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Abstract. When developing programs in high-level languages, developers have to make 

assumptions about the correctness of the compiler. However, this may be unacceptable for 

critical systems. As long as there are no full-fledged formally verified compilers, the author 

proposes to solve this problem by proving the correctness of the generated machine code by 

deductive verification. To achieve this goal, it is required to combine the pre- and 

postcondition specifications with the machine code behavior model. The paper presents an 

approach how to combine them for the case of C functions without loops. The essence of the 

approach is to build models, both machine code and its specifications in a single logical 

language, and use target processor ABI to bind machine registers with the parameters of the 

high-level function. For the successful implementation of this approach, you have to take a 

number of measures to ensure the compatibility of the high-level specification model with the 

machine code behavior model. Such measures include the use of a register type in the high-

level specifications and the translation of the pre- and postconditions into the abstract 

predicates. Also in the paper the choice of logical language for building models is made and 

justified, the most suitable tools for implementing the approach of merging specifications are 

selected and the evaluation of the system of deductive verification of machine code built on 

the basis of the proposed approach is made using test examples obtained by compiling C 

programs without loops. 
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1. Introduction 

The paper presents a step forward towards the creation of a tool capable of proving 

the correctness of machine code based on the formal specification of a function for a 

high-level language [1]. Such a tool will allow to avoid the assumption about the 

correctness of the compiler by verification of the generated code regarding 

specification of source code functionality. The only way in which the correctness 

analysis of machine code is not necessary is to create a fully formally verified 

compiler [2].  
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However, the existing developments in the field of formally verified compilers [3] 

now do not allow using all the possibilities of existing unverified analogs, for 

example, GCC [4]. This work is necessary for the implementation of an alternative 

approach – deductive verification [5] of compiler products, the correctness of which 

has not been proven. Using this approach will allow you to safely use the already 

created software.  

Different approaches to formal specification and building a model of machine code 

behavior were proposed in different machine code verification projects. Here, the 

formal specification of a function or a sequence of machine code instructions shows 

the pre- and postconditions for a function and the behavior model describes 

mathematical and logical state change formulas. The paper discusses an approach to 

combining ACSL [6] specifications of the C language with the machine code of the 

PowerPC e500mc processor obtained by compiling these functions. The choice of 

the target language is caused by the fact that most high-critical system software like 

operating system kernels is written in C. While the very high-level languages 

support a variety of protective mechanisms – such as the prohibition of pointers or 

checks when casting, the C language is designed for maximum performance by 

allowing the programmer to interact directly with the memory.  

Proof of critical code sections by deductive verification methods can improve the 

reliability of such systems. In the pursuit of performance, compilers try to make the 

most of the capabilities of the target processor. Machine code produced by 

compilers can be extremely difficult for manual verification and specification 

because the compilation disappears all the information about the names of variables 

and even the order of execution of commands may be different than in the original 

program. Only the pre- and postconditions for a particular function remain 

unchanged. Automatic combination of C-level specifications with the logical model 

of machine code will allow you to check its correctness in a fully automatic mode. 

2. Machine code representation 

The specification of machine code instructions in logical languages is a complex 

and lengthy process. Often, the appearance of the function behavior model 

specification in this language is very different from that provided in the processor 

specification. In addition, the lack of special tools makes it difficult to debug such 

models. To solve these problems, the author proposes to use the NML language, 

together with the MicroTESK tool [7]. The NML language contains special 

structures and data types to simplify the modeling of the hardware. The MicroTESK 

toolset includes universal disassembler of the machine code by the NML language 

and the NML to SMT-LIB [8] translator.  

Fig. 1 shows the cmpl operation specification from the official documentation for 

PowerPC e500 core family [9] processors and fig. 2 shows its NML version. From 

here, you can see that the NML language allows you to fully describe processor 

instructions, including their representation in Assembly language and machine code. 

In addition, the use of the NML language as the basis for the representation of 
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machine code will allow to reuse all NML models, developed by the MicroTESK 

development team for the purposes of testing of microprocessors. 

 

Fig. 1. CMPL official specification 

 

Fig. 2. CMPL NML specification 

3. ACSL specifications representation 

3.1 ACSL specifications translation 

As a logical language, in which ACSL specifications will be translated, the author 

suggests using the WhyML language [10]. The Why3 tool designed to analyze this 

language allows you to apply many useful transformations and optimizations. It also 

allows you to translate WhyML code into logical code for many different provers. 

