Combining ACSL Specifications and
Machine Code

P.A. Putro <pavel.putro@ispras.ru>
National Research University Higher School of Economics,
20, Myasnitskaya st., Moscow, 101000 Russia

Abstract. When developing programs in high-level languages, developers have to make
assumptions about the correctness of the compiler. However, this may be unacceptable for
critical systems. As long as there are no full-fledged formally verified compilers, the author
proposes to solve this problem by proving the correctness of the generated machine code by
deductive verification. To achieve this goal, it is required to combine the pre- and
postcondition specifications with the machine code behavior model. The paper presents an
approach how to combine them for the case of C functions without loops. The essence of the
approach is to build models, both machine code and its specifications in a single logical
language, and use target processor ABI to bind machine registers with the parameters of the
high-level function. For the successful implementation of this approach, you have to take a
number of measures to ensure the compatibility of the high-level specification model with the
machine code behavior model. Such measures include the use of a register type in the high-
level specifications and the translation of the pre- and postconditions into the abstract
predicates. Also in the paper the choice of logical language for building models is made and
justified, the most suitable tools for implementing the approach of merging specifications are
selected and the evaluation of the system of deductive verification of machine code built on
the basis of the proposed approach is made using test examples obtained by compiling C
programs without loops.

Keywords: deductive verification; formal methods; machine code; ACSL
DOI: 10.15514/ISPRAS-2018-30(4)-6

For citation: Putro P.A. Combining ACSL Specifications and Machine Code. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 4, 2018. pp. 95-106. DOI: 10.15514/ISPRAS-2018-30(4)-
6

1. Introduction

The paper presents a step forward towards the creation of a tool capable of proving
the correctness of machine code based on the formal specification of a function for a
high-level language [1]. Such a tool will allow to avoid the assumption about the
correctness of the compiler by verification of the generated code regarding
specification of source code functionality. The only way in which the correctness
analysis of machine code is not necessary is to create a fully formally verified
compiler [2].

95

Putro P.A. Combining ACSL Specifications and Machine Code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 95-106

However, the existing developments in the field of formally verified compilers [3]
now do not allow using all the possibilities of existing unverified analogs, for
example, GCC [4]. This work is necessary for the implementation of an alternative
approach — deductive verification [5] of compiler products, the correctness of which
has not been proven. Using this approach will allow you to safely use the already
created software.

Different approaches to formal specification and building a model of machine code
behavior were proposed in different machine code verification projects. Here, the
formal specification of a function or a sequence of machine code instructions shows
the pre- and postconditions for a function and the behavior model describes
mathematical and logical state change formulas. The paper discusses an approach to
combining ACSL [6] specifications of the C language with the machine code of the
PowerPC e500mc processor obtained by compiling these functions. The choice of
the target language is caused by the fact that most high-critical system software like
operating system kernels is written in C. While the very high-level languages
support a variety of protective mechanisms — such as the prohibition of pointers or
checks when casting, the C language is designed for maximum performance by
allowing the programmer to interact directly with the memory.

Proof of critical code sections by deductive verification methods can improve the
reliability of such systems. In the pursuit of performance, compilers try to make the
most of the capabilities of the target processor. Machine code produced by
compilers can be extremely difficult for manual verification and specification
because the compilation disappears all the information about the names of variables
and even the order of execution of commands may be different than in the original
program. Only the pre- and postconditions for a particular function remain
unchanged. Automatic combination of C-level specifications with the logical model
of machine code will allow you to check its correctness in a fully automatic mode.

2. Machine code representation

The specification of machine code instructions in logical languages is a complex
and lengthy process. Often, the appearance of the function behavior model
specification in this language is very different from that provided in the processor
specification. In addition, the lack of special tools makes it difficult to debug such
models. To solve these problems, the author proposes to use the NML language,
together with the MicroTESK tool [7]. The NML language contains special
structures and data types to simplify the modeling of the hardware. The MicroTESK
toolset includes universal disassembler of the machine code by the NML language
and the NML to SMT-LIB [8] translator.

