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Abstract. The verification and analysis of distributed systems is a task of utmost importance, 

especially in today’s world where many critical services are completely supported by 

different computer systems. Among the solutions for system modelling and verification, it is 

particularly useful to combine the usage of different analysis techniques. This also allows the 

application of the best formalism or technique to different components of a system. The 

combination of Colored Petri Nets (CPNs) and Automata Theory has proved to be a 

successful formal technique in the modelling and verification of different distributed systems. 

In this context, this paper presents Prosega/CPN (Protocol Sequence Generator and 

Analyzer), an extension of CPN Tools for supporting automata-based analysis and 

verification. The tool implements several operations such as the generation of a minimized 

deterministic finite-state automaton (FSA) from a CPN’s occurrence graph, language 

generation, and FSA comparison. The solution is supported by the Simulator Extensions 

feature whose development has been driven by the need of integrating CPN with other formal 

methods. Prosega/CPN  is intended to support a formal verification methodology of 

communication protocols; however, it may be used in the verification of other systems whose 

analysis involves the comparison of models at different levels of abstraction. For example, 

business strategy and business processes. An insightful use case is provided where 

Prosega/CPN has been used to analyze part of the IEEE 802.16 MAC connection 

management service specification. 
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1. Introduction 

The verification of distributed systems and the assurance of their correctness is a 

task of utmost importance; specially in today’s world where many critical services 

are completely supported by computer technologies. Among the solutions for 

system modelling and verification, Petri Nets [1] play a major role since its 

capability of graphically visualize systems, and for maintaining the formal rigor, so 

it allows to perform a convenient analysis of the behavioral properties of a system. 

Thus, the formalism of Petri Nets has been extended to other models in order to 

enrich their expressiveness and practicability. Particularly, we consider Coloured 

Petri Nets (CPNs) [2] where data types (colors) may be associated to net elements. 

CPN Tools [3] is a consolidated software tool for editing, simulating, and analyzing 

CPN models.  

However, when dealing with a higher complexity of the system, it may be useful to 

combine the usage of different analysis techniques. This also allows the application 

of the best formalism or technique to different components of a system. In the 

context of Colored Petri Nets, the last version of CPN Tools includes the Simulator 

Extensions whose development has been driven by the need of integrating CPN 

with other formal methods [4]. In particular, we consider the integration of CPNs 

and Finite-state Automata (FSA) which has been proved to be useful for the 

validation of different protocols and communication systems [5] [6] [7]. 

For instance, given a CPN’s occurrence graph (OG), the arcs through a path in the 

OG may be seen as the sequence of service primitives that a user (i.e. another 

system entity in a higher layer) invokes in order to request some action by a service 

provider. The nodes in the OG may be considered as changes of state in the system 

due to the services invocations. Finally, some nodes of the OG may represent halt 

states, meaning the termination of a specific process. Hence, the OG can be seen as 

a FSA, which can be analyzed using well-known algorithms and theorems. 

There are several tools for building, combining, optimizing, and searching Finite-

state Automata. However, in order to apply them for analyzing CPNs and 

occurrence graphs, these ones must be converted into FSA specific formats (i.e. see 

[5] [6]). Using several tools may complicate the verification process. 

Thereby, we developed a solution called Prosega/CPN (Protocol Sequence 

Generator and Analyzer). The tool aims to bridge conveniently the formalism of 

CPNs with Finite-state Automata, taking advantage of the Simulator Extensions 

feature in CPN Tools. Thus, the software provides a mechanism for transforming a 

CPN’s occurrence graph into a minimized deterministic FSA as well as other 

operations for language generation and FSA comparison. Prosega/CPN has been 

conceived to support the protocol verification methodology proposed by Billington 

[8]. However, the tool may be useful to support the verification of other systems 

whose strategy may involve the usage of FSAs, or the comparison of models at 

different levels of abstraction; for example, business strategy and business 

processes. 
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The remainder of this paper is structured as follows. Section 2 introduces the 

literature related to our work. Section 3 presents some formal definitions for 

understanding the models managed by Prosega/CPN. Sections 4 and 5 describe the 

tool functionalities and architecture respectively. Section 6 describes a use case 

where the tool has been used to analyze part of the IEEE 802.16 MAC connection 

management service specification. Finally, Section 7 presents the conclusions. 

