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Abstract. The paper presents an approach to verification of commutation components of
Systems-on-Chip. The core idea is to verify bus controllers and supporting interface parts
connected to a reference model at unit-level. The reference model in the approach is
suggested to be written in SystemC so that to be easily adjusted to the required bus
parameters. The in-house prototype implementing the approach has been applied to the
verification of a Verilog model of Wishbone controller. There is a possibility to extend the
approach to support other busses and protocols by development of the interface library.

Keywords: unit-level verification; C++TESK
DOI: 10.15514/ISPRAS-2018-30(4)-8

For citation: Chupilko M.M., Drozdova E.V. Simulation-based Verification of Hardware
Bus Controllers. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018. pp. 129-138. DOI:
10.15514/ISPRAS-2018-30(4)-8

1. Introduction

This paper is devoted to a problem of a technology of unit-level verification of
commutation parts of hardware description level (HDL) models. Each System-on-
Chip (SoC) in fact is an HDL model, where IP blocks (intellectual property,
proprietary functional units), being parts of the system, are connected according to
some traditional communication protocol (Wishbone [1], OCP-IP [2], or something
else). To verify it, one has to obtain a golden model to be referred to in the
verification process, either to create such a model. In case of IP blocks, their
reference models are usually provided by their vendors. In case of the commutation
part connecting IP blocks, the situation is more difficult. There might be a standard
bus controller with a predefined bus width, or, that is more common, there will be
an implementation of the standard protocol. The integration problem also looks
quite important, as physical layer of the bus protocol is not the only thing that can
be erroneous, but the incompatible logic of data transfers between different IP
blocks also might be a weak point.

129



Chupilko M.M., Drozdova E.A. Simulation-based Verification of Hardware Bus Controllers. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 4, 2018. pp. 129-138

In this research, we propose a technology of a unit-level verification of
communication models, using a SystemC reference model provided by a vendor or
created manually. C++TESK [3], C++ library of macros meeting all typical
requirements of unit-level verification, including reference modeling, stimulus
generation, and coverage estimation, is selected as a basic tool for the technology
implementation. This tool supports reference model development at least in two
ways: in terms of its macro library and easy attachment to any C++-code.

The rest of this paper is divided into five sections. Section 2 contains more
information about communication protocols, including information about
Wishbone. Section 3 describes related works in the field of verification. Section 4
presents a proposed approach to unit-level verification. Section 5 studies an
example of the approach application. Section 6 discusses the results of the work and
outlines directions of future research and development.

2. Communication protocols and Wishbone standard

As such, each communication protocol is a system of rules allowing several entities
to transmit data to each other. More specific definition includes descriptions of
possible entities and fixes a physical parameters of transferring. Typically, when
speaking about communication part of SoC, one means transmission layer between
active (e.g., processor blocks) and passive (e.g., RAM) blocks inside of SoC. To
implement the standard interface for data transmission between IP-blocks, a bus
controller is used. The aim of the standard interface is to decrease the number of
integration problems and support possible re-use.

There are different ways to connect IP-blocks together. The simplest one is a point-
to-point connection. As an example of point-to-point connection, let us consider
OCP-IP [2] (Open Core Protocol International Partnership, see fig. 1), which is a
medium layer between blocks and the bus. OCP is oriented to typical master (active
component) — slave (passive component) communication. The protocol was
proposed several years ago as a first step in development of a single standard and
flexible solution in communication.

Another standard of communication in SoC is Wishbone [1]. Being widely
distributed, it was selected in this work for being an example for test system
development. The Wishbone standard specifies a standard interconnection between
computational IP cores. It supports interconnection of few IP cores using such
methods as a point-to-point, a shared bus (see fig. 2), a crossbar switch (see fig. 3),
and a switched fabric. The first one represents a simple interconnection between two
IP cores where the one called Master initiates the data exchange and another one
called Slave responds to this call. The second method supports binding of more than
two blocks in a consequent order. This method is efficient when the data should be
transferred from one IP core to another repeatedly. The third and the fourth methods
are similar, also representing the interconnection between several IP cores. In both
of them, there is a common bus, connecting more than two Master and Slave cores.
The Master core can evoke any Slave connected to this bus but the only one at the
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cycle. Using the crossbar switch method, several Master-Slave cores can be
interconnected simultaneously; using the switch fabric — only one pair of cores is

connected.
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Fig. 1. Open core protocol architecture

From this review, one can derive the following ideas. First, due to the point-to-point
connection being the basics of communication in all cases, when testing a bus
controller, IP core interfaces should be also taken into consideration. Second, the
bus controller is limited in its types of requests (mainly, send and receive); the most
important for testing situations seem to be with handling of protocol violations and
prevent collisions in bus access.
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Fig. 2. Wishbone Shared Bus Interconnection
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Fig. 3. Wishbone Crossbar Switch Interconnection

