Criteria for software to safety-critical
complex certifiable systems development

N.K. Gorelits <nkgorelits@2100.gosniias.ru>
A.S. Gukova <asgukova@2100.gosniias.ru>
E.V. Peskov <evpeskov@2100.gosniias.ru>
State Research Institute of Aviation Systems,
7, Viktorenko Str, Moscow, 125319, Russia

Abstract. Nowadays there is an actual problem in aviation industry — how to make the
development of complex safety-critical systems certifiable according to international and
domestic standards and regulations like DO-178C, DO-254, ARP 4754A, ARP 4761 etc. In
the article configuration management process from the development lifecycle of DO-178C is
considered as the main source of criteria for the development tool selection. Selected criteria
can be applied to software tool, which supports entire development lifecycle of aviation
software, as well as to software tools supporting some individual lifecycle processes. The
activities of configuration management process provide work with all project lifecycle data,
its storage, integrity, security, manageability and information support for data exchange
between the remaining lifecycle processes, maintenance of the history of changes etc.
Compliance with the principles of the configuration management process allows project
managers to control development, ensure the required quality and reliability of the product;
also, its certifiability and the necessary level of confidence in security, reduce financial and
time development costs. As example of using criteria one of the most widely known in
industry software tool for requirements development and management was analyzed for
compliance with the chosen criteria.

Keywords: DO-178C; qualification requirements 178C; software development; software
analysis; software choosing; certifiable systems; complex systems; complex systems
development; avionics; on-board equipment; lifecycle processes; lifecycle; configuration
management; system engineering.

DOI: 10.15514/ISPRAS-2018-30(4)-4

For citation: Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical
complex certifiable systems development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4,
2018, pp. 63-78. DOI: 10.15514/ISPRAS-2018-30(4)-4

1. Introduction

This research was inspired by acquaintance and very productive work
communication with untimely gone Michael Saburov. Michael Saburov participated
in development of Russian analogs of certification standards and regulations DO-

63

Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical complex certifiable systems
development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 63-78

178B [1], DO-178C [2], DO-254 [3] and DO-330 [4]. Also Michael Saburov
participated in implementation of processes from these regulation documents in
several industry enterprises. Michael Saburov took an active part in formation of the
concepts of research described in this article. All results and experience gained by
us during work on this research are dedicated to Michael Saburov.

Development and the following certification of complex safety-critical systems in
compliance recommendations of regulation documents DO-178C, DO-254, ARP
4754A [5], ARP 4761 [6] is an actual task and a big challenge for modern Russian
aviation industry.

Today among the software announced by its developers as supporting lifecycle of
complex systems development a huge number of products are presented to allow
software development in accordance with international quality standards.
Nevertheless at the moment assessment of the capabilities of each tool (or often it
will be the whole product line of expensive tools) and making a reasonable choice is
rather difficult problem.

Big quantity of existing software tools and systems positioned by developers as
tools, which support lifecycle processes of complex systems development, don’t
have well-founded assessments.

Assessments and reviews about such software, based on experience of practical
usage in industry projects, are very important — software market proposes a lot of
software tools and systems made by Russian and foreign developers. So that’s why
industrial enterprises have to make difficult choice of software tools for
development and the following certification of their critical-safety systems.

It is difficult to choose instrumental environment for support the entire development
lifecycle — unfortunately universal multipurpose tool, which would satisfy the
requirements of all standards of all industries, does not exist yet.

In general, most of the enterprises use separate tool for support and automate each
process of development lifecycle (like requirements development process,
configuration management processes, verification etc.). The situation is complicated
because often all or the most parts of such software suite have different
manufacturers. If the project have big set of weakly integrated software, then
product development becomes more and more complex both in atomic tasks of
individual specialist and in global meaning of the whole project — labor intensity
increases.

The organization of development landscape as a bunch of software tools entails
difficulties with tools integration, training costs, implementation costs, purchase of
licenses. All these changes increase the amount of resources, which are needed for
successful completion of the processes — human resources, financial, and time
resources. In this case, reaching project goals, formulated before the beginning of
work, become more and more difficult task.

In conditions of State program of import substitution [7] software tools and systems
made by Russian developers cause big interests. However, usage experience of

64

Topemmit HK., T'ykopa A.C., Tleckos E.B. Kpurepuu, npetbssisemble K NPOrpaMMHOMY 00€CIICYEHHIO JUTs Pa3paboTKH
CIIOKHBIX CePTUDUIMPYEMBIX CHCTEM, KPHTHUHBIX 110 6e30macHocTi. Tpyost MCIT PAH, Tom 30, Bbim. 4, 2018 1., cTp. 63-78

Russian software and consequently number and reliability of assessments according
to requirements listed above standards and regulations are not big enough.

