
107

Prosega/CPN: An Extension of CPN Tools
for Automata-based Analysis and

System Verification

1
J.C. Carrasquel <julio.carrasquel@yahoo.com>

2
A. Morales <ana.morales@ciens.ucv.ve>

3
M.E. Villapol <maria.villapol@aut.ac.nz>

1
La Sapienza University of Rome, Department of Computer, Control, and

Management Engineering, Via Ariosto 25, Rome, 00185, Italy
2
Central University of Venezuela, School of Computer Science,

Av. Paseo Los Ilustres, Caracas, 1040, Venezuela
3
Auckland University of Technology, School of Engineering, Computer and

Mathematical Sciences, 55 Wellesley Street East, Auckland, 1010, New Zealand

Abstract. The verification and analysis of distributed systems is a task of utmost importance,

especially in today’s world where many critical services are completely supported by

different computer systems. Among the solutions for system modelling and verification, it is

particularly useful to combine the usage of different analysis techniques. This also allows the

application of the best formalism or technique to different components of a system. The

combination of Colored Petri Nets (CPNs) and Automata Theory has proved to be a

successful formal technique in the modelling and verification of different distributed systems.

In this context, this paper presents Prosega/CPN (Protocol Sequence Generator and

Analyzer), an extension of CPN Tools for supporting automata-based analysis and

verification. The tool implements several operations such as the generation of a minimized

deterministic finite-state automaton (FSA) from a CPN’s occurrence graph, language

generation, and FSA comparison. The solution is supported by the Simulator Extensions

feature whose development has been driven by the need of integrating CPN with other formal

methods. Prosega/CPN is intended to support a formal verification methodology of

communication protocols; however, it may be used in the verification of other systems whose

analysis involves the comparison of models at different levels of abstraction. For example,

business strategy and business processes. An insightful use case is provided where

Prosega/CPN has been used to analyze part of the IEEE 802.16 MAC connection

management service specification.

Keywords: formal methods; coloured Petri nets; CPN tools; finite-state automata; protocol

verification.

DOI: 10.15514/ISPRAS-2018-30(4)-7

For citation: Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN

Tools for Automata-based Analysis and System Verification. Trudy ISP RAN/Proc. ISP

RAS, vol. 30, issue 4, 2018. pp. 107-128. DOI: 10.15514/ISPRAS-2018-30(4)-7

Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and

System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

108

1. Introduction

The verification of distributed systems and the assurance of their correctness is a

task of utmost importance; specially in today’s world where many critical services

are completely supported by computer technologies. Among the solutions for

system modelling and verification, Petri Nets [1] play a major role since its

capability of graphically visualize systems, and for maintaining the formal rigor, so

it allows to perform a convenient analysis of the behavioral properties of a system.

Thus, the formalism of Petri Nets has been extended to other models in order to

enrich their expressiveness and practicability. Particularly, we consider Coloured

Petri Nets (CPNs) [2] where data types (colors) may be associated to net elements.

CPN Tools [3] is a consolidated software tool for editing, simulating, and analyzing

CPN models.

However, when dealing with a higher complexity of the system, it may be useful to

combine the usage of different analysis techniques. This also allows the application

of the best formalism or technique to different components of a system. In the

context of Colored Petri Nets, the last version of CPN Tools includes the Simulator

Extensions whose development has been driven by the need of integrating CPN

with other formal methods [4]. In particular, we consider the integration of CPNs

and Finite-state Automata (FSA) which has been proved to be useful for the

validation of different protocols and communication systems [5] [6] [7].

For instance, given a CPN’s occurrence graph (OG), the arcs through a path in the

OG may be seen as the sequence of service primitives that a user (i.e. another

system entity in a higher layer) invokes in order to request some action by a service

provider. The nodes in the OG may be considered as changes of state in the system

due to the services invocations. Finally, some nodes of the OG may represent halt

states, meaning the termination of a specific process. Hence, the OG can be seen as

a FSA, which can be analyzed using well-known algorithms and theorems.

There are several tools for building, combining, optimizing, and searching Finite-

state Automata. However, in order to apply them for analyzing CPNs and

occurrence graphs, these ones must be converted into FSA specific formats (i.e. see

[5] [6]). Using several tools may complicate the verification process.

Thereby, we developed a solution called Prosega/CPN (Protocol Sequence

Generator and Analyzer). The tool aims to bridge conveniently the formalism of

CPNs with Finite-state Automata, taking advantage of the Simulator Extensions

feature in CPN Tools. Thus, the software provides a mechanism for transforming a

CPN’s occurrence graph into a minimized deterministic FSA as well as other

operations for language generation and FSA comparison. Prosega/CPN has been

conceived to support the protocol verification methodology proposed by Billington

[8]. However, the tool may be useful to support the verification of other systems

whose strategy may involve the usage of FSAs, or the comparison of models at

different levels of abstraction; for example, business strategy and business

processes.

Карраскель Х. С., Mоралес A., Виллаполь М. Е. Prosega/CPN: расширение CPN Tools для автоматного анализа и

системы проверки. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 107-128

109

The remainder of this paper is structured as follows. Section 2 introduces the

literature related to our work. Section 3 presents some formal definitions for

understanding the models managed by Prosega/CPN. Sections 4 and 5 describe the

tool functionalities and architecture respectively. Section 6 describes a use case

where the tool has been used to analyze part of the IEEE 802.16 MAC connection

management service specification. Finally, Section 7 presents the conclusions.

2. Related work

Prosega/CPN has been developed within the context of system verification through

the formalism of Coloured Petri Nets (CPNs) and Finite-state Automata (FSA). The

tool has been conveniently developed as an extension of CPN Tools [3] since it

performs several operations on FSAs generated from a CPN model. i.e. the

reduction of a CPN’s occurrence graph into a FSA. Hence, through the development

of Prosega/CPN we have been focused in three topics within the literature:

 Works dealing with the development of extensions for CPN Tools [4] [9]

[10] [11].

 Tools and other solutions for the analysis and manipulation of FSA [12]

[13] [14] [15] [16].