2. Related work 

Prosega/CPN has been developed within the context of system verification through 

the formalism of Coloured Petri Nets (CPNs) and Finite-state Automata (FSA). The 

tool has been conveniently developed as an extension of CPN Tools [3] since it 

performs several operations on FSAs generated from a CPN model. i.e. the 

reduction of a CPN’s occurrence graph into a FSA. Hence, through the development 

of Prosega/CPN we have been focused in three topics within the literature: 

 Works dealing with the development of extensions for CPN Tools [4] [9] 

[10] [11]. 

 Tools and other solutions for the analysis and manipulation of FSA [12] 

[13] [14] [15] [16]. 

 Works proposing a system verification methodology using CPNs and FSA, 

and the use cases in which it has been applied [5] [6] [7] [8] [17], and other 

scenarios where both formalisms have been used together [18] [19] [20]. 

CPN tools has a history for communicating with external solutions; its architecture 

provides a set of communication primitives for connecting external software to the 

CPN simulator engine. As an initial effort, it was developed Comms/CPN [9], a 

library for Java and C/C++ which makes it possible for CPN Tools to communicate 

based on TCP/IP with external application and processes. The BRITNeY Suite [10] 

is other solution which provides model visualizations in an external tool, and more 

recently Access/CPN [11] that provides a channel to interact with the CPN Tools 

simulator engine from external Java programs. However, while these previous tools 

have made it easy to interact with CPN Tools, they have not made it possible to 

extend the software. Thereby, it was developed the Simulator Extensions [4] feature 

included in the last version of CPN Tools. This component provides a mechanism 

for adding new functionalities within the CPN Tools Graphical User Interface 

(GUI), thereby allowing integrating other related formalisms with CPN models; as a 

result, it has been possible to handle other models in the tool such as low-level 

Place/Transition nets, Declare models, and drawing message sequence charts from 

model executions [4].  

On the other hand, Finite-state Automata (FSA) have been used in a much wider 

spectrum of fields than CPNs; as an important tool for FSA manipulation we 

highlight the FSM Library from AT&T Labs [12] which is a collection of Unix 

software tools for creating and manipulating finite-state machines. Despite the 

library is quite general purpose, it was designed for speech processing applications 
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such as speech recognition/synthesis; FSM Library was used as well in previous 

works regarding the verification of communication systems based on CPNs and 

automata [5] [6]. Some of the researchers of the AT&T FSM project developed later 

an enhanced version called OpenFST [13], which is an open-source alternative that 

also allows to construct finite-state transducers, and it provides a C++ template 

library. Within the range of tool solutions for FSA manipulation, we may also find 

Foma [14], the FAdo project [15] and the specialized pedagogical tool JFLAP [16] 

among many others. 

Bridging CPNs and FSA may be useful for verification of systems of very high 

complexity. In particular, Billington [8] proposed a CPN and FSA approach for the 

verification communication systems that has proven to be successful; namely, in the 

verification of the Resource Reservation Protocol (RSVP) [5], the Wireless 

Application Protocol (WAP) [6], the Transmission Control Protocol (TCP) [7], and 

the Internet Open Trading Protocol (IOTP) [17], among other cases. Between other 

domains in which both formalisms have been applied together we may find the 

verification of web-services composition [19] [20] or vehicular traffic control 

systems [18], just to mention a few. 

3. Formal Definitions 

This section presents some formal definitions of the models and data structures that 

are manipulated through the functionalities of CPN Tools and Prosega/CPN. In 

particular, it is formulated how it can be derived an occurrence graph (OG) from a 

CPN model, and afterwards is explained how can it be generated a Finite-state 

Automaton (FSA) from a CPN’s occurrence graph. The following formulations are 

based in the work done in [8]. Albeit CPNs are managed in this work; for the formal 

definition it has been rather convenient to generalize the type into a High-level Petri 

Net (i.e. for proving further theorems regarding the relationship between an OG and 

a FSA as described in [8]). Hence, we firstly take the definition of a High-level Petri 

net (HLPN) [21]. 