In this article, we tried to understand and present what mechanisms and features
software tool should have to be useful to simplify and systematize development of
certifiable aviation software. This article is a part of series of materials about
aviation standards research in context of choosing software tools for certifiable
aviation software development [8].

2. DO-178C processes and the role of configuration
management process among them

Russian analogue of DO-178C - Qualification requirements 178C [9] — regulates
processes of certifiable development of aviation software. The heading of Russian
document contains important words — “Requirements to the software of on-board
equipment and systems at certification of aircraft”. These words uniquely determine
goals of recommendations, specified in the document.

Certifiability of product — significant property, because the purpose of most
developments is the following release of end product the on relevant market. In the
context of aviation systems certifiability means that aircraft with system included
will receive type certificate [10].

Under certifiability assurance, we mean the implementation of the development
processes in specific way —

o all necessary for certification activities are performed,
o all necessary for certification objectives are achieved,
o all necessary data is collected about development process and its result,

o this data is stored and processed in such a way that certification authority
could receive any data at any stage of project in order to examine the data
and to trace the history of their interactions and relationships.

Activities and objectives to airborne systems and equipment development are
described in document DO-178C (Russian analogue — qualification requirements
178C). DO-178C provides instructive materials and guidance to create airborne
systems and equipment. Implementation of activities and objectives achievement
listed in DO-178C give a chance to get in the end the result, which performs its
intended function with a level of confidence in safety that complies with
airworthiness requirements.

DO-178C describes a set of development lifecycle processes for aviation systems
and equipment. DO-178C divides processes of the development lifecycle to three
groups. The first group includes only one process — software planning process.
The second group called software development processes includes four processes
— software requirements process, software design process, software coding process
and integration process. The third group consists of four integral processes —

65

Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical complex certifiable systems
development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 63-78

software verification process, software configuration management process, software
quality assurance process, certification liaison process.

During software development, processes directly creation of software of aviation
systems takes place along with all previous and accompanying it measures for the
design, coding, integration etc. The main result of development processes is the
executable object code and its associated additional data are produces and loaded
into the target hardware for further integration. This result is necessary to be
achieved having carried out all the measures described in qualification
requirements.

Integral processes play a role of enabling processes (by analogy with enabling
systems in the terms of System Engineering [11]) - created and edited during
development processes data is stored and processes through mechanisms and
activities of configuration management process, required reviews and analyses are
made in the verification process and so on. Data — development lifecycle artifacts or
configuration items — may be requirements with different levels of details, software
architecture, source code and executable object code and different protocols,
problem reports, and many other results of activities.

Explanation the importance of integral processes implementation is very simple —
otherwise it is very difficult almost impossible to collect necessary for certification
data and to control the development process. It means that it will be difficult to
provide necessary level of confidence in safety that complies with airworthiness
requirements.

Each of integral processes has its own role and importance in the development
lifecycle; it could not be ignored or partially abolished during lifecycle. Huge risks
await developers who dare not comply integral processes - certification authority
will not accept results obtained this way and will not give relying certificate. Also
final product may contain errors and defects of varying degrees of critically. This
situation will not allow achieving the required level of confidence in safety and
quality of result in total, if the development process comes to an end with the
release of the working result.

In modern world of computers and upcoming information technologies the whole
software development lifecycle (and aviation software is not an exception) passes
through software tools, information systems and therefore its databases and
repositories. These software tools and information systems for all kinds of
operations on data (creation, storage, editing etc.) must be evaluated for their
sustainability and compliance with development according to certain standards and
other regulation documents.

If perform analyze requirements to development product, which Qualification
requirements 178C specifies and requires developer, becomes obvious that the most
restrictions and requirements for software (in which aviation software will be
developed) come from configuration management process. Activities of
configuration management process provide operations with development lifecycle

66

Topemmit HK., T'ykopa A.C., Tleckos E.B. Kpurepuu, npetbssisemble K NPOrpaMMHOMY 00€CIICYEHHIO JUTs Pa3paboTKH
CIIOKHBIX CePTUDUIMPYEMBIX CHCTEM, KPHTHUHBIX 110 6e30macHocTi. Tpyost MCIT PAH, Tom 30, Bbim. 4, 2018 1., cTp. 63-78

data, its storage, informational support to data exchange between other lifecycle
processes, logging the history of changes etc.