 Works proposing a system verification methodology using CPNs and FSA,

and the use cases in which it has been applied [5] [6] [7] [8] [17], and other

scenarios where both formalisms have been used together [18] [19] [20].

CPN tools has a history for communicating with external solutions; its architecture

provides a set of communication primitives for connecting external software to the

CPN simulator engine. As an initial effort, it was developed Comms/CPN [9], a

library for Java and C/C++ which makes it possible for CPN Tools to communicate

based on TCP/IP with external application and processes. The BRITNeY Suite [10]

is other solution which provides model visualizations in an external tool, and more

recently Access/CPN [11] that provides a channel to interact with the CPN Tools

simulator engine from external Java programs. However, while these previous tools

have made it easy to interact with CPN Tools, they have not made it possible to

extend the software. Thereby, it was developed the Simulator Extensions [4] feature

included in the last version of CPN Tools. This component provides a mechanism

for adding new functionalities within the CPN Tools Graphical User Interface

(GUI), thereby allowing integrating other related formalisms with CPN models; as a

result, it has been possible to handle other models in the tool such as low-level

Place/Transition nets, Declare models, and drawing message sequence charts from

model executions [4].

On the other hand, Finite-state Automata (FSA) have been used in a much wider

spectrum of fields than CPNs; as an important tool for FSA manipulation we

highlight the FSM Library from AT&T Labs [12] which is a collection of Unix

software tools for creating and manipulating finite-state machines. Despite the

library is quite general purpose, it was designed for speech processing applications

Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and

System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

110

such as speech recognition/synthesis; FSM Library was used as well in previous

works regarding the verification of communication systems based on CPNs and

automata [5] [6]. Some of the researchers of the AT&T FSM project developed later

an enhanced version called OpenFST [13], which is an open-source alternative that

also allows to construct finite-state transducers, and it provides a C++ template

library. Within the range of tool solutions for FSA manipulation, we may also find

Foma [14], the FAdo project [15] and the specialized pedagogical tool JFLAP [16]

among many others.

Bridging CPNs and FSA may be useful for verification of systems of very high

complexity. In particular, Billington [8] proposed a CPN and FSA approach for the

verification communication systems that has proven to be successful; namely, in the

verification of the Resource Reservation Protocol (RSVP) [5], the Wireless

Application Protocol (WAP) [6], the Transmission Control Protocol (TCP) [7], and

the Internet Open Trading Protocol (IOTP) [17], among other cases. Between other

domains in which both formalisms have been applied together we may find the

verification of web-services composition [19] [20] or vehicular traffic control

systems [18], just to mention a few.

3. Formal Definitions

This section presents some formal definitions of the models and data structures that

are manipulated through the functionalities of CPN Tools and Prosega/CPN. In

particular, it is formulated how it can be derived an occurrence graph (OG) from a

CPN model, and afterwards is explained how can it be generated a Finite-state

Automaton (FSA) from a CPN’s occurrence graph. The following formulations are

based in the work done in [8]. Albeit CPNs are managed in this work; for the formal

definition it has been rather convenient to generalize the type into a High-level Petri

Net (i.e. for proving further theorems regarding the relationship between an OG and

a FSA as described in [8]). Hence, we firstly take the definition of a High-level Petri

net (HLPN) [21].

Definition 1. A High-level Petri Net is a structure of the form

𝐻𝐿𝑃𝑁 = (𝑃, 𝑇, 𝐷; 𝑇𝑦𝑝𝑒, 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡, 𝑚0) where:

 𝑃is a finite set of Places;

 𝑇is a finite set of Transitions such that𝑃 ∩ 𝑇 = ∅

 𝐷is a non-empty finite set of non-empty domains where each element of D is

called a type.

 𝑇𝑦𝑝𝑒: 𝑃 ∪ 𝑇 → 𝐷is a function used to assign types to places, and to determine

transition modes.

 𝑚0 ∈ 𝜇𝑃𝐿𝐴𝐶𝐸is a multi-set called the initial marking of the net such that

𝜇𝑃𝐿𝐴𝐶𝐸is a set of all possible multi-sets of 𝑃𝐿𝐴𝐶𝐸

 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡: 𝑇𝑀 → 𝜇𝑃𝐿𝐴𝐶𝐸are the pre and post mappings with

 𝑇𝑀 = {(𝑡, 𝑚)|𝑡 ∈ 𝑇, 𝑚 ∈ 𝑇𝑦𝑝𝑒(𝑡)}the set of transition modes.

 𝑃𝐿𝐴𝐶𝐸 = {(𝑝, 𝑔)|𝑝 ∈ 𝑃, 𝑔 ∈ 𝑇𝑦𝑝𝑒(𝑝)}the set of elementary

places.

Карраскель Х. С., Mоралес A., Виллаполь М. Е. Prosega/CPN: расширение CPN Tools для автоматного анализа и

системы проверки. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 107-128

111

For the analysis of a High-level Petri net it is generated an occurrence graph (OG).

We consider that an OG can be defined as a labelled and rooted directed graph,

where the nodes of the graph represent markings of the Petri Net, and the directed

arcs represent the transition modes (or binding elements [2]) that can occur in all

executions from the initial marking. On the other hand, the root of the graph refers

to a node, which is considered as the initial state. In addition, the arcs of an OG may

be labelled by the transition modes. Thus, we start by defining a labelled and rooted

directed graph, and then we give the definition of an OG associated to a HLPN.

Definition 2. A labelled directed graph, with 𝑣0as the root node, is a triple 𝐺 =
(𝑉, 𝐿, 𝐸) where:

 𝑉is a finite set of vertices or nodes;𝑣0 ∈ 𝑉represents the root or initial node.

 𝐿is a set of labels;

 𝐸 ⊆ 𝑉 × 𝑉is a set of labelled directed edges.

