
129

Simulation-based Verification of
System-on-Chip Bus Controllers

1
M.M. Chupilko <chupilko@ispras.ru>

2
E.A. Drozdova <drozd_96@mail.ru>

1
Ivannikov Institute for System Programming of RAS,

25, Alexander Solzhenitsyn st., Moscow, 109004, Russia
2
Lomonosov Moscow State University,

GSP-1, Leninskie Gory, Moscow, 119991, Russia

Abstract. The paper presents an approach to verification of commutation components of

Systems-on-Chip. The core idea is to verify bus controllers and supporting interface parts

connected to a reference model at unit-level. The reference model in the approach is

suggested to be written in SystemC so that to be easily adjusted to the required bus

parameters. The in-house prototype implementing the approach has been applied to the

verification of a Verilog model of Wishbone controller. There is a possibility to extend the

approach to support other busses and protocols by development of the interface library.

Keywords: unit-level verification; C++TESK

DOI: 10.15514/ISPRAS-2018-30(4)-8

For citation: Chupilko M.M., Drozdova E.V. Simulation-based Verification of Hardware

Bus Controllers. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018. pp. 129-138. DOI:

10.15514/ISPRAS-2018-30(4)-8

1. Introduction

This paper is devoted to a problem of a technology of unit-level verification of

commutation parts of hardware description level (HDL) models. Each System-on-

Chip (SoC) in fact is an HDL model, where IP blocks (intellectual property,

proprietary functional units), being parts of the system, are connected according to

some traditional communication protocol (Wishbone [1], OCP-IP [2], or something

else). To verify it, one has to obtain a golden model to be referred to in the

verification process, either to create such a model. In case of IP blocks, their

reference models are usually provided by their vendors. In case of the commutation

part connecting IP blocks, the situation is more difficult. There might be a standard

bus controller with a predefined bus width, or, that is more common, there will be

an implementation of the standard protocol. The integration problem also looks

quite important, as physical layer of the bus protocol is not the only thing that can

be erroneous, but the incompatible logic of data transfers between different IP

blocks also might be a weak point.

Chupilko M.M., Drozdova E.A. Simulation-based Verification of Hardware Bus Controllers. Trudy ISP RAN/Proc. ISP

RAS, vol. 30, issue 4, 2018. pp. 129-138

130

In this research, we propose a technology of a unit-level verification of

communication models, using a SystemC reference model provided by a vendor or

created manually. C++TESK [3], C++ library of macros meeting all typical

requirements of unit-level verification, including reference modeling, stimulus

generation, and coverage estimation, is selected as a basic tool for the technology

implementation. This tool supports reference model development at least in two

ways: in terms of its macro library and easy attachment to any C++-code.

The rest of this paper is divided into five sections. Section 2 contains more

information about communication protocols, including information about

Wishbone. Section 3 describes related works in the field of verification. Section 4

presents a proposed approach to unit-level verification. Section 5 studies an

example of the approach application. Section 6 discusses the results of the work and

outlines directions of future research and development.

2. Communication protocols and Wishbone standard

As such, each communication protocol is a system of rules allowing several entities

to transmit data to each other. More specific definition includes descriptions of

possible entities and fixes a physical parameters of transferring. Typically, when

speaking about communication part of SoC, one means transmission layer between

active (e.g., processor blocks) and passive (e.g., RAM) blocks inside of SoC. To

implement the standard interface for data transmission between IP-blocks, a bus

controller is used. The aim of the standard interface is to decrease the number of

integration problems and support possible re-use.

There are different ways to connect IP-blocks together. The simplest one is a point-

to-point connection. As an example of point-to-point connection, let us consider

OCP-IP [2] (Open Core Protocol International Partnership, see fig. 1), which is a

medium layer between blocks and the bus. OCP is oriented to typical master (active

component) – slave (passive component) communication. The protocol was

proposed several years ago as a first step in development of a single standard and

flexible solution in communication.

Another standard of communication in SoC is Wishbone [1]. Being widely

distributed, it was selected in this work for being an example for test system

development. The Wishbone standard specifies a standard interconnection between

computational IP cores. It supports interconnection of few IP cores using such

methods as a point-to-point, a shared bus (see fig. 2), a crossbar switch (see fig. 3),

and a switched fabric. The first one represents a simple interconnection between two

IP cores where the one called Master initiates the data exchange and another one

called Slave responds to this call. The second method supports binding of more than

two blocks in a consequent order. This method is efficient when the data should be

transferred from one IP core to another repeatedly. The third and the fourth methods

are similar, also representing the interconnection between several IP cores. In both

of them, there is a common bus, connecting more than two Master and Slave cores.