Definition 1. A High-level Petri Net is a structure of the form 

𝐻𝐿𝑃𝑁 = (𝑃, 𝑇, 𝐷; 𝑇𝑦𝑝𝑒, 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡, 𝑚0) where:  

 𝑃is a finite set of Places; 

 𝑇is a finite set of Transitions such that𝑃 ∩ 𝑇 = ∅ 

 𝐷is a non-empty finite set of non-empty domains where each element of D is 

called a type.  

 𝑇𝑦𝑝𝑒: 𝑃 ∪ 𝑇 → 𝐷is a function used to assign types to places, and to determine 

transition modes.  

 𝑚0 ∈ 𝜇𝑃𝐿𝐴𝐶𝐸is a multi-set called the initial marking of the net such that 

𝜇𝑃𝐿𝐴𝐶𝐸is a set of all possible multi-sets of 𝑃𝐿𝐴𝐶𝐸 

 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡: 𝑇𝑀 → 𝜇𝑃𝐿𝐴𝐶𝐸are the pre and post mappings with 

 𝑇𝑀 = {(𝑡, 𝑚)|𝑡 ∈ 𝑇, 𝑚 ∈ 𝑇𝑦𝑝𝑒(𝑡)}the set of transition modes. 

 𝑃𝐿𝐴𝐶𝐸 = {(𝑝, 𝑔)|𝑝 ∈ 𝑃, 𝑔 ∈ 𝑇𝑦𝑝𝑒(𝑝)}the set of elementary 

places. 
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For the analysis of a High-level Petri net it is generated an occurrence graph (OG). 

We consider that an OG can be defined as a labelled and rooted directed graph, 

where the nodes of the graph represent markings of the Petri Net, and the directed 

arcs represent the transition modes (or binding elements [2]) that can occur in all 

executions from the initial marking. On the other hand, the root of the graph refers 

to a node, which is considered as the initial state. In addition, the arcs of an OG may 

be labelled by the transition modes. Thus, we start by defining a labelled and rooted 

directed graph, and then we give the definition of an OG associated to a HLPN. 

Definition 2. A labelled directed graph, with 𝑣0as the root node, is a triple 𝐺 =
(𝑉, 𝐿, 𝐸) where: 

 𝑉is a finite set of vertices or nodes;𝑣0 ∈ 𝑉represents the root or initial node. 

 𝐿is a set of labels; 

 𝐸 ⊆ 𝑉 × 𝑉is a set of labelled directed edges. 

Definition 3. An occurrence graph of a HLPN with an initial marking𝑣0is a labelled 

and rooted directed graph𝑂𝐺 = (𝑉, 𝑇𝑀, 𝐴)where 

 𝑉is a finite set of vertices or nodes reachable from𝑚0(the reachability set); 

𝑚0 ∈ 𝑉represents the initial marking (root node); 

 𝑇𝑀is the set of transition modes of the HLPN; 

 𝐴 = {(𝑚, 𝑡𝑚, 𝑚′) ∈ 𝑉 × 𝑇𝑀 × 𝑉′|𝑚 →
𝑡𝑚

𝑚′}is the set of arcs (directed 

edges) labelled by transition modes. 

Remark. 𝑚 →
𝑡𝑚

𝑚′indicates the ocurrence of a transition mode tm ∈  TM in a 

marking𝑚which results in a new marking𝑚′ 

However, when we are only interested in the transition names, then the arcs of the 

OG are just labelled with such transitions names rather than the transition modes 

(binding elements). For example this is useful when it is just required to understand 

which user observable events (service primitives) may lead from a state of the 

system to another one; instead of transition modes which involve the parameters 

binded to such events. In addition, when we are also interested in the identification 

of the markings for the nodes of the OG, rather than the marking details, we 

introduce an injection 𝐼: [𝑚0] → ℕsuch that this function maps the set of reachable 

markings from 𝑚0(denoted as[𝑚0]) into the set of natural numbers. Giving the 

described abstractions for transitions and markings, we consider the definition of an 

abstract OG. 