Fig. 1 shows the cmpl operation specification from the official documentation for
PowerPC €500 core family [9] processors and fig. 2 shows its NML version. From
here, you can see that the NML language allows you to fully describe processor
instructions, including their representation in Assembly language and machine code.
In addition, the use of the NML language as the basis for the representation of

96

TTyrpo IT.A. CoBmernerre ACSL criermduxaimii ¢ MatuHEBIM KoztoM. Tpyowr UCIT PAH, Tom 30, Bbim. 4, 2018 1., ctp. 95-106

machine code will allow to reuse all NML models, developed by the MicroTESK
development team for the purposes of testing of microprocessors.

Compare Logical

cmpl crfD,L,rA.rB
o 5 6 g 9 10 11 15 16 20 21 30 H
011111|crfD‘.f|L| rA B 0000100000|.-‘|

if L=0 then
else

if L=0 then
else

if a <, b
ifa=> b
if a =

[

00y

CRa¥ersp a2 4%ereDas

Fig. 1. CMPL official specification

op cmpl (crfD: CRFD, L: BIT, ra: R, rk: E)
init = {
X0 10 = coerce(card(10), 0bO000O100000);
OPCD = coerce(card(e), Ok0Ll1111);

syntax

= format ("cmpl %d, %d, %=, %=", crfD, L, ra.syntax, rb.syntax
image = format("%6s%3s5%1ls%1s%5s5%5s%10s%1s", OPCD, crfD, L, "O", ra.images, rk.image, XO_10, "O"
action = {
if L == coerce(BIT, 0) then

if ra < rb then
temp = 0b0OO01;

endif;

if ra > rb then
temp = 0b010;

endif;
if ra == rb then
temp = 0bl00;
endif;
CR< (coerce (card(5) ,cxrfD) *442) .. (coerce (card(5) ,crfD) *4) > = coerce(card(3), temp):
CR<coerce (card(5),crfD) *4+3> = XER_S0:

endif;

Fig. 2. CMPL NML specification
3. ACSL specifications representation

3.1 ACSL specifications translation

As a logical language, in which ACSL specifications will be translated, the author
suggests using the WhyML language [10]. The Why3 tool designed to analyze this
language allows you to apply many useful transformations and optimizations. It also
allows you to translate WhyML code into logical code for many different provers.
In addition, the task of translating ACSL specifications into WhyML code has
already been solved by the Jessie plugin [11] for Frama-C [12]. In the course of
research [1], it was established that the use of the plugin Jessie directly, not suitable
for the tasks of machine code analysis.

Jessie plugin makes a number of simplifying assumptions that do not take into
account the peculiarities of machine code. Instead, it was decided to take as a basis

97

Putro P.A. Combining ACSL Specifications and Machine Code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 95-106

the unfinished code of jessie3 project [13] — part of the Why3 project. The Jessie3
code has been modified and extended to take into account the peculiarities of
machine code. In particular, the language WhyML has been described the type of
processor registers. In addition, the algorithm of generating targets for the proof was
changed for the subsequent fusion — pre- and postconditions were separated from
the function behavior model.

3.2 Using register type for compatibility with machine code

Processor registers can be represented by a limited integer type with an extended set
of operations. Operations include signed and unsigned arithmetic, bitwise
operations, and memory read operations at the address specified in the register and
by offset. To describe all such operations high-level languages, use a variety of
different types, as well as a cast operation. However, using different data types will
complicate the proof of correctness problem for SMT-solvers. This is especially
noticeable in the case of bitwise operations, which are available only for bitvectors
in SMT-LIB. Bitvectors cast operations to an integer type are not supported by the
latest SMT-LIB [14] standard, and various SMT-solvers offer their own version of
the implementation of this operation.

The BitVec type from SMT-LIB is well-suited for describing the type of registers
because it contains all the necessary arithmetic and logical sign and unsigned
operations. However, the theory of bitvectors at the why3 level does not support all
the necessary operations and is built as an unsigned type. Based on the standard
theory of bitvectors, the author developed a theory to support the type of processor
registers. The theory supports both signed and unsigned integer types and there is
ongoing work to add support for pointer arithmetic and memory dereferencing. The
driver for CVC4 SMT-solver [15] was updated for translation of the register type to
the type BitVec with corresponding mapping of operations.