In this research, we chose configuration management process as the source of
arguments or justifications for choosing of software tools on which certifiable
aviation software will be developed. These substantiations are formulated in the
form of criteria. Criteria can be applied to potentially interesting software tools and
systems from the market and help with assessment and reasonable choice of some of
them. There will be described below how to apply selected criteria to the most
widely used (worldwide and also in Russia) software for requirements development
in the industry.

3. Basic criteria to tool from configuration management process

Configuration management process in project must be performed in accordance
with the document “Software Configuration Management Plan”. Software
Configuration Management Plan should be developed for each software
development project during Software Planning Process if development corresponds
to Qualification requirements 178C. In this document configuration management
environment should be determined as well as configuration management process
activities which will be performed during software development lifecycle.
Configuration management environment must support activities from section 7.2 of
Qualification requirements 178C. The list of configuration management activities
contains some process regulations (which restrain project members within the
workflow) and requirements to the mechanisms of configuration management
environment. It would be very useful if such mechanisms and methods will be
implemented in software, which will be used for development because not all of
them could be replaced with some organizational regulations.

Configuration management plan contains some requirements to configuration
management activities follow-up. As examples of these requirements can be listed:
states of configuration items, workflows of problem reports and change requests,
inspection procedures, baseline definition rules and rules of versioning
configuration items, organizational restrictions, safety details etc. These
requirements will not be considered in this article because its implementation can be
realized regardless of the instrumental part of configuration management
environment.

In this article, we identified the basic principles and mechanisms (basic criteria)
determined by configuration management environment and configuration
management activities according Qualification requirements 178C.

First of all we would like to highlight single and unified storage for all lifecycle data
as basic configuration management principle. It means that project should have
unified configuration management system for registration, storage and delivery all
software development lifecycle data.

Let us enumerate basic mechanisms of configuration management environment:

67

Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical complex certifiable systems
development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 63-78

o identification of configuration,

¢ configuration status accounting,

e change management and control,

e traceability,

e versioning,

e registration of inconsistencies and corrective actions,

e storage, retrieval and release.
Described mechanisms (further, criteria) are based on text Qualification
requirements 178C and are advisory in nature. These criteria can be used as an
additional informational source while choosing software tool for certifiable aviation
software development.
Elements of the criteria list will be considered in more detail below.

3.1 Identification of configuration and its configuration items
Procedure of identification of the configuration item (and the whole configuration in
general) includes assigning an identifier to the configuration item and registering it
in the configuration management system. The identifier of configuration item is a
designation uniquely distinguishes one configuration item from another. Identifier
of configuration item could not be changed ever. Identifier of configuration together
with its version makes unique identifier of configuration item in a particular
configuration. Version of configuration item will be described below in one of the
criteria.
An example of attributes that we suppose useful for registration of configuration
item:

e configuration item identifier (doesn’t change ever after registration),

e mnemonics (designation which will help user identify configuration item),

o configuration item name,

e purpose of configuration item (type),

o kind of configuration item (atomic, composite — configuration index),

o version (number, sign if it is baseline or not),

o data control category (Control Category 1 or Control Category 2),

¢ link to the configuration item source.

Note: software lifecycle data can be classified to Data Control Category 1 or to
Data Control Category 2 (section 7.3 of Qualification requirements 178C).

3.2 Configuration status accounting

Status accounting of developing software configuration should be conducted in
order to provide the certification authority all necessary information (like

68

Topemmit HK., T'ykopa A.C., Tleckos E.B. Kpurepuu, npetbssisemble K NPOrpaMMHOMY 00€CIICYEHHIO JUTs Pa3paboTKH
CIIOKHBIX CePTUDUIMPYEMBIX CHCTEM, KPHTHUHBIX 110 6e30macHocTi. Tpyost MCIT PAH, Tom 30, Bbim. 4, 2018 1., cTp. 63-78

configuration index, history of configuration etc.). That is why it is necessary to
ensure that registration of the actions performed on the configuration units is
automatic.

An example of data which we suppose to necessarily register when performing any
action on the configuration item:

¢ date and time of making changes to the configuration item,
e number of version of the configuration item,

e user id — who made changes to configuration item or created version of
configuration item,

o status of version of configuration item including the history of this status
changes,

o for configuration items from Control Category 1: link to the change request
for this configuration item.

3.3 Versioning, baselines

Rules of naming and versioning for configuration items should be defined.

Note: for example, configuration item’s version is denoted as an integer (1, 2, 3
etc.). New value of configuration item’s version is obtained by increasing the value
by 1. If it was 2, the next value will be 3.

Rules for baseline formation and baseline appointment mechanism should be
defined. In addition, restrictions on the baseline’s modification should be defined.
Note: baseline is approved and registered version of configuration item, which will
be used as basic for further development. Baseline can consist of one or several
configuration items.