Definition 4.  An abstract OG of a HLPN with an initial marking 𝑚0 is a labelled and 

rooted directed graph𝑂𝐺 = (𝑉, 𝑇, 𝐴)where 

 𝑉 = {𝐼(𝑚)|𝑚 ∈ [𝑚0]} is the set of nodes; 

 𝐼(𝑚0) ∈ 𝑉 represents the root or initial node. 

 𝑇is the set of transitions of the HLPN ; 

 𝐴 = {(𝐼(𝑚), 𝑡, 𝐼(𝑚′)) ∈ 𝑉 × 𝑇 × 𝑉′|𝑚 →
(𝑡,𝑚)∈𝑇𝑀

𝑚′} is the set of arcs 

labelled by transition. 
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We point out that the abstract occurrence graph OG defined above is finite. i.e. It 

has a finite number of states. Indeed this is an important fact when dealing with real 

scenarios. This means that the corresponding Petri Net must be a bounded net [1], 

and hence a preliminary boundedness analysis on the Petri Net is performed. 

Finally, it is presented a mapping from an abstract OG (Definition 4) into a Finite-

state Automaton FSA. We define a function Prim: T → SP ∪  {ε} that maps each 

transition of the HLPN to either an identifier name (i.e. an user observable event or 

service primitive name), or to an epsilon (i.e. an empty move); SP is the set of 

identifiers (for the user observable events or service primitive names) for the system 

that we are describing. 

Definition 5. A Given an abstract occurrence graph𝑂𝐺 = (𝑉, 𝑇, 𝐴)it is derived the 

corresponding Finite-state Automaton𝐹𝑆𝐴 = (𝑉, 𝑆𝑃, 𝐴𝑆𝑃, 𝑣0, 𝐹)where 

 𝑉is the set of nodes of the abstract OG (the states of the FSA); 

 𝑆𝑃is the set of identifiers (for the user observable events or service primitive 

names) of the system of interest (the alphabet of FSA); 

 𝐴𝑆𝑃 = {(𝑣, 𝑃𝑟𝑖𝑚(𝑡), 𝑣′)|(𝑣, 𝑡, 𝑣′) ∈ 𝐴}is the set of transitions labelled by 

elements of SP or epsilons (the transition relation of the FSA);  

 𝑣0corresponds to the abstract initial marking (initial state of the FSA). 

 𝐹 ⊆ 𝑉the set of final (acceptance) states. 

Prosega/CPN performs the conversion of an OG as described in Definition 4 into a 

FSA as described in Definition 5. Moreover, this mapping between OG and the FSA 

allows the tool conveniently manage the generation of the language and the 

comparison between other FSAs. 

4. Functionalities 

Prosega/CPN is an extension in CPN Tools. Thus, the user interacts with the 

application using a Graphical User Interface (GUI) through a tool palette added to 

CPN Tools (see fig. 1) - available under the Tool box entry [3]. The tool supports 

the generation of a minimized deterministic Finite-state Automaton (FSA) derived 

from the CPN’s occurrence graph, the language generation, and the comparison 

between two different FSAs. We proceed to explain these functionalities in detail. 

 

Fig. 1. Tool palette of Prosega/CPN 
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4.1 FSA Generation 

Once the occurrence graph (OG) from a CPN model is generated using the CPN 

Tools simulator [3], its associated Finite-state Automaton (FSA) can be generated 

and reduced using the RUN tool (see Fig. 1). To this aim, the following steps are 

performed: getting the transitions, and dead markings of the OG, assigning 

identifiers to transitions (i.e. constructing the mapping Prim defined in Section 3), 

reducing the FSA, and displaying the results. Here, we consider the structure of an 

abstract OG where the nodes are identified by numbers, which represent the 

markings and the arcs are just labelled with the transitions rather than the binding 

elements (see Definition 4). 

Firstly, the tool communicates with the CPN Tools simulator in order to obtain all 

the transitions and the dead markings (see Section 5). The user interacts with the 

Prosega/CPN GUI to assign identifiers (corresponding to user observable events or 

service primitive names) to the model transitions (i.e. mapping elements from a set 

SP). The character 0 is considered as an epsilon (ε). Hence, any transition assigned 

with 0 is considered an epsilon transition (or empty move). Then, the user chooses 

the set of terminal states F for the FSA. which may include nodes representing the 

dead markings or other nodes in the OG. Thereby, it is obtained a FSA in line with 

Definition 5. 