3.3 Splitting specification and behavior model

To merge machine code, you must separate the pre - and post-conditions from the
behavior of the high-level function, which will then be replaced by the behavior of
the machine code. To implement this approach, the author uses abstract logical
predicates of pre- and postconditions checking. These predicates take as input the
parameters of the verification function, and the predicate of the postcondition is also
taking its result. Further, by means of axioms predicates are defined by a logical
expression in accordance with ACSL specifications. In fig. 3 you can see the
predicates for pre- and postconditions are generated based on the ACSL
specifications of absolute value function (fig. 4), where usabs_pre — the predicate of
a precondition, and usabs_post is a predicate of the postcondition.

98

TTyrpo IT.A. CoBmernerre ACSL criermduxaimii ¢ MatuHEBIM KoztoM. Tpyowr UCIT PAH, Tom 30, Bbim. 4, 2018 1., ctp. 95-106

predicate usabs post r3Z r3Z
predicate usabs _pre r3z

axiom usabs post axiom
forall n:r32, result:r3z2.
usabs_post n result <->
sge result (of _int 0) /\ (eg result n \/ eqg result (sukb (of_int 0) n))

axiom usabs pre axiom :
forall n:r32. usabs_pre n <-> slt (neg (of_int 2147483648)) n

Fig. 3. WhyML abs logic specification

S %@ requires -2147483648 < n;
ensures ‘\result == n || \result == 0-n;
ensures ‘\result >= 0;
wf
int abks (int n)

Fig. 4. ACSL abs specification

3.4 Replacing proof goal

To facilitate the subsequent merging, the proof goal is substituted during translation
of WhyML to SMT-LIB. A new goal for the proof can be described as follows: If
the precondition of a function with its arguments is satisfied then the postcondition
with the arguments of the function and its result is not satisfied. The negation is
used because the SMT-solvers operation specifics — searching for example variable
values that will satisfy all restrictions described in SMT-LIB model.

;sfunction argument 1
(declare-const _arg (_ BitVec 32))
;;assign _arg here

sifunction result
[declare-const func res (_ BitVec 32))
:;assign func res here

[assert (usabs_pre
_arg })

[assert (not (usabs_post
_arg _func res)))

Fig. 5. Proof goal template

If such an example could not be found then the assumption is incorrect and the
predicate of the postcondition is always executed. Therefore, the Expected verdict
of the SMT-solver — unsat. It is important to note here that arguments and the result
of the function execution are not associated with machine code at this stage — the

99

Putro P.A. Combining ACSL Specifications and Machine Code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 95-106

merge module solves the problem of their binding. Fig. 5 shows SMT-LIB code of
goal to prove the correctness of the absolute value function.

3.5 Merging high- and low-level specifications

If you perform all the steps described in the previous sections of this paper, namely,
creating an NML model of the machine code and an ACSL to the WhyML
translation module, you can perform a merge in two different ways. The first
method is the merging at the level of WhyML, and the subsequent translation to
SMT-LIB by means of Why3. This approach has a number of advantages, mainly
related to Why3 capabilities for WhyML code analysis.

“4» Why3 Interactive Proof Session - o X
File

20 @ ¢
55 c g
gz

why3, Buil £In. BuiltIn *)

why3. Bool Bosl *]

il

B sl

9 resilt n \/ =q result (sub (of_int 0) n])

<> 51t (neg (of_int 2147483543)) n

cVC4(L5) = L]

nt 32) (o
15 regs) 34 sizel] 8¢

L

E) replay

Fig. 6 Why3 IDE

It is worth noting that Why3 IDE (fig. 6), can be used for interactive proof and
manual simplifications of verification goals. At the moment the MicroTESK team,
with the support of the author, is developing an NML to WhyML translation
module. The second approach, as well as the only one implemented at the moment,
is merging at the SMT-LIB level. The main advantage of this approach is that the
MicroTESK tool has already been implemented NML to SMT-LIB translation
module. In addition, the vast majority of operations and data types available in
NML have analogs in SMT-LIB.

For example, a set of General-purpose registers is modeled in the NML of the
PowerPC processor model as an array of 32-bit registers with a 5-bit index. There is
no predefined 5-bit unsigned type in Why3, let alone an array with such an index.
However, in SMT-LIB, as in NML, you can manually set the length of BitVec
constants. In addition, the translation directly to SMT-LIB allows to avoid
unnecessary abstractions that Why3 algorithm for WhyML to SMT-LIB translation
can add.