3. Related work

The task of SoC verification is typically considered as a problem of a mainly unit-
level verification. In this case, a design under test (DUT) is taken separately from its
environment. Stimuli are applied and reactions to check are received via DUT
wires.
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Fig. 4. UVM Test Architecture

Among many unit-level verification approaches, UVM (Universal Verification
Methodology) created by Accelera is the most popular. It represents the union of
Open Verification Methodology (OVM), Advanced Verification Methodology
(AVM) and Universal Reuse Methodology (URM). UVM is a library built upon the
SystemVerilog language that provides some basic classes such as the class
constructing the testbench structure, the class serving as a basic data structure, the
class defining transactions to be passed through components of UVM. This
methodology can be used for a constrained random, a coverage-driven, an assertion-
based, and emulation-based verification. The UVM testbench structure is as follows
(see fig. 4 schematically depicturing UVM test). To begin with, there is the DUT.
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The transaction sequencer block serves to interact with the DUT by generating
sequences of bits to be transmitted to the DUT. The monitor block is responsible for
listening the communication of the DUT and the sequencer, and gets responses from
the DUT. The block called scoreboard compares and evaluates all the information
that the monitor is receiving from the DUT and the prediction made by the monitor,
describing which output is expected to be taken from the DUT. Sequencers,
monitors, and coverage collectors together are called agents. An agent and a
scoreboard form the environment. At the same time, there is no any explicit method
for a making a golden-model as itself, it is up to engineers. The SystemVerilog
language is also more a congregation of different methods to describe properties to
be checked, rather than a general-purpose programming language convenient for the
golden-model development.
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Fig. 5. Verification Environment Architecture

Another approach to unit-level verification is C++TESK Testing Toolkit [3-4],
which is represented by a library of C++ macros. The methodology can be used for
constrained random and coverage-driven verification. The C++TESK testbench
structure (see fig. 5) is similar to the UVM testbench structure but there are some
distinctions. According to a selected strategy, C++TESK’s stimulus generator
chooses one of the predefined stimuli to be sent to the DUT and to the reference
model expressed explicitly. The comparator gets the output from the model and
from the DUT, compares it and evaluates the coverage. C++TESK is compatible
with SystemC, aimed to reference models development, which is one of the key
advantages comparatively with UVM.

4. Proposed approach

As it has been already mentioned, either each bus controller is represented by a
SystemC model as well as by an RTL description or there is only RTL code and no
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reference model at all. The conformance between the abstract (SystemC) reference
model and the RTL description should be established. Following a simulation-based
tradition, it is to be done by verifying both sides against the same specification or by
verifying the RTL description against the (SystemC) reference model.

To perform verification, a C++TESK Testing Toolkit has been selected, being a
C++ library with all necessary classes and macros for specifying design behavior,
generating stimuli, and checking reactions. A C++TESK-based verification
environment is structured as shown in fig. 5.

The central component of the verification environment is a test oracle, which is
responsible for checking whether the DUT behaves properly. It typically includes a
reference model that takes stimuli as an input and produces reference reactions as an
output, and a reaction matcher that intercepts reference reactions and
implementations reactions provided by the DUT and composes reactions pairs.
Usually, the reaction matcher works independently for each output interface.

To transform high-level stimuli to the low-level ones and low-level reactions to the
high-level ones, the adapter is used. It consists of multiple interface adapters, each
being connected with a single input or output interface. An interface adapter
describes a simple protocol of putting a single stimulus or getting a single reaction.
A special component of the reaction matcher, called a reaction arbiter, specifies
reactions ordering. The task of the reaction arbiter is to choose a reference reaction
(if there are any) for a given implementation one. There are two main predefined
strategies: (1) model-based arbitration and (2) adaptive arbitration. The first strategy
implies that the reference model is an accurate enough to predict reaction order for
some output interface (the arbiter selects the next reference reaction stored in the
interface buffer). The second strategy is used when the reference model is time
inaccurate, in which case, given an implementation reaction, the arbiter searches for
a reference reaction being equal or similar to the given one. If some reactions are
mismatched, a diagnostics subsystem explains what is wrong with the DUT in terms
of incorrect, missing, and unexpected reactions.

Other components of a verification environment are a stimulus generator and a test
coverage collector. The stimulus generator creates stimuli by exploring the abstract
state space of the reference model. The generator is supplied with a set of available
stimuli and a function for abstract state calculation; it tries to apply each stimulus in
each reachable abstract state. Speaking about verification of a bus controller, it is
natural to consider e.g. the number of messages in the bus channel controllers as
being the abstract state (though any other abstraction is possible). Such an
adjustable stimulus generator allows to produce hard-to-get-into situations which
include those with missing messages in one long packet transmission. The test
coverage collector estimates the verification completeness basing on user-defined
functional coverage metrics, which is more efficient than simply code coverage.

