto reduce_sum_gen {

}i

2

3 // Using ‘

4. return (... + xs);
5

6 auto sum3 = make dsl fun<float, double, int>(reduce sum gen);

Listing 2. Use C++ code to build complex DSL expressions.
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1. ote:

2. (e.g. o r

3. auto get reducer = [] (const auto& binary op) {

4. return [&] (auto x1, auto... xs) {

5. ing C++17 fold expression

6. return ( binary op(xl, xs)), ... );
7. // Red ig Lo

8. ] Ol o

9. }i

10. };

11. auto max vararg gen = get reducer (max gen);

12. auto max3 = make dsl fun<int, int, int>(max vararg gen);

Listing 3. Generator of DSL reduce function over arbitrary DSL expressions.

Listing 4 shows two noticeable syntactic features of the DSL: the sequential
operator that plays a role of C/C++ semicolon and DSL local variables. Generally,
any DSL variable which is not an argument of DSL generator (enclosing lambda)
will be considered a local one. For the more consistent syntax user can define local
variables inside the generator lambdas. Also, note that they can’t be defined inside
the DSL expressions because they follow the rules of C++ expressions. To use
global variables a user is required to first load them on the target because they are
translated to LLVM IR as actual memory addresses.

1. Var<int> locall;

note lambda

apture (can also

auto max gen = [=] (auto arg) {

3

4 Var<int> local2;

5 return (

6 // variables c 't be defined here!
7. locall += arg,

8 locall +=

9. arg // ret

10. ) ;

11. };

Listing 4. Use of comma operator and local variables.

The next listing demonstrates that DSL allows to construct complex expressions in
familiar, close to C, syntax.

1. auto complex expr = [](Ptr<Var<uint32 t>> ptr) {

2. Var<uint32 t> tmp;

3. return tmp = *ptr &= ~ (*++ptr * Lit (1l << 8));

4. )i
Generic DSL functions is another very useful feature. As can be seen from previous
examples, DSL generators are not bound to specific types of parameters. Instead of
explicit manual instantiation of DSL function with required types of parameters
library user can instantiate generic DSL function with a help of function factory. If
generic function is used with arguments of inappropriate types, compiler will catch
this and compilation will fail with comprehensible error message.
Instantiated generic functions are stored in a function repository by a key which
represents their type. As a type of DSL constructs encodes their AST, type of DSL
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functions encodes their body. Thus, the structural equivalence between functions is
achieved without any overhead. Thanks to this repeated instantiation of the
(structurally) same DSL functions is avoided. DSL function is deleted from the
repository at the end of translation to LLVM IR. Needless to say, all this happens
behind the scenes and a user isn’t required to know about these details.
Listing 5 shows an example of the use of a generic DSL function.

1. auto generic max = make generic dsl fun(max gen);

2.

3. auto max4 gen = [&] (auto x1, auto x2, auto x3, auto x4) {
4. return generic max(

5. generic max(xl, x2),

6. Cast<float>(generic max (x3, x4))

7. )

8. };

9. ) £ 2 X ti

10. // for 1 d for f

11. auto max4 = make dsl fun<float, float, int, int>(max4 gen);

Listing 5. Generic DSL function example

Last, but not the least, DSL is designed with usability in mind. C++ code with a
heavy use of templates is known for its complex error message on compilation
failure. In DSL all major type constraints are checked with static assert standard
library function which produces comprehensible compile time error messages.

5. Subsystems Description

5.1 MemoryManager

This centralized memory management organization allows to free less powerful
targets from extra tasks and avoid extra communication cycles which would be
inevitable to ensure correct memory allocation if targets managed their memory
themselves. Best-fit, worst-fit and first-fit memory management algorithms are
implemented. Conceptually MemoryManager is part of a CodeLoader and used only
for data and code loading. That is, it’s important to note that target code can’t
dynamically allocate memory on targets.