The task of the merge module is to bind together the function arguments and the
result of function of high-level language with registers and memory of the model of
machine code, and set the environment. Here, the environment refers to machine-

100

TTyrpo IT.A. Comernenne ACSL criermukarmii ¢ MarmaHbIM KozioM. Tpyost ACIT PAH, Tom 30, Bbi. 4, 2018 1., c1p. 95-106

specific things, such as the initial value of the stack register or instruction counter.
To do this, it is necessary to take into account the specificity of generation SMT-
LIB behaviors of the machine code and the specification for the function and
specificity of the ABI of architecture.

Next, in fig. 7 we can see binding of the arguments of instructions with the registers
for the PowerPC architecture. Developed by the MicroTESK team, generation
SMT-LIB by the NML model produces thousands of lines of code. This code can be
divided into two main parts: The declaration of all the logical constants needed to
describe the behavior model and the description of the state transformation formulas
by means of using one assert per machine code instruction and one for every of
machine instruction argument.

s sfunction argument 1

(declare—-const _arg 1 (_ BitVec 32))

(assert (= _arg 1 (select GPR!1 (_ bv3 5))})

;s sfunction result
(declare-const func res (_ BitWVec 32))
(agsert (= _func res (gelect GPR!47 (_ bv3 5))))

Fig. 7 Binding function argument and result

4. Evaluation

The developed approach was successfully used to verify the machine code of the
absolute value function on the basis of bitwise operations (“Fig. 8”), for which a
verdict was obtained, clearly indicating correctness of the function. Tests were also
developed to verify the correctness of the implementation of translation of
mathematical and logical operations of the ACSL language. Testing of the NML
model was done by means of MicroTESK tool.
int abs({int n)
{
int t = (unsigned int) n > (32-1):
return (-t) ~ (n-t);

Fig. 8 Absolute value function

5. Related works

In the why3-avr [16], [17] project, the deductive verification approach is used to
prove the correctness of non-loop programs in the assembly language of the AVR
microcontroller. The AVR microcontroller used in this study has a fairly simple
instruction set that allows you to manually specify the behavior model for each
command in the WhyML language, which does not have special means to describe
such structures. Also, the model code is described in such a way that allows the
programmer to simply copy the function code in the AVR assembly language and
add to it a formal specification to get WhyML code for checking the correctness of
the function. This approach is especially useful for direct development in a low-

101

Putro P.A. Combining ACSL Specifications and Machine Code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 95-106

level language because the Why3 tool has rich capabilities for transformation and
analysis of Why3 code. In addition, the use of Why3 allows converting the WhyML
code for proving by various SMT solvers.

However, the program in assembly language is different from compiled machine
code that in machine code is a sequence of bytes where there is no all information
associated with label names and variables, as well as the formal specification. In
addition, machine code does not allow you to abstract from your environment as
much as assembly language code. For example, in machine code, indicators such as
the address of a function in memory and the value of the stack register at the time of
entering the function are important. Also, a high-level formal language
specification, such as C, uses various abstractions, such as parameter names and
variables, that become unavailable after they are translated into assembly language
or machine code. The approaches proposed by the author differ from those
described in this project in that they allow using the specification of the high-level
language function for analyzing machine code, as well as scaling the supported
command system with the help of a specialized modeling language hardware NML.

In the Technical report published by the University of Cambridge Computer
Laboratory [18], the HOL4 proof assistant [19] is used for Formal verification of
machine-code programs. The paper describes a tool able to verify the machine code
for subsets of instructions for popular architectures ARMV4, PowerPC, x86.
Behavior model for these instructions was developed by independent developers, so
models for both ARM and x86 was designed for HOL4 language [20] [21], and the
PowerPC model [22] were manually translated from the Coqg language [23] to
HOLA4.

Here it is worth noting the similarity with the project why3-avr because instructions
behavior models were specified manually on unspecialized for such a purpose
language. The report terminology uses four levels of abstraction to describe the
logical implementation and specification of functions. To obtain a low-level
function model (level 2) automatic decompiler translates the machine code (level 1)
into recursive functions on the HOL4 language, and also generates their
specifications. The use of recursion, in this case, avoids the need to define loop
invariants. The user can then focus on interactively proving the properties of the
generated function using the HOL4 proof assistant.