Definition 3. An occurrence graph of a HLPN with an initial marking𝑣0is a labelled

and rooted directed graph𝑂𝐺 = (𝑉, 𝑇𝑀, 𝐴)where

 𝑉is a finite set of vertices or nodes reachable from𝑚0(the reachability set);

𝑚0 ∈ 𝑉represents the initial marking (root node);

 𝑇𝑀is the set of transition modes of the HLPN;

 𝐴 = {(𝑚, 𝑡𝑚, 𝑚′) ∈ 𝑉 × 𝑇𝑀 × 𝑉′|𝑚 →
𝑡𝑚

𝑚′}is the set of arcs (directed

edges) labelled by transition modes.

Remark. 𝑚 →
𝑡𝑚

𝑚′indicates the ocurrence of a transition mode tm ∈ TM in a

marking𝑚which results in a new marking𝑚′

However, when we are only interested in the transition names, then the arcs of the

OG are just labelled with such transitions names rather than the transition modes

(binding elements). For example this is useful when it is just required to understand

which user observable events (service primitives) may lead from a state of the

system to another one; instead of transition modes which involve the parameters

binded to such events. In addition, when we are also interested in the identification

of the markings for the nodes of the OG, rather than the marking details, we

introduce an injection 𝐼: [𝑚0] → ℕsuch that this function maps the set of reachable

markings from 𝑚0(denoted as[𝑚0]) into the set of natural numbers. Giving the

described abstractions for transitions and markings, we consider the definition of an

abstract OG.

Definition 4. An abstract OG of a HLPN with an initial marking 𝑚0 is a labelled and

rooted directed graph𝑂𝐺 = (𝑉, 𝑇, 𝐴)where

 𝑉 = {𝐼(𝑚)|𝑚 ∈ [𝑚0]} is the set of nodes;

 𝐼(𝑚0) ∈ 𝑉 represents the root or initial node.

 𝑇is the set of transitions of the HLPN ;

 𝐴 = {(𝐼(𝑚), 𝑡, 𝐼(𝑚′)) ∈ 𝑉 × 𝑇 × 𝑉′|𝑚 →
(𝑡,𝑚)∈𝑇𝑀

𝑚′} is the set of arcs

labelled by transition.

Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and

System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

112

We point out that the abstract occurrence graph OG defined above is finite. i.e. It

has a finite number of states. Indeed this is an important fact when dealing with real

scenarios. This means that the corresponding Petri Net must be a bounded net [1],

and hence a preliminary boundedness analysis on the Petri Net is performed.

Finally, it is presented a mapping from an abstract OG (Definition 4) into a Finite-

state Automaton FSA. We define a function Prim: T → SP ∪ {ε} that maps each

transition of the HLPN to either an identifier name (i.e. an user observable event or

service primitive name), or to an epsilon (i.e. an empty move); SP is the set of

identifiers (for the user observable events or service primitive names) for the system

that we are describing.

Definition 5. A Given an abstract occurrence graph𝑂𝐺 = (𝑉, 𝑇, 𝐴)it is derived the

corresponding Finite-state Automaton𝐹𝑆𝐴 = (𝑉, 𝑆𝑃, 𝐴𝑆𝑃, 𝑣0, 𝐹)where

 𝑉is the set of nodes of the abstract OG (the states of the FSA);

 𝑆𝑃is the set of identifiers (for the user observable events or service primitive

names) of the system of interest (the alphabet of FSA);

 𝐴𝑆𝑃 = {(𝑣, 𝑃𝑟𝑖𝑚(𝑡), 𝑣′)|(𝑣, 𝑡, 𝑣′) ∈ 𝐴}is the set of transitions labelled by

elements of SP or epsilons (the transition relation of the FSA);

 𝑣0corresponds to the abstract initial marking (initial state of the FSA).

 𝐹 ⊆ 𝑉the set of final (acceptance) states.

Prosega/CPN performs the conversion of an OG as described in Definition 4 into a

FSA as described in Definition 5. Moreover, this mapping between OG and the FSA

allows the tool conveniently manage the generation of the language and the

comparison between other FSAs.

4. Functionalities

Prosega/CPN is an extension in CPN Tools. Thus, the user interacts with the

application using a Graphical User Interface (GUI) through a tool palette added to

CPN Tools (see fig. 1) - available under the Tool box entry [3]. The tool supports

the generation of a minimized deterministic Finite-state Automaton (FSA) derived

from the CPN’s occurrence graph, the language generation, and the comparison

between two different FSAs. We proceed to explain these functionalities in detail.

Fig. 1. Tool palette of Prosega/CPN

Карраскель Х. С., Mоралес A., Виллаполь М. Е. Prosega/CPN: расширение CPN Tools для автоматного анализа и

системы проверки. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 107-128

113

4.1 FSA Generation

Once the occurrence graph (OG) from a CPN model is generated using the CPN

Tools simulator [3], its associated Finite-state Automaton (FSA) can be generated

and reduced using the RUN tool (see Fig. 1). To this aim, the following steps are

performed: getting the transitions, and dead markings of the OG, assigning

identifiers to transitions (i.e. constructing the mapping Prim defined in Section 3),

reducing the FSA, and displaying the results. Here, we consider the structure of an

abstract OG where the nodes are identified by numbers, which represent the

markings and the arcs are just labelled with the transitions rather than the binding

elements (see Definition 4).

Firstly, the tool communicates with the CPN Tools simulator in order to obtain all

the transitions and the dead markings (see Section 5). The user interacts with the

Prosega/CPN GUI to assign identifiers (corresponding to user observable events or

service primitive names) to the model transitions (i.e. mapping elements from a set

SP). The character 0 is considered as an epsilon (ε). Hence, any transition assigned

with 0 is considered an epsilon transition (or empty move). Then, the user chooses

the set of terminal states F for the FSA. which may include nodes representing the

dead markings or other nodes in the OG. Thereby, it is obtained a FSA in line with

Definition 5.