5.2 CodelLoader

With the help of CodeLoader module user can load DSL global variables and
compiled code on targets. CodeLoader also allows getting a handle to already
loaded variables and functions. In this case, no checks or memory allocation is
performed, because, in general, there is no possibility to ensure correctness of user’s
actions. For example, functions can be loaded on a target in a persistent memory in
one program run, and on another program run any knowledge about it will be lost,
whereas the user may want to access previously loaded data and functions. So, it is
assumed that user knows what he is doing.
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5.3 Connection Module: Host side

Connection module consists of two parts: command protocol for communication
between host and targets and underlying connection implementation. The
functionality of the former is fully built on the primitives of the latter, which must
provide synchronous read and write operations.

The core command protocol includes the following commands:

» echo (for testing);
» read specified number of bytes at a specified address;

» write data to a specified address;
» call function at the specified address (without arguments and return value);
» set function at the specified address on execution by the timer;

» set function at the specified address on execution on the specific interrupt.
This abstraction from specific implementation allows easier extensibility on new
connection protocols. This work implements connection through TCP and through
USB (used as a virtual serial port).

5.4 Connection Module: Target Runtime API

Each specific target platform requires its own firmware to interface with the host. It
must provide functionality for communicating with the host and answering to
requests according to the command protocol.

At this point an important consideration arises: targets must provide API sufficient
for a wide range of tasks. Generally, peripheral devices on microcontrollers are
memory mapped, which means that runtime API consisting of memory read and
write functions can be sufficient. For example, the family of STM32
microcontrollers has fixed memory map and each device has a specific predefined
address in memory.

Some platforms may need an extended API. When the target has an operating
system, in particular Linux, it can additionally provide an interface to some of the
system calls: open () for using devices represented as input/output ports and mmap ()
for correct work with library runtime process address space. It is implemented in the
LinuxConnection module. Although for this platform it is also possible to
implement an interface to arbitrary system calls and libraries using diocpen() and
disym() functionality, the library runtime API for Linux is intentionally left
minimal but sufficient for tasks concerned with controlling peripheral devices.
Another important question is a debugging interface. Issuing diagnostic messages to
some local to target buffer can accomodate most of the needs and at the same time
is easily implementable. Target must provide interface to read the buffer and to get
an address of the target local logging function. This address is used to construct the
DSL wrapper for remote logging function. From this point it can be further used in
the DSL code.

55



Kirgizov G.V., Kirilenko I.A. Heterogeneous Architectures Programming Library. Trudy ISP RAN/Proc. ISP RAS, vol.
30, issue 4, 2018, pp. 45-62

6. Approbation
The system was tested on several setups:

e Linux on x86 plays the role of both host and target machines,
communication is through TCP connection (setup for tests during
development);

e the host is Linux x86, the target is Odroid XU4 (armv7a) with Linux, TCP
connection;

e the host is Linux x86, the target is bare-bones stm32f429i-discovery
microcontroller (armv7em), USB Virtual COM Port connection;

e the host is Odroid XU4 (armv7a) with Linux, the target is bare-bones
stm32f429i-discovery (armv7em), connection through USB Virtual COM
Port.

Tests were performed for each command from the command protocol (see above in
the section 5.3).

7. Demonstration

For a demonstration of dynamic optimization possibilities, which this library opens,
the reader can refer to the following listings of PID control (listing 6) and its tuning
(listing 7) for specific conditions of the deployment environment.

1. using namespace hetarch;
using namespace hetarch::dsl;

2

3

4. typedef int32 t ctrl t;
5. typedef float coef t;
6
7
8

. typedef ulnt32 t addr t; // size t of the target
9. conn: SerlalConnImpl<addr t> conn{"/dev/ttyACMO"},
10. SimplePipeline<addr t> pipeline{"armv7e_ linux eabihf", conn};

12. // Global vz s to store error data between control cy
13. auto perr = plpellne load(Global{ Var<ctrl t>{0} });
14. auto ierr = pipeline.load(Global{ Var<ctrl_t>{0} )
is)

durations (in second

18. auto pid _gen
19. auto pid ctrl

[&] (auto Kp,auto Ki,auto Kd,auto dt,auto sp) {

[&]{

23. Var<ctrl t> pv, cv, prev perr, derr;

27. return (
28. pv = read pv(),
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30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
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prev_perr = perr,
perr = sp - pv,

ierr += perr,

derr = perr - prev perr,

cv = Kp*perr + Kd*derr/dt + Ki*ierr*dt;

write cv(cv)
);
i
return pid ctrl;
}i

Listing 6. PID controller DSL code.