3.4 Configuration items traceability

Traceability requirements and mechanisms should be defined for link different types
of configuration items and related data. Configuration items can be connected with
each other, also with reason of creation (source), with dependent items, with history
of configuration item’s changes etc.

Note: As example of connections, we may mention links between low level
requirements with its parent high level requirements, low level requirements with
executable object code, problem report with configuration item, problem report with
change request and with task for making approved changes etc.

Configuration items traceability is very important in the context of developing
software certification. It is necessary for configuration items to trace links with
source of its creation with maked to configuration items changes and with reason to
making changes etc.

69

Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical complex certifiable systems
development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 63-78

Traceability of links should work in both directions. Changes in configuration items
should trace to sources of changes (for example to change request, which in its turn
refers to parent problem report) and back.

It is always useful for users to analyze some visualized view of data. As a variant of
useful and intuitive view of links and traces may be a traceability matrix.
Traceability matrix shows how configuration items are connected to each other and
their relations type is displayed. Type of relations between configuration items can
be presented both in simple form with only displaying link presence or absence, and
in the various types of links and communication.

Table 1 illustrates an example of configuration item’s baseline formation.

Table 1. An example of traceability matrix: links between configuration items

Configuration items
Cl1

Cl2
CI3
Cl4

" [l not applicable
X — connection exists

'y Y, »_ certain type of connection exists

3.5 Change management and control

The change management of the configuration items must be implemented. Change
management activities are responsible for the reaction to recording, evaluating,
solving problems through the whole lifecycle of each configuration item.

Any change of configuration item should only be done by creating a new version of
changing configuration item. However all previous versions should remain
unchanged. Previous versions should be stored in repository and be accessible.
Changing of configuration items from Control category 1 is possible only through
special procedure of change management. Problem report should be created and
approved, detailed change requested and tasks should be created from this problem
report. Changes to configuration items from change request should be also approved
and only then changes may be applied to configuration items. All related
information about changes must be stored forever — who, when, for what reason
have changed that version of configuration item. Changes to configuration items
with Control category 2 do not require complex procedure with approvals and
reviews of changes.

70

Topemmit HK., T'ykopa A.C., Tleckos E.B. Kpurepuu, npetbssisemble K NPOrpaMMHOMY 00€CIICYEHHIO JUTs Pa3paboTKH
CIIOKHBIX CePTUDUIMPYEMBIX CHCTEM, KPHTHUHBIX 110 6e30macHocTi. Tpyost MCIT PAH, Tom 30, Bbim. 4, 2018 1., cTp. 63-78

3.6 Registration of inconsistencies and corrective actions

Once inconsistencies or defects are detected, it is necessary to determine procedure
and mechanisms of its registration. Also corrective actions should be established,
impact analysis of the proposed changes should be done and making of the
approved changes to configuration item should be strictly controlled.

Any project member who discovered an inconsistency or defect or any other type of
error, should be able to write it in special configuration item — problem report.

An example of attributes, which we suppose to necessarily register when registering
a problem report for any configuration item:
¢ link to configuration item — source of detected inconsistencies,

¢ link to index of configuration which includes configuration item with
inconsistence or to process or workflow if inconsistence is more global,

e inconsistence description,

e problem report’s author id,

e steps to reproduce the problem,
e problem report state,

¢ link to corrective actions (for example: change request).
An example of attributes which we suppose to necessarily register when registering
a corrective action for any problem report (for example: change request):

o link to problem report (change request source),

¢ link to configuration items in which it is necessary to make changes,

e impact analysis of proposed changes to the rest configuration items of
lifecycle data.

3.7 Storage, retrieval and release

Method and proof of data integrity should be determined during its storage and
retrieval from backups. Rights to release data should also be defined. Tools for
creation, retrieval and integrity control of backups should be implemented according
to chosen method.

Note: the need for backup creation can be both for the entire repository and for a
separate development project or for separate configuration.

The realization of instrumental support for the creation, retrieval and data integrity
control is very important and in demand because it allows to minimize time costs
for these procedures and to reduce the risk of data distortion or loss.

Note: using of a checksum mechanisms for backups creation may be a good
example of data integrity control realization.

71

Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical complex certifiable systems
development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 63-78

4. Configuration management tools, analysis

The experience of cooperation with Russian developers of avionics system
demonstrates that most of them try to create on-board software in compliance with
the requirements of the document Qualification requirements 178B/C and then
certify their software products.

At the same time there are situations when the software development process is
produced without detailed requirements (in fact without requirements at all - only
high-level technical specification are used), without configuration management,
without reviews or inspections. Software testing is conducted, but unfortunately, its
completeness can be insufficient because of the absence or incompleteness of
requirements.