The Master core can evoke any Slave connected to this bus but the only one at the

Чупилко М.М., Дроздова Е.А. Динамическая верификация контроллеров шин систем-на-кристалле. Труды ИСП

РАН, том 30, вып. 4, 2018 г., стр. 129-138

131

cycle. Using the crossbar switch method, several Master-Slave cores can be

interconnected simultaneously; using the switch fabric — only one pair of cores is

connected.

Fig. 1. Open core protocol architecture

From this review, one can derive the following ideas. First, due to the point-to-point

connection being the basics of communication in all cases, when testing a bus

controller, IP core interfaces should be also taken into consideration. Second, the

bus controller is limited in its types of requests (mainly, send and receive); the most

important for testing situations seem to be with handling of protocol violations and

prevent collisions in bus access.

Fig. 2. Wishbone Shared Bus Interconnection

Chupilko M.M., Drozdova E.A. Simulation-based Verification of Hardware Bus Controllers. Trudy ISP RAN/Proc. ISP

RAS, vol. 30, issue 4, 2018. pp. 129-138

132

Fig. 3. Wishbone Crossbar Switch Interconnection

3. Related work

The task of SoC verification is typically considered as a problem of a mainly unit-

level verification. In this case, a design under test (DUT) is taken separately from its

environment. Stimuli are applied and reactions to check are received via DUT

wires.

Fig. 4. UVM Test Architecture

Among many unit-level verification approaches, UVM (Universal Verification

Methodology) created by Accelera is the most popular. It represents the union of

Open Verification Methodology (OVM), Advanced Verification Methodology

(AVM) and Universal Reuse Methodology (URM). UVM is a library built upon the

SystemVerilog language that provides some basic classes such as the class

constructing the testbench structure, the class serving as a basic data structure, the

class defining transactions to be passed through components of UVM. This

methodology can be used for a constrained random, a coverage-driven, an assertion-

based, and emulation-based verification. The UVM testbench structure is as follows

(see fig. 4 schematically depicturing UVM test). To begin with, there is the DUT.

Чупилко М.М., Дроздова Е.А. Динамическая верификация контроллеров шин систем-на-кристалле. Труды ИСП

РАН, том 30, вып. 4, 2018 г., стр. 129-138

133

The transaction sequencer block serves to interact with the DUT by generating

sequences of bits to be transmitted to the DUT. The monitor block is responsible for

listening the communication of the DUT and the sequencer, and gets responses from

the DUT. The block called scoreboard compares and evaluates all the information

that the monitor is receiving from the DUT and the prediction made by the monitor,

describing which output is expected to be taken from the DUT. Sequencers,

monitors, and coverage collectors together are called agents. An agent and a

scoreboard form the environment. At the same time, there is no any explicit method

for a making a golden-model as itself, it is up to engineers. The SystemVerilog

language is also more a congregation of different methods to describe properties to

be checked, rather than a general-purpose programming language convenient for the

golden-model development.

Fig. 5. Verification Environment Architecture

Another approach to unit-level verification is C++TESK Testing Toolkit [3-4],

which is represented by a library of C++ macros. The methodology can be used for

constrained random and coverage-driven verification. The C++TESK testbench

structure (see fig. 5) is similar to the UVM testbench structure but there are some

distinctions. According to a selected strategy, C++TESK’s stimulus generator

chooses one of the predefined stimuli to be sent to the DUT and to the reference

model expressed explicitly. The comparator gets the output from the model and

from the DUT, compares it and evaluates the coverage. C++TESK is compatible

with SystemC, aimed to reference models development, which is one of the key

advantages comparatively with UVM.

4. Proposed approach

As it has been already mentioned, either each bus controller is represented by a

SystemC model as well as by an RTL description or there is only RTL code and no

Chupilko M.M., Drozdova E.A. Simulation-based Verification of Hardware Bus Controllers. Trudy ISP RAN/Proc. ISP

RAS, vol. 30, issue 4, 2018. pp. 129-138

134

reference model at all. The conformance between the abstract (SystemC) reference
model and the RTL description should be established. Following a simulation-based

tradition, it is to be done by verifying both sides against the same specification or by

verifying the RTL description against the (SystemC) reference model.

To perform verification, a C++TESK Testing Toolkit has been selected, being a

C++ library with all necessary classes and macros for specifying design behavior,

generating stimuli, and checking reactions. A C++TESK-based verification
environment is structured as shown in fig. 5.

The central component of the verification environment is a test oracle, which is

responsible for checking whether the DUT behaves properly. It typically includes a

reference model that takes stimuli as an input and produces reference reactions as an

output, and a reaction matcher that intercepts reference reactions and

implementations reactions provided by the DUT and composes reactions pairs.

Usually, the reaction matcher works independently for each output interface.