auto tuner = [&] (auto dt, auto sp) {
// For tuning coefficients are usual mutable DSL variables
Var<coef t> Kp{0}, Ki{0}, Kd{O0};
auto pid ctrl = pid gen(Kp, Ki, Kd, dt, sp);

// Specific tuning method:

// determines current operating conditions

// (e.g. by reading some sensors)

// and returns tuning data that allows to compute

// optimal PID controller coefficients.

// E.g. for Ziegler-Nichols method it is

// Ku -- "ultimate gain" and Tu -- oscillation period
return (/* actual tuning code goes here */);

bi

// Example parameters

Lit sp{42}; // Setpoint

int ms_delay{100}; // Control cycle duration
Lit dt{ms_delay / 1000.0};

auto tuning code = make dsl fun(tuner, dt, sp);
// Translate, compile and load tuning code

auto tuning fun = pipeline.load(tuning code);

// Run tuning code and get tuning data

auto tuning data = exec.call(tuning fun, dt, sp);
// Compute coefficients using optimal tuning data
auto [Kp, Ki, Kd] = compute coefs(tuning data);

// Generate optimal PID controller

auto opt pid gen = pid gen(Kp, Ki, Kd, dt, sp);

auto opt pid code = make dsl fun(opt pid gen);

// Translate, compile and load optimal PID controller
auto opt pid = pipeline.load(opt pid dsl);

// Finally, run PID controller on timer
pipeline.schedule (opt pid.callAddr, ms delay);

Listing 7. PID tuning DSL code.

The work is organized in the following way:

57



Kirgizov G.V., Kirilenko I.A. Heterogeneous Architectures Programming Library. Trudy ISP RAN/Proc. ISP RAS, vol.
30, issue 4, 2018, pp. 45-62

e in the first phase host loads general version of the PID controller with
tuning code on the target;

e inthe second phase tuning code is called and its result is read by host;

e in the third phase host computes coefficients based on tuning data and
recompiles PID controller with them;

o finally, host loads PID controller optimized for specific coefficients.
This example shows two advantages of using the library. Firstly, tuning code is
completely absent from the final program running on the target. Dynamic code
generation allows compiling code for specific constant coefficients to achieve better
execution times and smaller program size.
Secondly, the dynamically generated code can be more optimal due to optimizations
performed by LLVM. When coefficients are integer values, or, even better, integer
powers of two (or float values, that can be rounded without big errors), resulting
code will be generated with fewer (or completely without) expensive floating

operations.
1. typedef int ctrl t;

2. typedef float coef t;

3.

4. extern coef t Kp, Kd, Ki;

5. ctrl t perr = 0, ierr = 0;

6.

7. ctrl t pid ctrl(fleat dt, ctrl t sp, ctrl t pv) {
8. ctrl t prev perr = perr;

9. perr = sSp - pv;

10. ierr += perr;

11. ctrl t derr = perr — prev perr;

12.

13. return Kp*perr + (Kd*derr/dt) + (Ki*ierr*dt);
14. }

Listing 8. PID controller C code used for LLVM IR comparison.

To emphasize possible dynamic optimizations, fig. 2 presents a comparison between
listings of the PID controller code for two cases:

*  C code from listing 8 compiled with clang without this library;
» DSL code from listing 6 dynamically optimized with this library.
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1. ; Kp * perr 1.

2. %9 = load float, float* @Kp 2.

3. %10 = sitofp i32 S%perr to float 3. ; K perr

4. %11 = fmul float %9, %10 4. 312 = shl 132 %perr, 2

5. 5. %13 = sitofp i32 %12 to float

6. ; Kd * derr / dt 6.