 

Fig. 2. Intial Prosega/CPN in terface where the user can assign Ids to transitions and enter 

terminal states 

For instance, fig. 2 shows the Prosega/CPN interface which supports the described 

operation. In particular, it is defined a FSA given a CPN’s occurrence graph 

extracted from the use case in Section 6. The user assigns identifiers for the CPN 

transitions. For example, the identifier 1 to the transition MACCrtConnReq, which 

is in the CPN model page CreatConnection. Later, the user chooses the following 

nodes of the OG as terminal states: 1, 7, 8, 13, 26, 27, 31, 48 (some are not 

displayed in the figure due to window size limitation). Afterwards, the modelled 

FSA is reduced by following the algorithm described in [22], which consists in 

performing the following operations over a FSA: 
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 removal of epsilon transitions (remove empties); 

 removal of non-determinism (determinization); 

 reduction by identifying and merging equivalent states (minimization). 

The algorithm produces as output a reduced deterministic FSA with a minimal 

number of states that is equivalent to the input automata. Finally, an interface 

showing the results of the FSA reduction is displayed to the user as shown in fig. 3. 

 

Fig. 3. Interface showing the results of the FSA reduction process 

 The interface shows general information about the reduced FSA (FSA Info), such 

as initial state and number of arcs, which may be relevant for the FSA analysis. It 

also includes a graphical representation of the FSA (FSA Image Preview), and the 

established mapping between the identification numbers/names assigned by the user 

and the transition names, which may be useful for debugging and verification of the 

model. 

4.2 Language generation 

The language accepted by a FSA can be generated by using either the LANG tool in 

Fig. 1 or the Generate Language button in Fig. 3. The interface shown in Fig. 4 is 

displayed to the user after it clicks on the LANG tool. Then the user can choose 

both the FSA, in plain text or in the compiled format [13], for which the language 

will be generated and the corresponding symbol table file—for mapping the arc 

inscriptions with the symbols selected by the user.  
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Fig. 4. Language generation interface 

The language generator module generates the language L of the FSA by extension; 

if L is finite, the whole sequences are printed; otherwise a subset of the language, L’ 

⊆ L is generated, as illustrated in fig. 5. In particular, L’ is a set of symbol 

sequences whose symbols belong to  different arcs in the FSA. Notice that some 

arcs of the FSA may be labelled with the same symbol. However, in the generation 

of each sequence, each arc of the FSA is visited just once. 

Indeed, for generating each sequence accepted by the automaton it was developed 

an algorithm based on iterative Depth-first Search (DFS), which was implemented 

in the language generator component of Prosega/CPN (as mentioned in Section 5). 

This component performs DFS between the initial state of the FSA, to each of the 

halt states. Hence, the symbols of the arcs visited through the path from the initial 

state to a specific halt state are printed, thereby representing a sequence accepted by 

the automaton. In addition, this module supports a generator of random sequences 

of the language symbols, as shown in Fig. 6, which may be useful when the 

language is infinite. For example, in Fig. 5 and 6, we can see the following sequence 

of language symbols: 1, 5 which corresponds to the sequence of actions 

(transitions): MACCrtConnReq, MACCrtConnCf2 (as shown in the interface in fig. 

4, where the user assigned an Id (language symbol) to each transition). 
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Fig. 5. Interface showing part of the language accepted by the FSA of Fig. 3 

In particular, for generating each random sequence it is computed a random walk in 

the FSA from the initial state to any of the halt states. Whenever a halt state is 

visited, the walk will be terminated with a probability p/100 s.t 0 < p ≤ 100, and the 

sequence of symbols, which were collected throughout the visited path will be 

printed. Thus, in the Generate Random interface (fig. 6), the user can manipulate the 

average size of the randomly generated sequences of language symbols by entering 

the halt-rate parameter value p. Therefore, if the value p is close to 0, the number of 

language symbols in each sequence may be big, while if p is close to 100, then the 

number of language symbols in each sequence may be small, thereby determining 

the length of each sequence. i.e. since the halt-rate parameter value in fig. 6 is 55, in 

that case the sizes of the sequences are medium. 