The typical way of C++TESK usage for unit-level verification in case of its own
reference model is described in earlier papers (e.g. [3] or [4]), and the method of
connection to SystemC reference model should be developed. To be more precise,
SystemC model should include not only the model of DUT itself, but also the model
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of its environment, including full communication topology. It allows sending
complex requests, model collisions, and so on.
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Fig. 6. Architecture of C++TESK, DUT, and SystemC Models Interconnection

The following scheme of commutation between C++TESK and SystemC model is
proposed (see Figure 6). C++TESK stimulus generator substitute a master
component for the controller bus. Stimuli are applied to both SystemC model (via
function calls; to its selected master as if this master wants to send stimuli which the
generator applied instead of it) and to DUT (via procedural interface between C and
HDL-simulator; to the input master interface of DUT). SystemC computes the
behavior of all environment and creates reactions those are to be got from DUT and
checked, and those, which are in fact additional stimuli to DUT, e.g. responses from
slaves to DUT which are requested by the bus controller and which are substituted
by test environment. Output DUT reactions are checked against correspondent
SystemC reactions by C++TESK reaction comparator. To provide the program
interface between C++TESK and SystemC model, there is a top SystemC class
encapsulating all the interfaces between masters and slaves, and the model of bus
controller. This class is referenced to in the C++TESK golden model. In order to
register reactions from SystemC in proper C++TESK adapters (serializers for
stimuli and deserializers for reactions to be checked), there are special listeners of
SystemC model activities (more precisely, bool vector of new reactions on different
interfaces). When there is some new reaction, it is registered either to be applied to
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DUT as a stimulus, or to be added into list of reference reactions to find
correspondent implementation reaction in given time.

5. Case study

To develop a prototype of the verification system and to make experiments with it, a
Verilog model of simple Wishbone controller has been taken. The controller
supports only point-to-point connection. A correspondent SystemC model has been
developed from scratch, taking into account the necessity to support different bus
sizes and different topologies of master-slave interconnections. The resulted class
(see the following listing to see the main part of it) has been attached to C++TESK
reference model as an object that should be stimulated by the stimulus generator,
and with a possibility of sending reactions that are to be checked against the Verilog
model. The whole aspects of the earlier proposed architecture including stimulus
generation, HDL implementation reaction checking, and coverage estimation have
been kept alive in the prototype of test system. Experiments show that the proposed
ideas really work and that future research into this field is required.

template <typename adr bus_size, typename data bus_size>
SC_MODULE (Controller) {
typedef Master<adr bus size, data bus size> master type;
typedef Slave<adr bus size, data bus size> slave type;
// types for containers with masters and slaves
typedef std::map<master_ type*> masters_type;
typedef std::map<slave_type*> slaves_type;

SC_HAS PROCESS (Controller);
Controller(sc_module _name _name, bus_mode mode,
masters_type &masters, slaves type &slaves):
sc_module (name), mode (mode) ;
// to register all system’s masters and slaves
// and to bind all masters and slaves to the controller
void register master (master_ type &master);
void register slave (slave_type &slave);
// to listen for request messages
void request listener();

6. Conclusion

The approach of verification of communication parts of SoC by means of adjustable
SystemC reference models and by means of C++TESK’s stimulus generator,
reaction matcher, and coverage collector has been proposed. Description of the
approach includes the architecture of test systems. The idea has been checked in
form of a test system prototype for a Verilog model of Wishbone controller. This
research should result in the creation of a SystemC library of adjustable models of
widely distributed bus standards.
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AHHoTammsi. B pabore mpeacTaBieH MOAXOJ K BepUMKALMKM KOMMYTAI[MOHHBIX
KOMIIOHEHTOB cHCTeM Ha Kpucraiuie. OCHOBHOH mzeeil mojaxopa sBIseTCs BepuduKaius
KOHTPOJUIEPOB M  MOIACPKUBAIOMIMX HMHTEPPEHCHBII OOMEH 4dacTelf YyCTpOWCTB Ha
MOJYJIBHOM ypPOBHE C ITOMOIIBIO MOJEINeH, HanmucaHHbIX Ha SystemC. DTajoHHBIE MOJIENH B
npeiaraeMoil TECTOBOM CHCTeMe JOJDKHBI OBITh JIETKO HAcTpauBaeMBIMH IOJ TpeOyeMble
napamerpel HIMHBL. [IpoToTHN peanu3anuu moaxoia ObUI NPUMEHEH s BepuHKaluu
Verilog-monmenu kontpomtepa wmuabl Wishbone. B monaxome 3amokeHa BO3MOXHOCTb
pACUIMPeHUs MNOAACPKKONH JPYTMX LIMH W IMPOTOKOJOB MOCPEACTBOM pa3pabOTKH
OoubmoTexn nHTEpQEHcoB.
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