For verification, the user also needs to describe the high-level model of the function
(level 3), as well as the specification of the function for (level 4). Further, by using
relations between levels, user proves that the machine code model complies with the
functional specification. In contrast to the interactive HOL4 approach, the approach
used in the author's study allows the presence of ACSL specifications to carry out
all stages in automatic mode. Also in the author's approach to proving the
correctness of machine code is not necessary to have a logical model of the behavior
of the function in a high-level language. This degree of automation is achieved
including the use of automatic SMT-solvers, in contrast to the interactive proof
assistant HOL4. Particularly worth noting is the approach to the translation of
programs into recursive functions. The use of high-level language loop invariants at
102

TTyrpo IT.A. Comernenne ACSL criermukarmii ¢ MarmaHbIM KozioM. Tpyost ACIT PAH, Tom 30, Bbi. 4, 2018 1., c1p. 95-106

the machine code level is extremely difficult due to the influence of various
compiler optimizations. The recursive functions may help to solve these problems.

A number of papers also describe the use of model checking [24] approach for
formal verification of machine code. Therefore, in the paper [25] for verification of
machine code of the microcontroller Motorola M68hc11 is used Bogor framework
[26]. This approach does not imply the presence of function contracts but is based
on the use of formally specified behavior models of the system as a whole. As a
result, it can be said that the scope of the requirements to be tested varies with the
use of deductive verification and model checking.

6. Conclusion

Most of the work that is reviewed specifies the behavior of machine code
instructions manually in the logical language. However, in order to simplify and
improve the reliability of processor models, the author proposed to describe them in
the NML language, designed specifically for such purposes, with the subsequent
automatic translation of the model into logical languages. The use of this approach
is also facilitated by the presence of a large set of tools in the MicroTESK tool to
work with NML, including the NML to SMT-LIB translator. The particularity of
ACSL specifications translation to WhyML code, for the case of verification of
machine code, such as the need to separate the specification from the behavior
model, as well as the importance of the introduction and implementation of the
register type.

The observance of such rules and guidelines will allow for automatic merging of
function specification and machine code behavior model and thus avoid the need for
manual specifying machine code behavior model on the logical language, as
required in the project why3-avr. There were proposed two approaches to merge of
code specifications and behavior models: at the level of WhyML, and at the level of
the SMT-LIB. The first approach allows to use SMT-LIB code generated directly
from NML model that help us to avoid extra complexity coming from double
translation NML to WhyML and then WhyML to SMT-LIB. The second approach
allows to use all the features of the Why3 tool, such as interactive transformations
and support of various provers and solvers.

The use of the methods and approaches described in this paper will allow you to
fully automate deductive verification of machine code without loops for compliance
with the contract specification in ACSL language.

References

[1]. MicroVer — Deductive Verification Tool for Machine Code. Available at:
https://forge.ispras.ru/projects/microver, accessed 20.07.2018

[2]. Leroy Xavier. A Formally Verified Compiler Back-end. Journal of Automated
Reasoning, vol. 43, issue 4, 2009, pp 363-446

[3]. CompCert — The CompCert C compiler. Available at: compcert.inria.fr, accessed 13-02-
2018

[4]. GCC Releases. Available at: http://www.gnu.org/software/gcc/releases.html, accessed
13-02-2018

103

Putro P.A. Combining ACSL Specifications and Machine Code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 95-106

[5]

[6].
[7].

(8].

[9].

[10].
[11].

[12].

[13].

[14].

[15].

[16].
[17].
[18].
[19].
[20].
[21].

[22].

[23].

[24].

[25].

[26].

. Butterfield A., Ngondi G., Kerr A. A Dictionary of Computer Science (ed. 7), Oxford
University Press, 2016, 608 p.