Fig. 2. Intial Prosega/CPN in terface where the user can assign Ids to transitions and enter

terminal states

For instance, fig. 2 shows the Prosega/CPN interface which supports the described

operation. In particular, it is defined a FSA given a CPN’s occurrence graph

extracted from the use case in Section 6. The user assigns identifiers for the CPN

transitions. For example, the identifier 1 to the transition MACCrtConnReq, which

is in the CPN model page CreatConnection. Later, the user chooses the following

nodes of the OG as terminal states: 1, 7, 8, 13, 26, 27, 31, 48 (some are not

displayed in the figure due to window size limitation). Afterwards, the modelled

FSA is reduced by following the algorithm described in [22], which consists in

performing the following operations over a FSA:

Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and

System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

114

 removal of epsilon transitions (remove empties);

 removal of non-determinism (determinization);

 reduction by identifying and merging equivalent states (minimization).

The algorithm produces as output a reduced deterministic FSA with a minimal

number of states that is equivalent to the input automata. Finally, an interface

showing the results of the FSA reduction is displayed to the user as shown in fig. 3.

Fig. 3. Interface showing the results of the FSA reduction process

 The interface shows general information about the reduced FSA (FSA Info), such

as initial state and number of arcs, which may be relevant for the FSA analysis. It

also includes a graphical representation of the FSA (FSA Image Preview), and the

established mapping between the identification numbers/names assigned by the user

and the transition names, which may be useful for debugging and verification of the

model.

4.2 Language generation

The language accepted by a FSA can be generated by using either the LANG tool in

Fig. 1 or the Generate Language button in Fig. 3. The interface shown in Fig. 4 is

displayed to the user after it clicks on the LANG tool. Then the user can choose

both the FSA, in plain text or in the compiled format [13], for which the language

will be generated and the corresponding symbol table file—for mapping the arc

inscriptions with the symbols selected by the user.

Карраскель Х. С., Mоралес A., Виллаполь М. Е. Prosega/CPN: расширение CPN Tools для автоматного анализа и

системы проверки. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 107-128

115

Fig. 4. Language generation interface

The language generator module generates the language L of the FSA by extension;

if L is finite, the whole sequences are printed; otherwise a subset of the language, L’

⊆ L is generated, as illustrated in fig. 5. In particular, L’ is a set of symbol

sequences whose symbols belong to different arcs in the FSA. Notice that some

arcs of the FSA may be labelled with the same symbol. However, in the generation

of each sequence, each arc of the FSA is visited just once.

Indeed, for generating each sequence accepted by the automaton it was developed

an algorithm based on iterative Depth-first Search (DFS), which was implemented

in the language generator component of Prosega/CPN (as mentioned in Section 5).

This component performs DFS between the initial state of the FSA, to each of the

halt states. Hence, the symbols of the arcs visited through the path from the initial

state to a specific halt state are printed, thereby representing a sequence accepted by

the automaton. In addition, this module supports a generator of random sequences

of the language symbols, as shown in Fig. 6, which may be useful when the

language is infinite. For example, in Fig. 5 and 6, we can see the following sequence

of language symbols: 1, 5 which corresponds to the sequence of actions

(transitions): MACCrtConnReq, MACCrtConnCf2 (as shown in the interface in fig.

4, where the user assigned an Id (language symbol) to each transition).

Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and

System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

116

Fig. 5. Interface showing part of the language accepted by the FSA of Fig. 3

In particular, for generating each random sequence it is computed a random walk in

the FSA from the initial state to any of the halt states. Whenever a halt state is

visited, the walk will be terminated with a probability p/100 s.t 0 < p ≤ 100, and the

sequence of symbols, which were collected throughout the visited path will be

printed. Thus, in the Generate Random interface (fig. 6), the user can manipulate the

average size of the randomly generated sequences of language symbols by entering

the halt-rate parameter value p. Therefore, if the value p is close to 0, the number of

language symbols in each sequence may be big, while if p is close to 100, then the

number of language symbols in each sequence may be small, thereby determining

the length of each sequence. i.e. since the halt-rate parameter value in fig. 6 is 55, in

that case the sizes of the sequences are medium.

Fig. 6. Interface showing some randomly generated sequences of language symbols

Карраскель Х. С., Mоралес A., Виллаполь М. Е. Prosega/CPN: расширение CPN Tools для автоматного анализа и

системы проверки. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 107-128

117

Fig 7. The interface shows the resulting difference FSA given two automata as parameters

4.3 FSA Difference

The user can use the DIFF tool to calculate the difference between two automata, F

A and F B. This functionality, whose output interface is illustrated in fig. 7,

generates a new automaton F C which only accepts the sequence of symbols

accepted by the first automaton F A , and that are not accepted by the second one F

B . In particular, F B must be an epsilon-free, deterministic finite automaton. This is

useful to understand the sequences of languages symbols in which may differ two

models; in this sense, as seen in fig. 7, this functionality allows to generating the

language of F C for getting such sequences in which may differ two models.

5. Architecture

Prosega/CPN is implemented in Java programing language, so we use the new

feature in CPN Tools 4 called Simulator Extensions [4] to add the software

functionalities. Fig. 8 shows the software architecture, which illustrates the relation

ship among all the components of our tool, CPN Tools and the third-party

components. Communication between the CPN Tools GUI and the simulator, and

between the simulator and the Simulator Extensions is supported by the BIS

(Boolean - Integer - String) protocol. Each protocol message is encoded using a

number of booleans, integers, and strings as explained in [23]. In order to facilitate

the development of Prosega/CPN we use some third-party libraries, which

implement many of the functions to manage and display the automata.

In particular, we utilize OpenFST [13] [24] for FSA reduction and FSA difference,

and Graphviz [25] for drawing the automata. On the other hand, we wrote the code

for language generation (fsm2language) in C programming language [26]. The

fsm2language implements the procedures for language generation and the

computation of random sequences accepted by a FSA that were described in Section

4. The bridge between the fsm2language component and the Prosega/CPN tool is

Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and

System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

118

supported by JNI (Java Native Interface), which enables a Java program to call

native libraries written in C/C++ programming language.