7. %12 = load float, float* @Kd 7. ; Kd * derr / dt

8. %13 = sitofp i32 %derr to float 8. %14 = sitofp i32 %derr to float

9. %14 = fmul float %12, %13 9. %15 = fmul float %14, 5.000000e-01
10. %15 = fdiv float %14, %dt 10. %16 = fdiv float %15, 1.000000e-01
11. 11.

12. %16 = fadd float %11, %15 12. %17 = fadd float %16, %13

13. 13.

14. ; Ki * ierr * dt 14.

15. %17 = load float, float* @Ki 15. ; Ki * ierr * dt

16. %18 = sitofp i32 %ierr to float 16. %18 = mul i32 %ierr, 6

17. %19 = fmul float %17, %18 17. %19 = sitofp i32 %18 to float

18. %20 = fmul float %19, %dt 18. %20 = fmul float %19, 1.000000e-01
19. 19.

20. %21 = fadd float %16, %20 20. %21 = fadd float %20, %17

Fig. 2. Comparison of LLVM IR generated for expression "kp*perr + (Kd*derr/dt) +
(ki*ierr*dt)" (core part of the PID controller code; other lines are omitted here).
Compiler options used: -02 -target x86 64-pc-1linux-gnu. LLVM IR is used instead of
native assembler because it is more readable and optimizations are done on the IR.
Left: compiled with clang from C code on list. 8. LLVM IR is presented only for the last line.
Right: compiled with LLVM from DSL (see list. 6). For the sake of demonstration it is
assumed that dynamically determined PID controller coefficients are kp=4, kd=6,
ki=0.5; and control cycle duration is dt=0. 1.

There are several things on the fig. 2 to note:

» dynamically generated code has fewer memory accesses because it is
compiled for specific values (note lines 2, 7, 15 where usual code loads
coefficients stored as global variables);

* instead of floating-point multiplications (lines 4 and 17 on the left) integer
shift (line 4, right) and integer multiplication (line 16, right) are used,;

*  one apparent to a programmer optimization on line 9, right is missed:
substitute multiplication by 0.5 with integer division by 2 or right shift by
one; and it should be?, although it is possible to implement such
optimizations on the DSL level.

7.1 Library Applicability

The library is intended for use with embedded heterogeneous systems of a small
scale with low-power secondary processors and microcontrollers that run
heterogeneous tasks. The case of homogeneous tasks on the more powerful systems
is better accomodated with existing tools (e.g. OpenCL or Delite) that are

“This compiler behavior is expected according to C11 standard (section F9.2.1), because
representations of 0.5 and 2 maybe not be equivalent and the result can be different on some
machines.
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specifically aimed at scheduling and parallelizing the computations across bigger
number of secondary processors. This library is not intended for such use cases and
doesn’t provide any orchestration for parallel tasks. Each secondary processor
should be managed manually and separately.

Generally, the benefits and applicability of the library should be considered in each
particular case. As noted in the introduction, the library is well suited for the
problems when the dynamic configuration of the system is required (either for
particular environment conditions or for different peripheral devices and sensors).
It’s also important to consider the price of dynamic recompilation: the benefits of
the specialized and optimized code should amortize the compilation price.

8. Conclusion

This work presented a powerful DSL language aimed at metaprogramming and
showed its application to the domain of heterogeneous embedded systems. Although
the library misses some features (as noted in Further Work section), it constitutes a
proof of concept that the idea of dynamic code generation is perspective and useful
in the real-world scenarios

9. Further Work

The work can be continued in several directions.

The library does not provide facilities for loading on the targets existing compiled
code, for example, libraries. To be applicable to a wider range of use cases it
requires support of this functionality.