ACSL specification. Available at: http://frama-c.com/acsl.html, accessed 13-02-2018
Kamkin A., Tatarnikov A. MicroTESK: An ADL-Based Reconfigurable Test Program
Generator for Microprocessors. In Proceedings of the 6th Spring/Summer Young
Researchers’ Colloquium on Software Engineering (SYRCoSE), 2012

C Barrett, R Sebastiani, S Seshia, and C Tinelli. Satisfiability Modulo Theories. In
Handbook of Satisfiability, vol. 185 of Frontiers in Artificial Intelligence and
Applications, 10S Press, Feb. 2009, pp. 825-885

EREF: A Programmer’s Reference Manual for Freescale Power Architecture Processors,
Rev. 1 (EIS 2.1). Available at:
http://cache.freescale.com/files/32bit/doc/ref_manual/EREF_RM.pdf, accessed 13-02-
2018

Filliatre JC., Paskevich A. Why3 — Where Programs Meet Provers. Lecture Notes in
Computer Science, vol. 7792, 2013, pp. 125-128

M. Mandrykin, A. Khoroshilov. A Memory Model for Deductively Verifying Linux
Kernel Modules. Lecture Notes in Computer Sciences. vol. 10742, 2018, pp. 256-275
Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
Boris Yakobowsk. Frama-c: A Software Analysis Perspective. Formal Aspects of
Computing, vol. 27, issue 3, 2015, pp 573-609

Jessie3 at Why3 source repository. Available at:
https://gitlab.inria.fr/iwhy3/why3/tree/master/src/jessie, accessed 12.04.2018.

Barrett C., Fontaine P., Tinelli C. The SMT-LIB Standard Version 2.6. Available at:
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2017-07-18.pdf, accessed
12.04.2018

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovi¢, Tim King, Andrew Reynolds. CVC4. Lecture Notes in Computer
Science, vol. 6806, 2011, pp. 171-177

Schoolderman M. Verifying Branch-Free Assembly Code in Why3. Lecture Notes in
Computer Science, vol. 10712, 2017, pp. 66-83

Why3-avr project repository. Availible at: https://gitlab.science.ru.nl/sovereign/why3-
avr, accessed 12.04.2018.

Myreen M.O.: Formal verification of machine-code programs. Ph.D. thesis, University
of Cambridge, 2009

Konrad Slind and Michael Norrish. A brief overview of HOL4. Lecture Notes in
Computer Science, vol. 5170, 2008, pp. 28-32

Anthony Fox. Formal specification and verification of ARMG6. Lecture Notes in
Computer Science, vol. 2758, 2003, pp 25-40

Karl Crary and Susmit Sarkar. Foundational certified code in a metalogical framework.
Technical Report CMU-CS-03-108, Carnegie Mellon University, 2003.

Xavier Leroy. Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In Proc. of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2006, pp. 42-54

Yves Bertot. A short presentation of Cog. Lecture Notes in Computer Science, vol.
5170, 2008, pp. 12-16

B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Schnoebelen.
Systems and Software Verification: Model-Checking Techniques and Tools. Springer,
2001, 190 p.

Edelman Joseph R. Machine Code Verification Using the Bogor Framework. Master
Thesis, Brigham Young University, 2008

Bogor framework homepage. Available at: http://bogor.projects.cs.ksu.edu, accessed:
13.02.2018

104

TTyrpo IT.A. CoBmernerre ACSL criermduxaimii ¢ MatuHEBIM KoztoM. Tpyowr UCIT PAH, Tom 30, Bbim. 4, 2018 1., ctp. 95-106

CoBwmeweHne ACSL cneuymncpukaumm ¢ MaWMHHbLIM KOQOM

I1.A. Ilympo <pavel.putro@ispras.ru>
Hayuonanvhuiii uccnedosamenvcxuil ynusepcumem ““‘Boicuias wikona skonomuru”,
101000, Poccus, e. Mockea, yn. Macrhuyxas, 0. 20