Realizing their unpreparedness for further certification without using of specialized
software, aviation enterprises are implementing various tools. An example of such
tools can be IBM Rational DOORS, IBM Rational Change + Synergy, IBM
Rational Team Concert, Siemens Team Center Requirements, LDRA and others. In
this case often overlooked that without understanding the processes (and not having
the described processes on a paper at least) it is almost impossible to get the effect
of the implementation of the tool.

It is necessary to apply the certification process with a complex approach to achieve
the best result. It means - to develop the processes, to provide their support by tools,
to develop plans and standards (Plan for Software Aspects of Certification, Software
Development Plan, Software Verification Plan, Software Configuration
Management Plan, Software Quality Assurance Plan; Software Design Standards,
Software Code Standards, Software Requirements Standards) and to conduct
development in full compliance with these plans and standards.

Often enterprise of the aviation industry implement only tool for writing and storage
requirements. Typically, this tool has minimal change management capabilities.
Developers try to manage requirements ignoring or paying low attention to the
configuration management process — this approach is fundamentally incorrect.
Below we put a list of the most widely used tools to support the software
development lifecycle, implemented in Russian aviation enterprises.

To support requirements management processes are often used: Microsoft
Excel / Word, IBM Rational DOORS, Siemens TeamCenter Requirements
Management (mainly in those enterprises where Siemens TeamCenter PLM was
previously implemented in the design department) and even more rare - 3SL Cradle.
Due to the State program of import substitution, products of Russian developers
arouse great interest. Among the most ambitious, it is possible to highlight product,
which supports the entire development lifecycle of systems - Devprom.

To support lifecycle data change management processes are often used: IBM
Rational Change + Synergy (tools are not supported by the vendor, but are still in
use in some enterprises), IBM Rational Team Concert, and the most popular project
and task management tools - Redmine and Attlassian Jira.

72

Topemmit HK., T'ykopa A.C., Tleckos E.B. Kpurepuu, npetbssisemble K NPOrpaMMHOMY 00€CIICYEHHIO JUTs Pa3paboTKH
CIIOKHBIX CePTUDUIMPYEMBIX CHCTEM, KPHTHUHBIX 110 6e30macHocTi. Tpyost MCIT PAH, Tom 30, Bbim. 4, 2018 1., cTp. 63-78

In situation when the software product Redmine or Jira are used to manage changes
to the lifecycle data, the integration between these tools is rather nominal — all tools
supported development lifecycle work independently, links between change
requests and requirements are fixed in a text file.

This approach does not contradict the principles of configuration management
prescribed in Qualification requirements 178C, but not only doesn’t simplify the
development process, but also makes the process management even more difficult
(dependence on the human factor, the inability to track changes (the absence of a
change marker), the lack of quick switch from a change request to the changed data,
etc.).

To support configuration management processes are often used: GitHub - the
most popular and freely distributed tool among code developers and SVN
(Subversion)— a traditionally used repository for file sharing in enterprises in Russia
(also distributed under the conditionally free Apache license).

The functionality of these tools when it used as configuration management systems
does not allow you to fully support all activities of the configuration management
section 7.2 of Qualification requirements 178C. Moreover, the use of all the
functionality of this software may be considered as a violation of some of them. It is
almost impossible to restrict the functionality of tools that are useful to traditional
code developers in order to comply with the process specified in the Configuration
Management Plan.

For example, GitHub does not store intermediate versions when you merge code
branches (or other files when you use this tool as a configuration management
environment) and you cannot track changes that precede the merge.

Quote from DO-178C (section 7.2.4 ¢): “Throughout the change activity, software
life cycle data affected by the change should be updated and records should be
maintained for the change control activity”.

For the analysis for compliance with the criteria described in the previous section,
we present the summarized results of the requirements management tool IBM
Rational DOORS use in State Research Institute of Aviation Systems (GosNIIAS)
and the results of the analysis of the entire IBM Rational product line for lifecycle
management [12].

We can analyze requirements management tools for conformity by Configuration
Management process criteria, because the requirement is one type of configuration
items and recommendation of section 7.2 of Qualification requirements 178C about
its storage and handling must be observed.

To evaluate the criteria, the following values (weight) were selected:
e 0 —criteria is not supported;
e 0.5 - criteria is partially supported;

e (.75 — criteria is supported through tool configuration, adaptation or any
integration;

73

Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical complex certifiable systems
development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 63-78

e 1 criteria is fully supported.
The analysis results are shown in the figure below on Fig.1.