The development of the DSL is another direction. It can be extended with additional
language constructs, for example, switch, goto or to support recursion. It can also be
further developed to include more features of functional programming languages,
e.g. functions as first-class citizens. Support for a debugging in terms of the DSL
(breakpoints, tracing) can also be added.
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AHHOTanus. BcTpauBaemble cCTEMBI C T€TEPOT€HHONW apXUTEKTYpOM, paccMaTpUBaeMbIe B
JaHHOI paboTe, COCTOAT W3 OJHOTO YNPABISIOMIETO W OMHOTO WM HECKOJBKUX
nepudepuitHbIX mporeccopoB. Pazpadorka 1O s Takux cHCTEM MPEACTAaBIISET 3aMETHBIE
CIIOXKHOCTH, TpeOysl pa3inyHble HAOOPHI HMHCTPYMEHTOB [UISl KaKIOW COCTaBISIONICH
reTeporeHHol cucreMsl. JlOCTIKEHHE BBICOKOH A(p(h)eKTHBHOCTH Takke CTaHOBUTCS Ooiee
cioXHOW 3amadell. Kpome TOro, BO MHOTHX CLEHApHUsIX BCTPaMBaeMbIE CHCTEMBI TPEOYIOT
HACTPOWKM BO BpEeMs HCIIOJHEHHS, 4YTO HEMPOCTO O0OEeCHeYnTh C HCIOJIb30BaHUEM
CTaHJAPTHBIX  CpeAcTB. OTa pabora mpencraBimsier  C-momoOHBIA  MpeaMeTHO-
opueHTupoBaHHBI 36k (DSL) gt meranporpammmupoBanus © - OMOIHOTEKY,
MPEIOCTABIAIONIYI0 €OUHBIH  HWHTepdeiic I MporpaMMHUpPOBAaHUS  MEpUPEPUITHBIX
MIPOLIECCOPOB C HCIOIB30BAHUEM 3TOTO S3BIKA. JTO ITIO3BOJISICT Pa3pelINTh YIOMSHYTHIE
mpobnemsr. DSL Berpoer B C++ 1 mo3BosIsieT CBOOOAHO MAaHUITYTUPOBATH HAIMMCAHHBIMH Ha
HEM BBIPQOKCHUSIMH M, TakuM 00pa3oM, TPEACTaBIsIeT CO0OW peanH3anuo HICH
I€HEPATUBHOTO IIPOrpaMMUPOBaHUs, KOT1a BBIPA3UTEIbHAS MOIIb BEICOKOYPOBHEBOTO SA3bIKA
UCTIOJIb3YETCs ISl MHOTOCTYIIEHUATONW T'€HEpaluu HU3KOYPOBHEBOTO DSL koma. Bmecte ¢
JPYTMMH BO3MOXXHOCTSIMH, Harpumep, 00061eHHpiMu DSL hyHKImsiMu, 310 enaeT JaHHbIH
SI3BIK THOKMM MHCTPYMEHTOM JUISl TUHAMUYECKOH Kojorenepanuu. [loaxo, nCTIonb3yeMblil B
O6ubnmmoTexe, — S5TO JUHAMHUYEcKas KoMmwminus. Kox, HamicaHHBIH Ha TpeJMEeTHO-
OpUEHTUPOBAHHOM si3bIKe, TpaHciuupyercs B LLVM IR u 3arem xommmmmpyercs B
MAalIMHHBIH KOX BO BpeMs HCIOJHEHHS. OTO OTKPBHIBAET BO3MOXKHOCTH JIHMHAMHUYECKHX
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ONTHMH3ALMH KOJa, HAIpHUMEp, CHeNUaIN3anuy (YHKIUH U ONpPEAEICHHBIX 3HAUCHUH,
H3BECTHBIX TOJIBKO BO BpeMsl McHONHeHNUs. [ nmOkast apxuTekrypa OHOIHOTEKH obecrednBaeT
MPOCTYI0 PACIIUPAEMOCTh Ha Jo0ble Iuiatdopmel, mopaepxkuaemble LLVM. B konue
paboTel Takke NpUBOAATCA ampolamus OHONMOTEKHM Ha HECKOJBKHX CHUCTeMax |
JIEMOHCTPALUS BO3MOKHOCTH JUHAMUYECKUX ONTUMHU3ALIHIL.

KnroueBble ciioBa: MeranmporpaMMHpOBaHHWE; KOJOTeHepamus; BCTpoeHHBIH DSL;
TeTepPOreHHbIE CHCTEMBI; BCTPOSHHBIE CHCTEMBI.
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