Fig. 8. Prosega/CPN Architecture

6. Use Case

The IEEE 802.16 standard [27] is responsible for specifying and describing the air

interface of Broadband Wireless Access Systems (BWA), and point-multipoint

fixed/mobile wireless metropolitan area network. The standard is limited to the

description of the Medium Access Control (MAC) and physical (PHY) layers. In

overall, IEEE 802.16 provides great benefits for providing mass broadband wireless

connectivity, allowing user mobility, mesh-mode network support, and even has

been thought as an alternative for Internet-of-Things deployments. However, due to

its inherent complexity, there are several parts of the specification that turn out to be

ambiguous, difficult to understand and imprecise. In this context, Morales et al. [28]

[29] has contributed establishing a formal model for a module of IEEE 802.16. In

particular, it developed a formal verification of the MAC connection management

service specification. To this aim, the Prosega/CPN tool has been used in

conjunction with the Billington’s protocol verification methodology [8]. Fig. 9

illustrates the steps of the methodology; we proceed to explain such steps, and how

they have been applied within our use case using CPN Tools and Prosega/CPN.

Fig. 9. Steps within the protocol verification methodology proposed in [8].

6.1 Service Definition

In fig. 9, the dashed box in the left represents the first step which consists in

modelling the service specification of the system, and to define the services that it

Карраскель Х. С., Mоралес A., Виллаполь М. Е. Prosega/CPN: расширение CPN Tools для автоматного анализа и

системы проверки. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 107-128

119

aims to provide (either to a higher layer or to another system entity). In the scenario

of the IEEE 802.16 MAC layer, the service specification consists in a set of service

primitives that the MAC sub-layer, responsible for connection management

procedures, provides to the sub-layer on top of it. Each of these primitives

correspond to one of the following procedures: The establishment of a connection

between communication peers, the connection maintenance (i.e. management of the

dynamic network resources) and the termination of the connection by any of the

communication peers.

6.2 Service CPN and OG

Using CPN Tools, it is created the CPN model of the service specification. fig. 10

presents the CPN main page which shows a top view of the model [2]. This top

module is linked with the pages that model the service primitives that correspond to

the establishment, maintenance, and termination of a connection through the

transitions CreatConnection, ChangeConnection, and TerminateConnection

respectively. Each of these pages of the model can be checked in [28]. Afterwards,

it is generated the CPN’s occurrence graph (OG), shown in fig. 11, which is the

input for the FSA reduction feature of Prosega/CPN.

Fig. 10. CPN model representing the hierarchical view for the processes of creation, change

and termination of connections between peer MAC entities in the IEEE 802.16 service

specification

Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and

System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

120

6.3 FSA Reduction

Once the service OG is generated, it is modelled as a FSA in line with Definitions 4

and 5. To this aim, it is used the RUN tool of Prosega/CPN for converting the OG

into a FSA (as presented in fig. 2). For each transition of the CPN model, it is

assigned a number value which represents the associated service primitive identifier

(Id) (resembling the function Prim described in Section 3). Transitions that are

considered as empty moves (or internal events) are labelled with 0 (epsilon

transitions). Later, there are assigned the terminal states. The assignation performed

between all the model transitions and the service primitive identifiers as well as the

decision of the terminal states can be fully checked in [28]. Afterwards, the FSA is

minimized following the procedure explained in Section 4. Fig. 12 presents the

minimized deterministic FSA (exported from the output/analysis interface of the

RUN tool previously presented in Fig. 3.

Table. 1. Service primitivies on the IEEE 802.16 MAC Layer and their corresponding

identification number [22]

Service Primitive Id

MAC_CREAT_CONNECTION.Request 1

MAC_CREAT_CONNECTION.Indication 2

MAC_CREAT_CONNECTION.Response 3

MAC_CREAT_CONNECTION.Confirmation 4, 5, 6

MAC_CHANGE_CONNECTION.Request 7

MAC_CHANGE_CONNECTION.Indication 8

MAC_CHANGE_CONNECTION.Response 9

MAC_CHANGE_CONNECTION.Confirmation 10

MAC_TERMINATE_CONNECTION.Request 11

MAC_TERMINATE_CONNECTION.Indication 12

MAC_TERMINATE_CONNECTION.Response 13

MAC_TERMINATE_CONNECTION.Confirmation 14, 15, 16

Карраскель Х. С., Mоралес A., Виллаполь М. Е. Prosega/CPN: расширение CPN Tools для автоматного анализа и

системы проверки. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 107-128

121

Fig. 11. OG of the CPN model representing the IEEE 802.16 MAC connection management

service specification.

Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and

System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

122

Fig. 12. Minimized deterministic FSA generated from the OG illustrated in fig. 11

6.4 Language Generation

The service language (the set of sequences of service primitives) is generated using

Prosega/CPN as explained in Section 4 —utilizing FSA minimization (RUN tool)

and FSA language generation (LANG tool). Fig. 5 presented some sequences that

are accepted by the FSA. In addition, Table. 1 shows the identifier selected for each

primitive service [28]. For example, the sequence of language symbols 1, 2, 3, 4, 7,

8, 9, 10 represent the service primitives invoked by the protocol entity in top of the

MAC for the successful establishment and maintenance (change of a

communication resource) of the connection. In overall, the minimized FSA

generated by Prosega/CPN provides a compact description of the possible

sequences of service primitives, and allows to remove complexity from the model,

which allows the language to present a clear specification of the service that the

system provides.

6.5 Further Steps

The second part of the methodology (dashed box in the right of Fig. 9) concerns to

the modelling of the protocol, and its comparison against the service specification

through language equivalence. These further steps are still in progress within the

research work [28]. The modelling of the protocol consists in constructing the CPN

model, which describes the protocol procedures which are performed when a

service primitive is invoked by a higher entity of the system. Later, it is generated

the OG associated to this CPN model. On the one hand, behavioral properties of the

protocol may be analyzed through the OG. On the other hand, the OG may be

reduced into a minimized deterministic FSA. i.e. using again the RUN tool of

Prosega/CPN.

Then, the FSA of the service specification may be compared with the FSA of the

protocol. i.e. using the DIFF function of Prosega/CPN – see fig. 7. Finally, the

language of the difference FSA may be generated in order to determine language

equivalence between the service and the protocol. Thus, we can determine the

sequences of service primitives, which are in the protocol specification but are not

in the service specification. It is important to know if the service specification meets

the protocol specification, since it is not desirable to have a service requirement

Карраскель Х. С., Mоралес A., Виллаполь М. Е. Prosega/CPN: расширение CPN Tools для автоматного анализа и

системы проверки. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 107-128

123

from the service user which cannot be met by the protocol. In addition, it may not

be wanted a service provided by the protocol which actually it is never required by

the user.