AnHotaums. Ilpu pa3paboTke NporpaMM Ha $3bIKaX BBICOKOTO YPOBHS, pa3paboT4MKam
HPUXOJMUTCS JIeTaTh HPEITNONOKEHNE O KOPPEKTHOCTH KoMmuisATopa. OZHAKO 3TO MOXKET
OBITH HENPHEMJIEMO JUISl KPHUTHYECKH BaXKHBIX CHCTeM. ITOCKONBKY HA JaHHBIH MOMEHT He
CYILIECTBYET MOJIHOLECHHBIX KOMIMIISTOPOB, IJIsI KOTOPHIX KOPPEKTHOCTh JIOKa3aHa, aBTOP
TpeUIaraeT pemars 3Ty IpooiieMy MyTEM JI0Ka3aTelbCTBAa KOPPEKTHOCTH CreHepHPOBAHHOTO
MAaIIMHHOTO KOJa METOJaMH JeIyKTHBHOH Bepu(UKanuu. s TOCTHXKEHHs NAaHHOW LeNH
HEOOXOIMMO pENINTh PSR 3a7ady, OJHOM M3 KOTOPBIX SIBISICTCS CIUSHUE MOJEIH
crierUKAUN Tpe]- U MOCTYCIOBUIA ¢ MOJEbIO MOBEJCHUSI MAIIHHOTO Kojxa. B maHHOM
CTaThe INPEACTABICH MNOAXOJ K IPOBENCHHIO CIUAHMA crerubukanuid st ciaydas Cu
¢ynakuuit 6e3 nukinoB. CyTe MoAXola 3aKII0YAaeTCs] NOCTPOCHUH MOJENEH KaKk MAaIlliHHOTO
KoJa, TaKk M ero crenudukanuy Ha eAWHOM JIOTUYECKOM s3bIKe, M Hcroib3oBaHuK ABI
LETEBOTO IPOLECCOopa Ul CBA3BIBAHHS MAIIHHHBIX PETHCTPOB C MapamerpaMu (QyHKIUH
BBICOKOTO YpOBHs. J[Js yCIIeHON peain3anny Takoro Moaxoaa HeoOXOUMO MPEINpUHTh
psix Mep 10 00ECHEeYEeHHI0 COBMECTHMOCTH BBICOKOYPOBHEBBIX CIEIM(MUKAIMN C MOJEIBI0
HOBEJICHUsI MaIMHHOTO Kozaa. K Takum MepaM, B 4aCTHOCTH, OTHOCSITCSI HCIIOIb30BaHHE TUITA
perucTpa B BBICOKOYPOBHEBBIX CHEHU(UKALUIX, TPAHCISIMSA Ipeq- U IOCTYCIOBUH B
a0cTpakTHBIC TpeAMKaThl. Takke B CTaThe MPOU3BOAUTCS W OOOCHOBBIBAETCS BBHIOOD
JOTHYECKOTO s3bIKa JUIsi TOCTPOCHMS MOJENel, BBIOMpAIOTCs Hanbosee MOAXOMSIINE
HHCTPYMEHTHI ISl peaIM3alliy MOAXO0a CIMSHHUS CHELU(UKAIMi U MPOU3BOAUTCS OLCHKA
paboThl CHCTEMBI JIEAYKTHBHONW BepH(UKALMH MAIIMHHOTO KOJA, TIOCTPOCHHONW Ha OCHOBE
HPEIUIOKEHHOT0 TMOJX0/a, C HCIIOJIb30BAaHUEM TECTOBBIX HPHMEPOB IOJTYYCHHBIX IyTEM
xoMnwriuy Cu mporpamm 6e3 IHKIIOB.

KnioueBblie ciioBa: nenyKTuBHas Bepudukanms, (GopMalbHbIE METOIbI; MAIIMHHBIA KOJ,
ACSL.

DOI: 10.15514/ISPRAS-2018-30(4)-6

Jas nuruposanus: [Tyrpo I1.A. CoBmemenne ACSL crienudukanmii ¢ MaITMHABIM KOIOM.
Tpyner UCIT PAH, Tom 30, Bemm. 4, 2018 r., ctp. 95-106 (Ha anrmmiickoMm s3eike). DOI:
10.15514/ISPRAS-2018-30(4)-6

Cnucok nutepaTtypbl

[1]. MicroVer — Deductive Verification Tool for Machine Code, doctymHo mo ccbuike:
https://forge.ispras.ru/projects/microver, nara obpamenus 20.07.2018

[2]. Leroy Xavier. A Formally Verified Compiler Back-end. Journal of Automated
Reasoning, vol. 43, issue 4, 2009, pp 363-446

[3]. CompCert — The CompCert C compiler. Joctynxo mo ccsutke: compceert.inria.fr, nara
obpamenus 13-02-2018

[4]. GCC Releases. Hocrynuo 1o ceeuike: http://www.gnu.org/software/gcc/releases.html,
nara obpamenus 13-02-2018

[5]. Butterfield A., Ngondi G., Kerr A. A Dictionary of Computer Science (ed. 7), Oxford
University Press, 2016, 608 p.