To transform high-level stimuli to the low-level ones and low-level reactions to the

high-level ones, the adapter is used. It consists of multiple interface adapters, each

being connected with a single input or output interface. An interface adapter
describes a simple protocol of putting a single stimulus or getting a single reaction.

A special component of the reaction matcher, called a reaction arbiter, specifies

reactions ordering. The task of the reaction arbiter is to choose a reference reaction

(if there are any) for a given implementation one. There are two main predefined

strategies: (1) model-based arbitration and (2) adaptive arbitration. The first strategy

implies that the reference model is an accurate enough to predict reaction order for

some output interface (the arbiter selects the next reference reaction stored in the

interface buffer). The second strategy is used when the reference model is time

inaccurate, in which case, given an implementation reaction, the arbiter searches for

a reference reaction being equal or similar to the given one. If some reactions are

mismatched, a diagnostics subsystem explains what is wrong with the DUT in terms

of incorrect, missing, and unexpected reactions.

Other components of a verification environment are a stimulus generator and a test

coverage collector. The stimulus generator creates stimuli by exploring the abstract

state space of the reference model. The generator is supplied with a set of available

stimuli and a function for abstract state calculation; it tries to apply each stimulus in

each reachable abstract state. Speaking about verification of a bus controller, it is

natural to consider e.g. the number of messages in the bus channel controllers as

being the abstract state (though any other abstraction is possible). Such an

adjustable stimulus generator allows to produce hard-to-get-into situations which

include those with missing messages in one long packet transmission. The test

coverage collector estimates the verification completeness basing on user-defined

functional coverage metrics, which is more efficient than simply code coverage.

The typical way of C++TESK usage for unit-level verification in case of its own

reference model is described in earlier papers (e.g. [3] or [4]), and the method of

connection to SystemC reference model should be developed. To be more precise,

SystemC model should include not only the model of DUT itself, but also the model

Чупилко М.М., Дроздова Е.А. Динамическая верификация контроллеров шин систем-на-кристалле. Труды ИСП

РАН, том 30, вып. 4, 2018 г., стр. 129-138

135

of its environment, including full communication topology. It allows sending

complex requests, model collisions, and so on.

Fig. 6. Architecture of C++TESK, DUT, and SystemC Models Interconnection

The following scheme of commutation between C++TESK and SystemC model is

proposed (see Figure 6). C++TESK stimulus generator substitute a master

component for the controller bus. Stimuli are applied to both SystemC model (via
function calls; to its selected master as if this master wants to send stimuli which the

generator applied instead of it) and to DUT (via procedural interface between C and

HDL-simulator; to the input master interface of DUT). SystemC computes the

behavior of all environment and creates reactions those are to be got from DUT and

checked, and those, which are in fact additional stimuli to DUT, e.g. responses from

slaves to DUT which are requested by the bus controller and which are substituted

by test environment. Output DUT reactions are checked against correspondent

SystemC reactions by C++TESK reaction comparator. To provide the program

interface between C++TESK and SystemC model, there is a top SystemC class

encapsulating all the interfaces between masters and slaves, and the model of bus

controller. This class is referenced to in the C++TESK golden model. In order to

register reactions from SystemC in proper C++TESK adapters (serializers for

stimuli and deserializers for reactions to be checked), there are special listeners of

SystemC model activities (more precisely, bool vector of new reactions on different

interfaces). When there is some new reaction, it is registered either to be applied to

Chupilko M.M., Drozdova E.A. Simulation-based Verification of Hardware Bus Controllers. Trudy ISP RAN/Proc. ISP

RAS, vol. 30, issue 4, 2018. pp. 129-138

136

DUT as a stimulus, or to be added into list of reference reactions to find

correspondent implementation reaction in given time.

5. Case study

To develop a prototype of the verification system and to make experiments with it, a

Verilog model of simple Wishbone controller has been taken. The controller

supports only point-to-point connection. A correspondent SystemC model has been

developed from scratch, taking into account the necessity to support different bus

sizes and different topologies of master-slave interconnections. The resulted class

(see the following listing to see the main part of it) has been attached to C++TESK

reference model as an object that should be stimulated by the stimulus generator,

and with a possibility of sending reactions that are to be checked against the Verilog

model. The whole aspects of the earlier proposed architecture including stimulus

generation, HDL implementation reaction checking, and coverage estimation have

been kept alive in the prototype of test system. Experiments show that the proposed

ideas really work and that future research into this field is required.

template <typename adr_bus_size, typename data_bus_size>

 SC_MODULE(Controller) {

 typedef Master<adr_bus_size, data_bus_size> master_type;

 typedef Slave<adr_bus_size, data_bus_size> slave_type;

 // types for containers with masters and slaves

 typedef std::map<master_type*> masters_type;

 typedef std::map<slave_type*> slaves_type;

 ...