7. Conclusion

This work has presented Prosega/CPN. The tool is an extension of CPN Tools for

supporting several operations for FSA-based analysis and system verification. The

tool provides a feature for generating a minimized deterministic Finite-state

Automaton (FSA) from a CPN’s occurrence graph (OG). It includes as well

operations for language generation, and for automata comparison. These

functionalities are supported taking advantage of consolidated third-party

components such as OpenFST and Graphviz. In addition, we developed a module

for language generation.

Prosega/CPN has been integrated within the CPN Tools GUI using the Simulation

Extensions (new feature in the last version of CPN Tools) component whose

development has been driven by the demand of many research works to suitably

integrate Colored Petri Nets with other formalisms [4]. In particular, the integration

between CPNs and FSA was not existing within CPN Tools, and the application of

this multi-formalism strategy has shown its merits in many published papers,

specially from the domain of protocol verification.

Furthermore, other works may be benefited from this FSA-based verification; for

example, as presented in our use case, the analysis of an equivalent reduced FSA

provides a compact and clear description of the possible user observable events

(service primitive calls) rather than to deal with the analysis of the OG, thereby

allowing to reduce the time complexity when it may be required to check the

behavioral properties of the system through the FSA.

As future work, the tool will keep providing support within the further steps of the

formal verification work of the IEEE 802.16 standard, regarding to the MAC

connection management procedures. On the other hand, as another further direction

for the tool enhancement, the tool has been thought to be tested in other domains;

indeed, as it has been stated, Prosega/CPN can be used in other cases where FSA

may be required, and within the verification of other systems whose analysis may

involve the comparison of models at different levels of abstraction.

This future work on other use cases will be able to keep maturing the tool. i.e.

integrating new operations/features for automata manipulation, and testing the tool

performance in terms of scalability, among other key facts. In addition, it has been

considered to keep exploiting more capabilities offered by the Simulator Extensions

channel; for example, to be able draw and manually edit a FSA in the CPN Tools

canvas, instead of only using the Graphviz support for automata drawing.

Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and

System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

124

References
[1]. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,

vol. 77, no. 4, April 1989, pp. 541–580

[2]. K. Jensen and L. M. Kristensen. Coloured Petri Nets: Modelling and Validation of

Concurrent Systems. Berlin, Heidelberg: Springer-Verlag, 2009

[3]. CPN Tools – A tool for editing, simulating, and analyzing Coloured Petri Nets.

Available at: http://www.cpntools.org/, accessed: 20.06.2018

[4]. M. Westergaard. CPN Tools 4: Multi-formalism and Extensibility. In Application and

Theory of Petri Nets and Concurrency. Berlin, Heidelberg: Springer-Verlag, 2013, pp.

400–409

[5]. M. E. Villapol. Modelling and Analysis of the Resource Reservation Protocol Using

Coloured Petri Nets. Ph.D. dissertation, University of South Australia, Australia,

December 2003

[6]. S. Gordon, L. M. Kristensen, and J. Billington. Verification of a Revised WAP Wireless

Transaction Protocol, In Application and Theory of Petri Nets and Concurrency. Berlin,

Heidelberg: Springer-Verlag, 2002, pp. 182–202

[7]. B. Han. Formal Specification of the TCP Service and Verification of TCP Connection

Management. Ph.D. dissertation, University of South Australia, Australia, April 2004

[8]. J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri Net Approach to Protocol

Verification. Berlin, Heidelberg: Springer-Verlag, 2004, pp. 210–290.

[9]. G. Gallasch and L. M. Kristensen. Comms/CPN: A Communication Infrastructure for

External Communication with Design/CPN. In Proc. of the Third Workshop and

Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, DAIMI PB-554,

pages 75–91

[10]. M. Westergaard and K. B. Lassen. The BRITNeY Suite Animation Tool. In

Applications and Theory of Petri Nets and Concurrency. Berlin, Heidelberg: Springer-

Verlag, 2006, pp. 431–440

[11]. M. Westergaard. Access/CPN 2.0: A High-Level Interface to Coloured Petri Net

Models. In Application and Theory of Petri Nets and Con- currency. Berlin, Heidelberg:

Springer-Verlag, 2011, pp. 328–337

[12]. AT&T Researchers – Inventing the Science Behind the Service. Available at: http:

//www.research.att.com/evergreen/portfolio/, accessed: 20.06.2018

[13]. OpenFST Library. Available at: http://www.openfst.org/twiki/bin/view/FST/WebHome,

accessed: 20.06.2018

[14]. M. Hulden. Foma: A Finite-state Compiler and Library. In Proceedings of the 12th

Conference of the European Chapter of the Association for Computational Linguistics:

Demonstrations Session. Stroudsburg, PA, USA: Association for Computational

Linguistics, 2009, pp. 29–32

[15]. A. Almeida, M. Almeida, J. Alves, N. Moreira, and R. Reis. FAdo and GUItar: Tools for

Automata Manipulation and Visualization. In Implementation and Application of

Automata. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 65–74

[16]. S. H. Rodger. JFLAP: An Interactive Formal Languages and Automata Package. USA:

Jones and Bartlett Publishers, Inc., 2006

[17]. C. Ouyang and J. Billington. Formal Analysis of the Internet Open Trading Protocol. In

Applying Formal Methods: Testing, Performance, and M/E-Commerce. Berlin,

Heidelberg: Springer-Verlag, 2004, pp. 1–15

[18]. S. Barzegar, M. Davoudpour, M. R. Meybodi, A. Sadeghian, and M. Tirandazian.