In addition, the task of translating ACSL specifications into WhyML code has 

already been solved by the Jessie plugin [11] for Frama-C [12]. In the course of 

research [1], it was established that the use of the plugin Jessie directly, not suitable 

for the tasks of machine code analysis.  

Jessie plugin makes a number of simplifying assumptions that do not take into 

account the peculiarities of machine code. Instead, it was decided to take as a basis 



Putro P.A. Combining ACSL Specifications and Machine Code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 95-106 

98 

the unfinished code of jessie3 project [13] – part of the Why3 project. The Jessie3 

code has been modified and extended to take into account the peculiarities of 

machine code. In particular, the language WhyML has been described the type of 

processor registers. In addition, the algorithm of generating targets for the proof was 

changed for the subsequent fusion – pre- and postconditions were separated from 

the function behavior model. 

3.2 Using register type for compatibility with machine code 

Processor registers can be represented by a limited integer type with an extended set 

of operations. Operations include signed and unsigned arithmetic, bitwise 

operations, and memory read operations at the address specified in the register and 

by offset. To describe all such operations high-level languages, use a variety of 

different types, as well as a cast operation. However, using different data types will 

complicate the proof of correctness problem for SMT-solvers. This is especially 

noticeable in the case of bitwise operations, which are available only for bitvectors 

in SMT-LIB. Bitvectors cast operations to an integer type are not supported by the 

latest SMT-LIB [14] standard, and various SMT-solvers offer their own version of 

the implementation of this operation.  

The BitVec type from SMT-LIB is well-suited for describing the type of registers 

because it contains all the necessary arithmetic and logical sign and unsigned 

operations. However, the theory of bitvectors at the why3 level does not support all 

the necessary operations and is built as an unsigned type. Based on the standard 

theory of bitvectors, the author developed a theory to support the type of processor 

registers. The theory supports both signed and unsigned integer types and there is 

ongoing work to add support for pointer arithmetic and memory dereferencing. The 

driver for CVC4 SMT-solver [15] was updated for translation of the register type to 

the type BitVec with corresponding mapping of operations.  

3.3 Splitting specification and behavior model 

To merge machine code, you must separate the pre - and post-conditions from the 

behavior of the high-level function, which will then be replaced by the behavior of 

the machine code. To implement this approach, the author uses abstract logical 

predicates of pre- and postconditions checking. These predicates take as input the 

parameters of the verification function, and the predicate of the postcondition is also 

taking its result. Further, by means of axioms predicates are defined by a logical 

expression in accordance with ACSL specifications. In fig. 3 you can see the 

predicates for pre- and postconditions are generated based on the ACSL 

specifications of absolute value function (fig. 4), where usabs_pre – the predicate of 

a precondition, and usabs_post is a predicate of the postcondition. 
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Fig. 3. WhyML abs logic specification 

 

Fig. 4. ACSL abs specification 

3.4 Replacing proof goal 

To facilitate the subsequent merging, the proof goal is substituted during translation 

of WhyML to SMT-LIB. A new goal for the proof can be described as follows: If 

the precondition of a function with its arguments is satisfied then the postcondition 

with the arguments of the function and its result is not satisfied. The negation is 

used because the SMT-solvers operation specifics – searching for example variable 

values that will satisfy all restrictions described in SMT-LIB model.  

 

Fig. 5. Proof goal template 

If such an example could not be found then the assumption is incorrect and the 

predicate of the postcondition is always executed. Therefore, the Expected verdict 

of the SMT-solver – unsat. It is important to note here that arguments and the result 

of the function execution are not associated with machine code at this stage – the 
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merge module solves the problem of their binding. Fig. 5 shows SMT-LIB code of 

goal to prove the correctness of the absolute value function. 

3.5 Merging high- and low-level specifications 

If you perform all the steps described in the previous sections of this paper, namely, 

creating an NML model of the machine code and an ACSL to the WhyML 

translation module, you can perform a merge in two different ways. The first 

method is the merging at the level of WhyML, and the subsequent translation to 

SMT-LIB by means of Why3. This approach has a number of advantages, mainly 

related to Why3 capabilities for WhyML code analysis.  