 SC_HAS_PROCESS(Controller);

 Controller(sc_module_name _name, bus_mode mode,

 masters_type &masters, slaves_type &slaves):

 sc_module(name), mode(mode);

 // to register all system’s masters and slaves

 // and to bind all masters and slaves to the controller

 void register_master(master_type &master);

 void register_slave(slave_type &slave);

 // to listen for request messages

 void request_listener();

}

6. Conclusion

The approach of verification of communication parts of SoC by means of adjustable

SystemC reference models and by means of C++TESK’s stimulus generator,

reaction matcher, and coverage collector has been proposed. Description of the

approach includes the architecture of test systems. The idea has been checked in

form of a test system prototype for a Verilog model of Wishbone controller. This

research should result in the creation of a SystemC library of adjustable models of

widely distributed bus standards.

Чупилко М.М., Дроздова Е.А. Динамическая верификация контроллеров шин систем-на-кристалле. Труды ИСП

РАН, том 30, вып. 4, 2018 г., стр. 129-138

137

References
[1]. Specification for the WISHBONE System-on-Chip (SoC) Interconnection Architecture

for Portable IP Cores. Revision: B.3. Available at:

https://cdn.opencores.org/downloads/wbspec_b3.pdf, accessed 20.07.2018

[2]. Open Core Protocol Specification 3.0. Available at:

http://www.accellera.org/images/downloads/standards/ocp/OCP_3.0_Specification.zip,

accessed 20.07.2018

[3]. M. Chupilko, A. Kamkin. A TLM-Based Approach to Functional Verification of

Hardware Components at Different Abstraction Levels. In Proceedings of the Latin

American Test Workshop (LATW), 2011, 1-6 pp. DOI: 10.1109/LATW.2011.5985902

[4]. M. Chupilko, A. Kamkin. Runtime Verification Based on Executable Models: On-the-

Fly Matching of Timed Traces. In Proceedings of the Model-Based Testing Workshop

(MBT), 2013, pp. 67-81. DOI: 10.4204/EPTCS.111.6

Динамическая верификация контроллеров шин
систем-на-кристалле

1
М.М. Чупилко <chupilko@ispras.ru>

2
Е.А. Дроздова <drozd_96@mail.ru>

1
Институт системного программирования им. В.П. Иванникова РАН,

109004, Россия, г. Москва, ул. Александра Солженицына, д. 25
2
Московский государственный университет им. М.В. Ломоносова,

119991, Россия, г. Москва, Ленинские горы, д. 1

Аннотация. В работе представлен подход к верификации коммутационных

компонентов систем на кристалле. Основной идеей подхода является верификация

контроллеров и поддерживающих интерфейсный обмен частей устройств на

модульном уровне с помощью моделей, написанных на SystemC. Эталонные модели в

предлагаемой тестовой системе должны быть легко настраиваемыми под требуемые

параметры шины. Прототип реализации подхода был применен для верификации

Verilog-модели контроллера шины Wishbone. В подходе заложена возможность

расширения поддержкой других шин и протоколов посредством разработки

библиотеки интерфейсов.

Ключевые слова: модульная верификация, C++TESK

DOI: 10.15514/ISPRAS-2018-30(4)-8

Для цитирования: Чупилко М.М., Дроздова Е.А. Динамическая верификация

контроллеров шин систем-на-кристалле. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр.

129-138 (на английском языке). DOI: 10.15514/ISPRAS-2018-30(4)-8

Список литературы
[1]. Specification for the WISHBONE System-on-Chip (SoC) Interconnection Architecture

for Portable IP Cores. Revision: B.3. Доступно по

ссылке:https://cdn.opencores.org/downloads/wbspec_b3.pdf, дата обращения:

20.07.2018

Chupilko M.M., Drozdova E.A. Simulation-based Verification of Hardware Bus Controllers. Trudy ISP RAN/Proc. ISP

RAS, vol. 30, issue 4, 2018. pp. 129-138

138

[2]. Open Core Protocol Specification 3.0. Доступно по ссылке::

http://www.accellera.org/images/downloads/standards/ocp/OCP_3.0_Specification.zip,

дата обращения: 20.07.2018

[3]. M. Chupilko, A. Kamkin. A TLM-Based Approach to Functional Verification of

Hardware Components at Different Abstraction Levels. In Proceedings of the Latin

American Test Workshop (LATW), 2011, 1-6 pp. DOI: 10.1109/LATW.2011.5985902

[4]. M. Chupilko, A. Kamkin. Runtime Verification Based on Executable Models: On-the-

Fly Matching of Timed Traces. In Proceedings of the Model-Based Testing Workshop

(MBT), 2013, pp. 67-81. DOI: 10.4204/EPTCS.111.6