Traffic Signal Control with Adaptive Fuzzy Coloured Petri Net Based on Learning

Карраскель Х. С., Mоралес A., Виллаполь М. Е. Prosega/CPN: расширение CPN Tools для автоматного анализа и

системы проверки. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 107-128

125

Automata. In Annual Meeting of the North American Fuzzy Information Processing

Society, July 2010, pp. 1–8

[19]. N. Danapaquiame, E. Ilavarasan, N. Kumar, and S. K. Dwivedi. Ratification strategy for

web service composition using CPN: A survey. In Proc. of the IEEE International

Conference on Computational Intelligence and Computing Research, December 2013,

pp. 1–4

[20]. J. Zhu, K. Zhang, and G. Zhang. Verifying Web Services Composition based on LTL

and colored Petri Net. In Proc. of the 6th International Conference on Computer Science

Education, August 2011, pp. 1127–1130

[21]. ISO/IEC. High-level Petri Nets – Part 1: Concepts, Definitions and Graphical Notation.

Software and Systems Engineering, ISO/IEC FDIS 15909-1. Final Draft International.

[22]. W. A. Barrett and J. D. Couch. Compiler Construction: Theory and Practice. Chicago,

Illinois: Science Research Associates Inc., 1979

[23]. M. Westergaard. CPN Tools 4 Extensions: Part 4: Advanced Communication and

Debugging. Available at: https://westergaard.eu/2013/11/cpn-tools-4-extensions-part-4-

advanced-communication-and-debugging/, November 2013, Blog entry/, accessed:

20.06.2018

[24]. C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. OpenFst: A General and

Efficient Weighted Finite-State Transducer Library. In Implementation and Application

of Automata. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 11–23.

[25]. Graphviz – Graph Visualization Software. Available at: http://www.graphviz.org//,

accessed: 20.06.2018

[26]. J. C. Carrasquel. Java/PROSEGA: An extension in CPN Tools for generating languages

accepted by FSA and minimized deterministic FSA from a state space. Central

University of Venezuela, Caracas, Venezuela, Tech. Rep., October 2015.

[27]. IEEE 802.16 Working Group on Broadband Wireless Access Standards. IEEE Std.

802.16e-2005. Local and Metropolitan Area Network. Part 16: Air Interface for Fixed

and Mobile Broadband Wireless Access Systems

[28]. A. V. Morales and M. E. Villapol. Towards Formal Specification of the Service in the

IEEE 802.16 MAC Layer for Connection Management. In Proceedings of the 9th

WSEAS International Conference on Computational Intelligence, Man-machine

Systems and Cybernetics. World Scientific and Engineering Academy and Society

(WSEAS), 2010, pp. 140–146

[29]. A. V. Morales and M. E. Villapol. Reviewing the Service Specification of the IEEE

802.16 MAC Layer Connection Management: A Formal Approach. CLEI Electronic

Journal, vol. 16, August 2013, pp. 1– 12

Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and

System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

126

Prosega/CPN: расширение CPN Tools для автоматного
анализа и верификации систем

1
Х. С. Карраскель <julio.carrasquel@yahoo.com>

2
A. Mоралес <ana.morales@ciens.ucv.ve>

3
М. Е. Виллаполь <maria.villapol@aut.ac.nz>

1
Римский университет Ла Сапиенца, отдел компьютерной, контрольной и

управленческой инженерии, ул. Ариосто 25, г. Рим, 00185, Италия
2
Центральный университет Венесуэлы, Школа компьютерных наук,

просп. Пасео Лос-Илюстрес, г. Каракас, 1040, Венесуэла
3
Оклендский технологический университет, Школа инженерии,

компьютерных и математических наук,

ул. Уэллсли-стрит-восток 55, г. Окленд, 1010, Новая Зеландия

Аннотация. Верификация и анализ распределенных систем являются чрезвычайно

важными задачами, особенно сейчас, когда многие компьютерные системы реализуют

критически важные сервисы. Для моделирования и верификации систем полезно

сочетать разные методы анализа. В частности, это позволяет применять тот формализм

и ту технику анализа, которые лучше подходят для того или иного компонента

системы. Комбинация из раскрашенных сетей Петри (CPN, Coloured Petri Nets) и

конечных автоматов представляет собой успешную формальную методику

моделирования и верификации распределенных систем. В связи с этим в данной статье

рассматривается инструмент Prosega/CPN (Protocol Sequence Generator and Analyzer),

расширение CPN Tools для поддержки автоматного анализа и верификации.

Инструмент реализует несколько функций, таких как генерация минимизированного

детерминированного конечного автомата из графа достижимости (occurrence graph)

раскрашенной сети Петри, генерация языка и сопоставление конечных автоматов. Это

решение поддерживается функцией Simulator Extensions, развитие которой

обусловлено необходимостью интеграции раскрашенных сетей Петри с другими

формализмами. Инструмент предназначен для поддержки формальной методологии

верификации коммуникационных протоколов; однако он может использоваться для

верификации других систем, анализ которых включает сравнение моделей на разных

уровнях абстракции, например, бизнес-стратегий и бизнес-процессов. В статье

приведен подробный пример, в котором инструмент Prosega/CPN используется для

анализа части спецификации службы управления соединениями MAC IEEE 802.16.

Ключевые слова: формальные методы; раскрашенные сети Петри; CPN Tools;

конечные автоматы; верификация протоколов.

DOI: 10.15514/ISPRAS-2018-30(4)-7

Для цитирования: Карраскель Х. С., Mоралес A., Виллаполь М. Е. Prosega/CPN:

расширение CPN Tools для автоматного анализа и верификации систем. Труды ИСП

РАН, том 30, вып. 4, 2018 г., стр. 107-128 (на английском языке). DOI:

10.15514/ISPRAS-2018-30(4)-7

Карраскель Х. С., Mоралес A., Виллаполь М. Е. Prosega/CPN: расширение CPN Tools для автоматного анализа и

системы проверки. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 107-128

127

Список литературы

[1]. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,

vol. 77, no. 4, April 1989, pp. 541–580

[2]. K. Jensen and L. M. Kristensen. Coloured Petri Nets: Modelling and Validation of

Concurrent Systems. Berlin, Heidelberg: Springer-Verlag, 2009

[3]. CPN Tools – A tool for editing, simulating, and analyzing Coloured Petri Nets.