Identification

Storage, Configuration
retrieval and status
release accounting
Problem
report and Versioning,
corrective baselines
actions

. . -e-Reference
énfiguration
Change .

items

management . ~4-1BM RATIONAL
g traceability

-#-|BM DOORS

Fig. 1. Tools analysis

5. Conclusion

Configuration management process — is the main source of criteria for choosing the
tools, which support aviation software development lifecycle. Configuration
management process acts as unifying “input-output bus” for all lifecycle data.
Therefore, tools with support of the software development lifecycle should focus on
the mechanisms, embedded in the configuration management process, in order to be
able to interact closely (be integrated). Such a close relationship (integration)
through the configuration management process can significantly help with the
development process, provide a predictable (and positive, if the tool was chosen
correctly) result of aviation software development and help with preparing to the
certification. It is important to note, that the purchase of the software tools and
instruments does not ensure success in passing the certification — methodological
support is also needed.

The task to select software tools for development lifecycle support is not easy,
because it is rather difficult to determine in advance whether all requirements of
chosen for this project lifecycle process will be supported by software tool, system
or a set of tools. Analysis of configuration management process and selecting
criteria from it to tools allows to define the boundaries of necessary for the project
systems and tools. Analysis gives as result formulated requirements to the tool,
which can be applied for choosing and buying suitable tool or in case of
independent development such instrumental environment. In case of buying these
requirements and criteria will help to choose exactly that product whose functions
are necessary and sufficient for development goals without spending a lot of money

74

Topemmit HK., T'ykopa A.C., Tleckos E.B. Kpurepuu, npetbssisemble K NPOrpaMMHOMY 00€CIICYEHHIO JUTs Pa3paboTKH
CIIOKHBIX CePTUDUIMPYEMBIX CHCTEM, KPHTHUHBIX 110 6e30macHocTi. Tpyost MCIT PAH, Tom 30, Bbim. 4, 2018 1., cTp. 63-78

for buying disparate software tools of different manufacturers, which will
complicate the solution as a whole.

These conclusions are confirmed by the above analysis of one of the tools. Using of
the set of tools extending the functional brings the environment closer to the
reference state of configuration management process. In addition, there are
difficulties: often the cost of licensing significantly increases (you have to buy
additional tools), the time for installation, integration and implementation of the
process increases, number of tools used in the project is growing and requires
management efforts. As a result, the total complexity of development increases.

References

[1]. Software Considerations in Airborne Systems and Equipment Certification (RTCA DO-
178B), 1992.

[2]. Software Considerations in Airborne Systems and Equipment Certification (RTCA DO-
178C), 2011.

[3]. Design Assurance Guidance for Airborne Electronic Hardware (RTCA DO-254), 2000.

[4]. Software Tool Qualification Considerations (RTCA DO-330), 2011.

[5]. Aerospace recommended practice. Guidelines for development civil aircraft and systems
(SAE ARP 4754A), 2010

[6]. Guidelines and Methods for Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment (SAE ARP 4761), 1996

[7]. The Order of the Ministry of Industry and Trade of the Russian Federation of March 31,
2015 Ne 663 “About the approval of the industry plan of actions for import substitution
in branch of civil aircraft industry of the Russian Federation” (with changes and
additions)

[8]. Gorelits N.K., Peskov E.V., Requirements management as efficiency measure for
software development in aviation industry. Sbornik trudov VIII Mezhdunarodnoy
konferentsii “IT-STANDART 2017” [Proc. of VIII International conference “IT-
Standard 2017”’], Moscow, 2017, pp.105-113, ISBN 978-5-98597-346-4 (in Russian)

[9]. Qualification requirements part 178C, IAC, 2014 (in Russian)

[10]. M.A.Saburov, Yu.A.Solodelov, N.K.Gorelits. Development of the certifiable avionics
software by the example of JetOS real time operation system. Navigatsiya, navedenie i
upravlenie letatel’nymi apparatami: tezisy dokladov Tret’ey Vserossiyskoy nauchno-
tekhnicheskoy konferencii [Proceedings of Third All-Rus. Scient.-Techical Konf.
“Navigation, guidance and control aircraft”], Moscow, 2017, pp.241-243, ISBN: 978-5-
93728-133-3 (in Russian)

[11]. System engineering — System life cycle processes (ISO/IEC/IEEE 15288:2015), 2015

[12]. Koverninsky 1.V., Kan A.V., Volkov V.B., Popov Yu.S., Gorelits N.K. Practical
experience of software and system engineering approaches in requirements management
for software development in aviation industry. Trudy ISP RAN/Proc. ISP RAS, vol. 28,
issue 2, 2016, pp.173-179. DOI: 10.15514/ISPRAS-2016-28(2)-11