 

Fig. 6. Interface showing some randomly generated sequences of language symbols 
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Fig 7. The interface shows the resulting difference FSA given two automata as parameters 

4.3 FSA Difference 

The user can use the DIFF tool to calculate the difference between two automata, F 

A and F B. This functionality, whose output interface is illustrated in fig. 7, 

generates a new automaton F C which only accepts the sequence of symbols 

accepted by the first automaton F A , and that are not accepted by the second one F 

B . In particular, F B must be an epsilon-free, deterministic finite automaton. This is 

useful to understand the sequences of languages symbols in which may differ two 

models; in this sense, as seen in fig. 7, this functionality allows to generating the 

language of F C for getting such sequences in which may differ two models. 

5. Architecture 

Prosega/CPN is implemented in Java programing language, so we use the new 

feature in CPN Tools 4 called Simulator Extensions [4] to add the software 

functionalities. Fig. 8 shows the software architecture, which illustrates the relation 

ship among all the components of our tool, CPN Tools and the third-party 

components. Communication between the CPN Tools GUI and the simulator, and 

between the simulator and the Simulator Extensions is supported by the BIS 

(Boolean - Integer - String) protocol. Each protocol message is encoded using a 

number of booleans, integers, and strings as explained in [23]. In order to facilitate 

the development of Prosega/CPN we use some third-party libraries, which 

implement many of the functions to manage and display the automata.  

In particular, we utilize OpenFST [13] [24] for FSA reduction and FSA difference, 

and Graphviz [25] for drawing the automata. On the other hand, we wrote the code 

for language generation (fsm2language) in C programming language [26]. The 

fsm2language implements the procedures for language generation and the 

computation of random sequences accepted by a FSA that were described in Section 

4. The bridge between the fsm2language component and the Prosega/CPN tool is 
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supported by JNI (Java Native Interface), which enables a Java program to call 

native libraries written in C/C++ programming language. 

 

Fig. 8.  Prosega/CPN Architecture 

6. Use Case 

The IEEE 802.16 standard [27] is responsible for specifying and describing the air 

interface of Broadband Wireless Access Systems (BWA), and point-multipoint 

fixed/mobile wireless metropolitan area network. The standard is limited to the 

description of the Medium Access Control (MAC) and physical (PHY) layers. In 

overall, IEEE 802.16 provides great benefits for providing mass broadband wireless 

connectivity, allowing user mobility, mesh-mode network support, and even has 

been thought as an alternative for Internet-of-Things deployments. However, due to 

its inherent complexity, there are several parts of the specification that turn out to be 

ambiguous, difficult to understand and imprecise. In this context, Morales et al. [28] 

[29] has contributed establishing a formal model for a module of IEEE 802.16. In 

particular, it developed a formal verification of the MAC connection management 

service specification. To this aim, the Prosega/CPN tool has been used in 

conjunction with the Billington’s protocol verification methodology [8]. Fig. 9 

illustrates the steps of the methodology; we proceed to explain such steps, and how 

they have been applied within our use case using CPN Tools and Prosega/CPN. 

 

Fig. 9. Steps within the protocol verification methodology proposed in [8]. 

6.1 Service Definition 

In fig. 9, the dashed box in the left represents the first step which consists in 

modelling the service specification of the system, and to define the services that it 
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aims to provide (either to a higher layer or to another system entity). In the scenario 

of the IEEE 802.16 MAC layer, the service specification consists in a set of service 

primitives that the MAC sub-layer, responsible for connection management 

procedures, provides to the sub-layer on top of it. Each of these primitives 

correspond to one of the following procedures: The establishment of a connection 

between communication peers, the connection maintenance (i.e. management of the 

dynamic network resources) and the termination of the connection by any of the 

communication peers. 