[6]. ACSL specification. Jocrynro mo cceuike: http://frama-c.com/acsl.html, nara
obpamenus 13-02-2018

105

Putro P.A. Combining ACSL Specifications and Machine Code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 95-106

[71.

[8].

(9.

[10].
[11].

[12].

[13].

[14].

[15].

[16].
[17].
[18].
[19].
[20].
[21].

[22].

[23].

[24].

[25].

[26].

106

Kamkin A., Tatarnikov A. MicroTESK: An ADL-Based Reconfigurable Test Program
Generator for Microprocessors. In Proceedings of the 6th Spring/Summer Young
Researchers’ Colloquium on Software Engineering (SYRCoSE), 2012

C Barrett, R Sebastiani, S Seshia, and C Tinelli. Satisfiability Modulo Theories. In
Handbook of Satisfiability, vol. 185 of Frontiers in Artificial Intelligence and
Applications, 10S Press, Feb. 2009, pp. 825-885

EREF: A Programmer’s Reference Manual for Freescale Power Architecture Processors,
Rev. 1 (EIS 2.1). JTocTymHO 1O CChUIKE:
http://cache.freescale.com/files/32bit/doc/ref_manual/EREF_RM.pdf, nata obpamiexns
13-02-2018

Filliatre JC., Paskevich A. Why3 — Where Programs Meet Provers. Lecture Notes in
Computer Science, vol. 7792, 2013, pp. 125-128

M. Mandrykin, A. Khoroshilov. A Memory Model for Deductively Verifying Linux
Kernel Modules. Lecture Notes in Computer Sciences. vol. 10742, 2018, pp. 256-275
Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
Boris Yakobowsk. Frama-c: A Software Analysis Perspective. Formal Aspects of
Computing, vol. 27, issue 3, 2015, pp 573-609

Jessie3 at Why3 source repository. JIocTyITHO MO CChIIKE:
https://gitlab.inria.friwhy3/why3/tree/master/src/jessie, nata obpamenus 12.04.2018.
Barrett C., Fontaine P., Tinelli C. The SMT-LIB Standard Version 2.6. JocrymHo mo
cesuike: http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2017-07-18.pdf, nara
obpamenus 12.04.2018

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovi¢, Tim King, Andrew Reynolds. CVC4. Lecture Notes in Computer
Science, vol. 6806, 2011, pp. 171-177

Schoolderman M. Verifying Branch-Free Assembly Code in Why3. Lecture Notes in
Computer Science, vol. 10712, 2017, pp. 66-83

Why3-avr project repository. Availible at: https:/gitlab.science.ru.nl/sovereign/why3-
avr, nara oopamenus 12.04.2018.

Myreen M.O.: Formal verification of machine-code programs. Ph.D. thesis, University
of Cambridge, 2009

Konrad Slind and Michael Norrish. A brief overview of HOL4. Lecture Notes in
Computer Science, vol. 5170, 2008, pp. 28-32

Anthony Fox. Formal specification and verification of ARMG6. Lecture Notes in
Computer Science, vol. 2758, 2003, pp 25-40

Karl Crary and Susmit Sarkar. Foundational certified code in a metalogical framework.
Technical Report CMU-CS-03-108, Carnegie Mellon University, 2003.

Xavier Leroy. Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In Proc. of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2006, pp. 42-54

Yves Bertot. A short presentation of Coq. Lecture Notes in Computer Science, vol.
5170, 2008, pp. 12-16

B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Schnoebelen.
Systems and Software Verification: Model-Checking Techniques and Tools. Springer,
2001, 190 p.

Edelman Joseph R. Machine Code Verification Using the Bogor Framework. Master
Thesis, Brigham Young University, 2008

Bogor framework homepage. JloctynHo mo cceuike: http://bogor.projects.cs.ksu.edu,
nara oopamenus 13.02.2018