75

Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical complex certifiable systems
development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 63-78

Kputepuu, npeabsaBnsaemMble K NporpaMmMHOMY
obecne4yeHnro ans paspaboTKu CNOXHbIX
cepTucUUMpyeMbiX CUCTEM, KPUTUYHbIX NO 6e30MacHOCTU

H.K. I'openuy < nkgorelits@2100.gosniias.ru>
A.C. I'vkosa < asgukova@2100.gosniias.ru>
E.B. Ileckos <evpeskov@2100.gosniias.ru>
Focydapcmeeﬁnbzﬁ Hayl{HO'uCCJle()OSCZmeJZbCKMIZ uHcmumym aeuadyuOHHblX cucmem
Poccus, 125319, o. Mockea, yr. Bukmopenko, 7

AnHotamms. Ha ceropHsmHuii JeHb B aBHAllMOHHOM OTpaciy CYIIECTBYET akTyasbHas
mpobieMa — Kak HHCTPYMEHTAJbHO TOAJCPKAaTh M O0ECHEYUTh CEepTUPHIUPYEMOCTh
pa3pabOTKM KPUTHYHBIX 110 OE30MACHOCTH CJOXHBIX CHCTEM B COOTBETCTBHH C
MEXIYHapOAHBIMA ¥ OTEUYECTBEHHBIMH OTpPACICBBIMH CTaHIApTaMH, HOPMAaTHBHBIMU
nokymentamu, Ttakumu kak KT-178C, KT-254, P-4754, P 4761 u np. B crathe
paccMmarpuBaeTCs Mpolece yrnpapieHUus KoHdurypammeii npu paspadorke mo KT-178C kak
OCHOBHOH MCTOYHHK KPHTEPHEB IJIsI OCYIECTBICHNS] BEIOOpA HMHCTPYMEHTAIBLHOTO CPEACTBA
TOACPKKU pa3paboTKu. BrineneHHbIe KpUTEPUH MOTYT OBITh IPUMEHEHBI K HHCTPYMEHTY
TOJIAEPKKU BCETO)KU3HEHHOTO UKIA pa3paboTku aBuaroHHOro 10 B coorBeTcTBUM ¢ KT-
178C, a Tarke K WHCTPYMEHTaM, OTBEYAIOLINM 3a MOIACPKKY OTICIBHBIX IPOIECCOB
JKU3HEHHOTO IHKJIAa. MepomnpHsThs mpolecca yrnpasieHus KOHGUrypanuei o0ecreunBaloT
paboTy ¢ JaHHBIMH JKH3HEHHOTO IMKJIA, WX XpaHEHHe, IEeJIOCTHOCTh, OE30IacHOCTb,
YIPaBIsIeMOCTb, MH(POPMAMOHHYIO TOMAEPKKY OOMEHa ITaHHBIMH MEXIy OCTAIbHBIMU
npoleccaMl JKU3HEHHOTO LKA, BeJeHHe HcTopuu u3MeHeHuid u T.1. CoOmoneHne
NPUHIUIIOB IIpoLiecca YNpaBieHHs KOHQUrypalyeil MO3BOJISIET OCYIIECTBISTH KOHTPOJIb
pa3paboTku, oOecrmeunuTh TpeOyemble KayecTBO W HANSKHOCTh MPOAYKTa, €ro
cepTUGUIMPYEMOCTh M HEOOXOAMMBIH ypOBEHb JOBEpHs K OE30MacCHOCTH, CHU3UTHh
(huHAHCOBBIE W BpEMEHHBIE 3aTpaThl Ha pa3paboTKy. B kaudecTBe mpuMepa HCIONB30BAHUSL
KpUTEpHEB TPHUBEACH aHAM3 OJHOTO W3 PACIpPOCTPAaHEHHBIX B OTPACIH HHCTPYMEHTOB
pa3paboTKH 1 ynpaBieHus TpeOOBaHUSIMHI Ha COOTBETCTBUE YKAa3aHHBIM KPUTEPHSIM.

KmoueBble ciaoBa: KT-178C; DO-178C; paspaborka I1O; anamuz I10; Beidop IIO;
CepTUHIPYEMBIE CHCTEMBI; CIIOKHBIE CHCTEMBI; pa3paboTKa CIIOXKHBIX CHCTEM; aBUOHHKA;
KBO; mponeccsr XKII; >XW3HEHHBI IWKJI; YIpaBleHHe KOHQUTypamued; CHCTeMHas
HHKCHEPHSL.