6.2 Service CPN and OG 

Using CPN Tools, it is created the CPN model of the service specification. fig. 10 

presents the CPN main page which shows a top view of the model [2]. This top 

module is linked with the pages that model the service primitives that correspond to 

the establishment, maintenance, and termination of a connection through the 

transitions CreatConnection, ChangeConnection, and TerminateConnection 

respectively. Each of these pages of the model can be checked in [28]. Afterwards, 

it is generated the CPN’s occurrence graph (OG), shown in fig. 11, which is the 

input for the FSA reduction feature of Prosega/CPN. 

 

Fig. 10. CPN model representing the hierarchical view for the processes of creation, change 

and termination of connections between peer MAC entities in the IEEE 802.16 service 

specification 
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6.3 FSA Reduction 

Once the service OG is generated, it is modelled as a FSA in line with Definitions 4 

and 5. To this aim, it is used the RUN tool of Prosega/CPN for converting the OG 

into a FSA (as presented in fig. 2). For each transition of the CPN model, it is 

assigned a number value which represents the associated service primitive identifier 

(Id) (resembling the function Prim described in Section 3). Transitions that are 

considered as empty moves (or internal events) are labelled with 0 (epsilon 

transitions). Later, there are assigned the terminal states. The assignation performed 

between all the model transitions and the service primitive identifiers as well as the 

decision of the terminal states can be fully checked in [28]. Afterwards, the FSA is 

minimized following the procedure explained in Section 4. Fig. 12 presents the 

minimized deterministic FSA (exported from the output/analysis interface of the 

RUN tool previously presented in Fig. 3. 

Table. 1. Service primitivies on the IEEE 802.16 MAC Layer and their corresponding 

identification number [22] 

Service Primitive Id 

MAC_CREAT_CONNECTION.Request 1 

MAC_CREAT_CONNECTION.Indication 2 

MAC_CREAT_CONNECTION.Response 3 

MAC_CREAT_CONNECTION.Confirmation 4, 5, 6 

MAC_CHANGE_CONNECTION.Request 7 

MAC_CHANGE_CONNECTION.Indication 8 

MAC_CHANGE_CONNECTION.Response 9 

MAC_CHANGE_CONNECTION.Confirmation 10 

MAC_TERMINATE_CONNECTION.Request 11 

MAC_TERMINATE_CONNECTION.Indication 12 

MAC_TERMINATE_CONNECTION.Response 13 

MAC_TERMINATE_CONNECTION.Confirmation 14, 15, 16 
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Fig. 11. OG of the CPN model representing the IEEE 802.16 MAC connection management 

service specification. 
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Fig. 12. Minimized deterministic FSA generated from the OG illustrated in fig. 11 

6.4 Language Generation 

The service language (the set of sequences of service primitives) is generated using 

Prosega/CPN as explained in Section 4 —utilizing FSA minimization (RUN tool) 

and FSA language generation (LANG tool). Fig. 5 presented some sequences that 

are accepted by the FSA. In addition, Table. 1 shows the identifier selected for each 

primitive service [28]. For example, the sequence of language symbols 1, 2, 3, 4, 7, 

8, 9, 10 represent the service primitives invoked by the protocol entity in top of the 

MAC for the successful establishment and maintenance (change of a 

communication resource) of the connection. In overall, the minimized FSA 

generated by Prosega/CPN provides a compact description of the possible 

sequences of service primitives, and allows to remove complexity from the model, 

which allows the language to present a clear specification of the service that the 

system provides. 

6.5 Further Steps 

The second part of the methodology (dashed box in the right of Fig. 9) concerns to 

the modelling of the protocol, and its comparison against the service specification 

through language equivalence. These further steps are still in progress within the 

research work [28]. The modelling of the protocol consists in constructing the CPN 

model, which describes the protocol procedures which are performed when a 

service primitive is invoked by a higher entity of the system. Later, it is generated 

the OG associated to this CPN model. On the one hand, behavioral properties of the 

protocol may be analyzed through the OG. On the other hand, the OG may be 

reduced into a minimized deterministic FSA. i.e. using again the RUN tool of 

Prosega/CPN.  