 

Fig. 6 Why3 IDE 

It is worth noting that Why3 IDE (fig. 6), can be used for interactive proof and 

manual simplifications of verification goals. At the moment the MicroTESK team, 

with the support of the author, is developing an NML to WhyML translation 

module. The second approach, as well as the only one implemented at the moment, 

is merging at the SMT-LIB level. The main advantage of this approach is that the 

MicroTESK tool has already been implemented NML to SMT-LIB translation 

module. In addition, the vast majority of operations and data types available in 

NML have analogs in SMT-LIB.  

For example, a set of General-purpose registers is modeled in the NML of the 

PowerPC processor model as an array of 32-bit registers with a 5-bit index. There is 

no predefined 5-bit unsigned type in Why3, let alone an array with such an index. 

However, in SMT-LIB, as in NML, you can manually set the length of BitVec 

constants. In addition, the translation directly to SMT-LIB allows to avoid 

unnecessary abstractions that Why3 algorithm for WhyML to SMT-LIB translation 

can add.  

The task of the merge module is to bind together the function arguments and the 

result of function of high-level language with registers and memory of the model of 

machine code, and set the environment. Here, the environment refers to machine-
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specific things, such as the initial value of the stack register or instruction counter. 

To do this, it is necessary to take into account the specificity of generation SMT-

LIB behaviors of the machine code and the specification for the function and 

specificity of the ABI of architecture.  

Next, in fig. 7 we can see binding of the arguments of instructions with the registers 

for the PowerPC architecture. Developed by the MicroTESK team, generation 

SMT-LIB by the NML model produces thousands of lines of code. This code can be 

divided into two main parts: The declaration of all the logical constants needed to 

describe the behavior model and the description of the state transformation formulas 

by means of using one assert per machine code instruction and one for every of 

machine instruction argument. 

 

Fig. 7 Binding function argument and result 

4. Evaluation 

The developed approach was successfully used to verify the machine code of the 

absolute value function on the basis of bitwise operations (“Fig. 8”), for which a 

verdict was obtained, clearly indicating correctness of the function. Tests were also 

developed to verify the correctness of the implementation of translation of 

mathematical and logical operations of the ACSL language. Testing of the NML 

model was done by means of MicroTESK tool. 

 

Fig. 8 Absolute value function 

5. Related works 

In the why3-avr [16], [17] project, the deductive verification approach is used to 

prove the correctness of non-loop programs in the assembly language of the AVR 

microcontroller. The AVR microcontroller used in this study has a fairly simple 

instruction set that allows you to manually specify the behavior model for each 

command in the WhyML language, which does not have special means to describe 

such structures. Also, the model code is described in such a way that allows the 

programmer to simply copy the function code in the AVR assembly language and 

add to it a formal specification to get WhyML code for checking the correctness of 

the function. This approach is especially useful for direct development in a low-
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level language because the Why3 tool has rich capabilities for transformation and 

analysis of Why3 code. In addition, the use of Why3 allows converting the WhyML 

code for proving by various SMT solvers.  

However, the program in assembly language is different from compiled machine 

code that in machine code is a sequence of bytes where there is no all information 

associated with label names and variables, as well as the formal specification. In 

addition, machine code does not allow you to abstract from your environment as 

much as assembly language code. For example, in machine code, indicators such as 

the address of a function in memory and the value of the stack register at the time of 

entering the function are important. Also, a high-level formal language 

specification, such as C, uses various abstractions, such as parameter names and 

variables, that become unavailable after they are translated into assembly language 

or machine code. The approaches proposed by the author differ from those 

described in this project in that they allow using the specification of the high-level 

language function for analyzing machine code, as well as scaling the supported 

command system with the help of a specialized modeling language hardware NML. 

In the Technical report published by the University of Cambridge Computer 

Laboratory [18], the HOL4 proof assistant [19] is used for Formal verification of 

machine-code programs. The paper describes a tool able to verify the machine code 

for subsets of instructions for popular architectures ARMV4, PowerPC, x86. 

Behavior model for these instructions was developed by independent developers, so 

models for both ARM and x86 was designed for HOL4 language [20] [21], and the 

PowerPC model [22] were manually translated from the Coq language [23] to 

HOL4.  

Here it is worth noting the similarity with the project why3-avr because instructions 

behavior models were specified manually on unspecialized for such a purpose 

language. The report terminology uses four levels of abstraction to describe the 

logical implementation and specification of functions. To obtain a low-level 

function model (level 2) automatic decompiler translates the machine code (level 1) 

into recursive functions on the HOL4 language, and also generates their 

specifications. The use of recursion, in this case, avoids the need to define loop 

invariants. The user can then focus on interactively proving the properties of the 

generated function using the HOL4 proof assistant.  