DOI: 10.15514/ISPRAS-2018-30(4)-4

Jas uurupoBanus: ['opemuny H.K., I'ykoBa A.C., IleckoB E.B. Kpurepuu, npenbpsasiseMmsie
K TPOTrpaMMHOMY OOECIICUCHHIO sl Pa3pabOTKH CIOXHBIX CEPTUQHIMPYEMBIX CHCTEM,
KpuTHuHbIX 0 G6e3omacHocty. Tpynsr UCIT PAH, Tom 30, Bem. 4, 2018 1., cTp. 63-78 (Ha
anrmiickom s3pike). DOI: 10.15514/ISPRAS-2018-30(4)-4

Cnucok nutepatypbl
[1]. Keanudurkaruonusie TpeGoBanus yacts 178B, 2002 — AP MAK.

76

Topemmit HK., T'ykopa A.C., Tleckos E.B. Kpurepuu, npetbssisemble K NPOrpaMMHOMY 00€CIICYEHHIO JUTs Pa3paboTKH
CIIOKHBIX CePTUDUIMPYEMBIX CHCTEM, KPHTHUHBIX 110 6e30macHocTi. Tpyost MCIT PAH, Tom 30, Bbim. 4, 2018 1., cTp. 63-78

2.
[3].

[4].
[5].

[6].
[7].

[8].

[°1.
[10].

[11].

[12].

Kpammdukannonnsie TpedoBanus yacts 178C, 2014 — AP MAK.

PyxoBozacTBO 10 rapaHTHN KOHCTPYHUPOBaHMSI OOPTOBOIL 211eKTpoHHOH ammapartypsl KT-
254, 2011 - AP MAK.

Software Tool Qualification Considerations (RTCA DO-330), 2011.

PyxoBoactBo P4754 o mponeccam cepTr(UKAIK BEICOKOMHTEIPHPOBAHHBIX CIIOKHBIX
OOPTOBBIX CUCTEM BO3IYIIHBIX CyIOB IpaskaaHckoi aBuanuu. AP MAK, 2010
PykoBoxctBo 4761 mOo MeronaM OIEHKM O€30IIaCHOCTHM CHCTEM U OOpPTOBOTO
000pyJOBaHUS BO3IYIIHBIX CYJ0OB IpaskAaHcKol aBuanmu, 2010

IIpnka3 MunaucTepcTBa MPOMBIIUIEHHOCTH U ToproBimu PO ot 31 mapra 2015 r. N 663
"O6 yTBepXKJOCHHHM OTPACIEBOTO IUIAHA MEPOIPHUATHH II0 HMIIOPTO3aMEUICHHIO B
OTpaciy TpaXTaHCKOro aBMacTpoeHWs Poccuiickoit @enepanmu" (C M3MEHEHHMSIMH U
JTOTIOJTHCHUSIMH)

Toperun H.K., TleckoB E.B., “YmpaBnenme TpeOoBaHMSMH KaK KpUTEpHI
3¢ (GeKTHBHOCTH TpU pa3pabdoTKe MPOTPaMMHOTO OOecleueHHss B aBHALIMOHHOU
orpaciu”, Co6opruk TpynoB VIII Mexnynapongnoit kondepenmuun “UT-Cranmapr
2017”. Mocksa, 2017, ctp. 105-113, ISBN 978-5-98597-346-4

Software Considerations in Airborne Systems and Equipment Certification (RTCA DO-
178C), 2011

CabypoB M.A., Conogmenos lO.A., T'opemny H.K. Paspabotka ceprudummpyemoro
6OpTOBOrO MPOrPAaMMHOIO OOECIICUCHUs] Ha MpPUMEpEe OIEPAIMOHHOH CHCTEMBI
peanbHoro BpemeHu JetOS. HaBuraius, HaBeJeHHE W YIpPAaBICHHE JETATEIbHBIMU
ammaparamu: Te3uchl MOoki. Tperbeit Beepoc. HaydHO-TexHMuUeckon koH®. (MockBa —
Pamenckoe 21-22 cent. 2017 1.), 2017, cp. 241-243, ISBN: 978-5-93728-133-3.

I'OCT P 57193 CucremHas u nporpaMmHas uxxeHepus. [Iporieccs! xKHU3HEHHOTO LUK
cucreM, 2016

Koverninsky 1.V., Kan AV., Volkov V.B., Popov Yu.S., Gorelits N.K. Practical
experience of software and system engineering approaches in requirements management
for software development in aviation industry. Trudy ISP RAN/Proc. ISP RAS, vol. 28,
issue 2, 2016, pp.173-179. DOI: 10.15514/ISPRAS-2016-28(2)-11

77

Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical complex certifiable systems
development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 63-78

78