Доступно по ссылке: http://www.cpntools.org/, дата обращения: 20.06.2018

[4]. M. Westergaard. CPN Tools 4: Multi-formalism and Extensibility. In Application and

Theory of Petri Nets and Concurrency. Berlin, Heidelberg: Springer-Verlag, 2013, pp.

400–409

[5]. M. E. Villapol. Modelling and Analysis of the Resource Reservation Protocol Using

Coloured Petri Nets. Ph.D. dissertation, University of South Australia, Australia,

December 2003

[6]. S. Gordon, L. M. Kristensen, and J. Billington. Verification of a Revised WAP Wireless

Transaction Protocol, In Application and Theory of Petri Nets and Concurrency. Berlin,

Heidelberg: Springer-Verlag, 2002, pp. 182–202

[7]. B. Han. Formal Specification of the TCP Service and Verification of TCP Connection

Management. Ph.D. dissertation, University of South Australia, Australia, April 2004

[8]. J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri Net Approach to Protocol

Verification. Berlin, Heidelberg: Springer-Verlag, 2004, pp. 210–290.

[9]. G. Gallasch and L. M. Kristensen. Comms/CPN: A Communication Infrastructure for

External Communication with Design/CPN. In Proc. of the Third Workshop and

Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, DAIMI PB-554,

pages 75–91

[10]. M. Westergaard and K. B. Lassen. The BRITNeY Suite Animation Tool. In

Applications and Theory of Petri Nets and Concurrency. Berlin, Heidelberg: Springer-

Verlag, 2006, pp. 431–440

[11]. M. Westergaard. Access/CPN 2.0: A High-Level Interface to Coloured Petri Net

Models. In Application and Theory of Petri Nets and Con- currency. Berlin, Heidelberg:

Springer-Verlag, 2011, pp. 328–337

[12]. AT&T Researchers – Inventing the Science Behind the Service. Доступно по ссылке:

http: //www.research.att.com/evergreen/portfolio/, дата обращения: 20.06.2018

[13]. OpenFST Library. Доступно по ссылке:

http://www.openfst.org/twiki/bin/view/FST/WebHome, дата обращения: 20.06.2018

[14]. M. Hulden. Foma: A Finite-state Compiler and Library. In Proceedings of the 12th

Conference of the European Chapter of the Association for Computational Linguistics:

Demonstrations Session. Stroudsburg, PA, USA: Association for Computational

Linguistics, 2009, pp. 29–32

[15]. A. Almeida, M. Almeida, J. Alves, N. Moreira, and R. Reis. FAdo and GUItar: Tools for

Automata Manipulation and Visualization. In Implementation and Application of

Automata. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 65–74

[16]. S. H. Rodger. JFLAP: An Interactive Formal Languages and Automata Package. USA:

Jones and Bartlett Publishers, Inc., 2006

[17]. C. Ouyang and J. Billington. Formal Analysis of the Internet Open Trading Protocol. In

Applying Formal Methods: Testing, Performance, and M/E-Commerce. Berlin,

Heidelberg: Springer-Verlag, 2004, pp. 1–15

Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and

System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

128

[18]. S. Barzegar, M. Davoudpour, M. R. Meybodi, A. Sadeghian, and M. Tirandazian.

Traffic Signal Control with Adaptive Fuzzy Coloured Petri Net Based on Learning

Automata. In Annual Meeting of the North American Fuzzy Information Processing

Society, July 2010, pp. 1–8

[19]. N. Danapaquiame, E. Ilavarasan, N. Kumar, and S. K. Dwivedi. Ratification strategy for

web service composition using CPN: A survey. In Proc. of the IEEE International

Conference on Computational Intelligence and Computing Research, December 2013,

pp. 1–4

[20]. J. Zhu, K. Zhang, and G. Zhang. Verifying Web Services Composition based on LTL

and colored Petri Net. In Proc. of the 6th International Conference on Computer Science

Education, August 2011, pp. 1127–1130

[21]. ISO/IEC. High-level Petri Nets – Part 1: Concepts, Definitions and Graphical Notation.

Software and Systems Engineering, ISO/IEC FDIS 15909-1. Final Draft International.

[22]. W. A. Barrett and J. D. Couch. Compiler Construction: Theory and Practice. Chicago,

Illinois: Science Research Associates Inc., 1979

[23]. M. Westergaard. CPN Tools 4 Extensions: Part 4: Advanced Communication and

Debugging. Доступно по ссылке: https://westergaard.eu/2013/11/cpn-tools-4-

extensions-part-4-advanced-communication-and-debugging/, November 2013, Blog

entry/, дата обращения: 20.06.2018

[24]. C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. OpenFst: A General and

Efficient Weighted Finite-State Transducer Library. In Implementation and Application

of Automata. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 11–23.

[25]. Graphviz – Graph Visualization Software. Доступно по ссылке:

http://www.graphviz.org//, дата обращения: 20.06.2018

[26]. J. C. Carrasquel. Java/PROSEGA: An extension in CPN Tools for generating languages

accepted by FSA and minimized deterministic FSA from a state space. Central

University of Venezuela, Caracas, Venezuela, Tech. Rep., October 2015.

[27]. IEEE 802.16 Working Group on Broadband Wireless Access Standards. IEEE Std.

802.16e-2005. Local and Metropolitan Area Network. Part 16: Air Interface for Fixed

and Mobile Broadband Wireless Access Systems

[28]. A. V. Morales and M. E. Villapol. Towards Formal Specification of the Service in the

IEEE 802.16 MAC Layer for Connection Management. In Proceedings of the 9th

WSEAS International Conference on Computational Intelligence, Man-machine

Systems and Cybernetics. World Scientific and Engineering Academy and Society

(WSEAS), 2010, pp. 140–146

[29]. A. V. Morales and M. E. Villapol. Reviewing the Service Specification of the IEEE

802.16 MAC Layer Connection Management: A Formal Approach. CLEI Electronic

Journal, vol. 16, August 2013, pp. 1– 12