Then, the FSA of the service specification may be compared with the FSA of the 

protocol. i.e. using the DIFF function of Prosega/CPN – see fig. 7. Finally, the 

language of the difference FSA may be generated in order to determine language 

equivalence between the service and the protocol. Thus, we can determine the 

sequences of service primitives, which are in the protocol specification but are not 

in the service specification. It is important to know if the service specification meets 

the protocol specification, since it is not desirable to have a service requirement 
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from the service user which cannot be met by the protocol. In addition, it may not 

be wanted a service provided by the protocol which actually it is never required by 

the user. 

7. Conclusion 

This work has presented Prosega/CPN. The tool is an extension of CPN Tools for 

supporting several operations for FSA-based analysis and system verification. The 

tool provides a feature for generating a minimized deterministic Finite-state 

Automaton (FSA) from a CPN’s occurrence graph (OG). It includes as well 

operations for language generation, and for automata comparison. These 

functionalities are supported taking advantage of consolidated third-party 

components such as OpenFST and Graphviz. In addition, we developed a module 

for language generation.  

Prosega/CPN has been integrated within the CPN Tools GUI using the Simulation 

Extensions (new feature in the last version of CPN Tools) component whose 

development has been driven by the demand of many research works to suitably 

integrate Colored Petri Nets with other formalisms [4]. In particular, the integration 

between CPNs and FSA was not existing within CPN Tools, and the application of 

this multi-formalism strategy has shown its merits in many published papers, 

specially from the domain of protocol verification.  

Furthermore, other works may be benefited from this FSA-based verification; for 

example, as presented in our use case, the analysis of an equivalent reduced FSA 

provides a compact and clear description of the possible user observable events 

(service primitive calls) rather than to deal with the analysis of the OG, thereby 

allowing to reduce the time complexity when it may be required to check the 

behavioral properties of the system through the FSA.  

As future work, the tool will keep providing support within the further steps of the 

formal verification work of the IEEE 802.16 standard, regarding to the MAC 

connection management procedures. On the other hand, as another further direction 

for the tool enhancement, the tool has been thought to be tested in other domains; 

indeed, as it has been stated, Prosega/CPN can be used in other cases where FSA 

may be required, and within the verification of other systems whose analysis may 

involve the comparison of models at different levels of abstraction.  

This future work on other use cases will be able to keep maturing the tool. i.e. 

integrating new operations/features for automata manipulation, and testing the tool 

performance in terms of scalability, among other key facts. In addition, it has been 

considered to keep exploiting more capabilities offered by the Simulator Extensions 

channel; for example, to be able draw and manually edit a FSA in the CPN Tools 

canvas, instead of only using the Graphviz support for automata drawing. 
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Аннотация. Верификация и анализ распределенных систем являются чрезвычайно 

важными задачами, особенно сейчас, когда многие компьютерные системы реализуют 

критически важные сервисы. Для моделирования и верификации систем полезно 

сочетать разные методы анализа. В частности, это позволяет применять тот формализм 

и ту технику анализа, которые лучше подходят для того или иного компонента 

системы. Комбинация из раскрашенных сетей Петри (CPN, Coloured Petri Nets) и 

конечных автоматов представляет собой успешную формальную методику 

моделирования и верификации распределенных систем. В связи с этим в данной статье 

рассматривается инструмент Prosega/CPN (Protocol Sequence Generator and Analyzer), 

расширение CPN Tools для поддержки автоматного анализа и верификации. 

Инструмент реализует несколько функций, таких как генерация минимизированного 

детерминированного конечного автомата из графа достижимости (occurrence graph) 

раскрашенной сети Петри, генерация языка и сопоставление конечных автоматов. Это 

решение поддерживается функцией Simulator Extensions, развитие которой 

обусловлено необходимостью интеграции раскрашенных сетей Петри с другими 

формализмами. Инструмент предназначен для поддержки формальной методологии 

верификации коммуникационных протоколов; однако он может использоваться для 

верификации других систем, анализ которых включает сравнение моделей на разных 

уровнях абстракции, например, бизнес-стратегий и бизнес-процессов. В статье 

приведен подробный пример, в котором инструмент Prosega/CPN используется для 

анализа части спецификации службы управления соединениями MAC IEEE 802.16. 

Ключевые слова: формальные методы; раскрашенные сети Петри; CPN Tools; 

конечные автоматы; верификация протоколов. 
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