For verification, the user also needs to describe the high-level model of the function 

(level 3), as well as the specification of the function for (level 4). Further, by using 

relations between levels, user proves that the machine code model complies with the 

functional specification. In contrast to the interactive HOL4 approach, the approach 

used in the author's study allows the presence of ACSL specifications to carry out 

all stages in automatic mode. Also in the author's approach to proving the 

correctness of machine code is not necessary to have a logical model of the behavior 

of the function in a high-level language. This degree of automation is achieved 

including the use of automatic SMT-solvers, in contrast to the interactive proof 

assistant HOL4. Particularly worth noting is the approach to the translation of 

programs into recursive functions. The use of high-level language loop invariants at 
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the machine code level is extremely difficult due to the influence of various 

compiler optimizations. The recursive functions may help to solve these problems. 

A number of papers also describe the use of model checking [24] approach for 

formal verification of machine code. Therefore, in the paper [25] for verification of 

machine code of the microcontroller Motorola M68hc11 is used Bogor framework 

[26].  This approach does not imply the presence of function contracts but is based 

on the use of formally specified behavior models of the system as a whole. As a 

result, it can be said that the scope of the requirements to be tested varies with the 

use of deductive verification and model checking. 

6. Conclusion 

Most of the work that is reviewed specifies the behavior of machine code 

instructions manually in the logical language. However, in order to simplify and 

improve the reliability of processor models, the author proposed to describe them in 

the NML language, designed specifically for such purposes, with the subsequent 

automatic translation of the model into logical languages. The use of this approach 

is also facilitated by the presence of a large set of tools in the MicroTESK tool to 

work with NML, including the NML to SMT-LIB translator. The particularity of 

ACSL specifications translation to WhyML code, for the case of verification of 

machine code, such as the need to separate the specification from the behavior 

model, as well as the importance of the introduction and implementation of the 

register type.  

The observance of such rules and guidelines will allow for automatic merging of 

function specification and machine code behavior model and thus avoid the need for 

manual specifying machine code behavior model on the logical language, as 

required in the project why3-avr. There were proposed two approaches to merge of 

code specifications and behavior models: at the level of WhyML, and at the level of 

the SMT-LIB. The first approach allows to use SMT-LIB code generated directly 

from NML model that help us to avoid extra complexity coming from double 

translation NML to WhyML and then WhyML to SMT-LIB. The second approach 

allows to use all the features of the Why3 tool, such as interactive transformations 

and support of various provers and solvers. 

The use of the methods and approaches described in this paper will allow you to 

fully automate deductive verification of machine code without loops for compliance 

with the contract specification in ACSL language. 
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Аннотация. При разработке программ на языках высокого уровня, разработчикам 

приходится делать предположение о корректности компилятора. Однако это может 

быть неприемлемо для критически важных систем. Поскольку на данный момент не 

существует полноценных компиляторов, для которых корректность доказана, автор 

предлагает решать эту проблему путём доказательства корректности сгенерированного 

машинного кода методами дедуктивной верификации. Для достижения данной цели 

необходимо решить ряд задач, одной из которых является слияние модели 

спецификаций пред- и постусловий с моделью поведения машинного кода. В данной 

статье представлен подход к проведению слияния спецификаций для случая Си 

функций без циклов. Суть подхода заключается построении моделей как машинного 

кода, так и его спецификации на едином логическом языке, и использовании ABI 

целевого процессора для связывания машинных регистров с параметрами функции 

высокого уровня. Для успешной реализации такого подхода необходимо предпринять 

ряд мер по обеспечению совместимости высокоуровневых спецификаций с моделью 

поведения машинного кода. К таким мерам, в частности, относятся использование типа 

регистра в высокоуровневых спецификациях, трансляция пред- и постусловий в 

абстрактные предикаты. Также в статье производится и обосновывается выбор 

логического языка для построения моделей, выбираются наиболее подходящие 

инструменты для реализации подхода слияния спецификаций и производится оценка 

работы системы дедуктивной верификации машинного кода, построенной на основе 

предложенного подхода, с использованием тестовых примеров полученных путём 

компиляции Си программ без циклов. 

Ключевые слова: дедуктивная верификация; формальные методы; машинный код; 

ACSL. 
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