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Abstract. This article describes our ongoing research on auto-calibration and
synchronization of camera and MEMS-sensors. The research is applicable on any system that
consists of camera and MEMS-sensors, such as gyroscope. The main task of our research is
to find such parameters as the focal length of camera and the time offset between sensor
timestamps and frame timestamps, which is caused by frame processing and encoding. This
auto-calibration makes possible to scale computer vision algorithms (video stabilization, 3D
reconstruction, video compression, augmented reality), which use frames and sensor’s data,
to a wider range of devices equipped with a camera and MEMS-sensors. In addition, auto-
calibration allows completely abstracting from the characteristics of a particular device and
developing algorithms that work on different platforms (mobile platforms, embedded
systems, action cameras) independently of concrete device’s characteristics as well. The
article describes the general mathematical model needed to implement such a functionality
using computer vision techniques and MEMS-sensors readings. The authors present a review
and comparison of existing approaches to auto-calibration and propose own improvements
for these methods, which increase the quality of previous works and applicable for a general
model of video stabilization algorithm with MEMS-sensors.

Keywords: camera calibration; auto-calibration; digital signal processing; rolling shutter;
computer vision; grid search

DOI: 10.15514/ISPRAS-2018-30(4)-11

For citation: Polyakov A.R., Kornilova A.V., Kirilenko I.A. Auto-calibration and
synchronization of camera and MEMS-sensors. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 4, 2018. pp. 169-182. DOI: 10.15514/ISPRAS-2018-30(4)-11

1. Introduction

The high quality of frames, received from modern smartphone cameras, expands the
frontiers of solutions in computer vision tasks. Lately, there are more and more
attempts to scale current practices in such areas of computer vision as video
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stabilization [1], [2], [3], [4], augmented reality[5], 3D reconstruction [6], [7],
photogrammetry on mobile platforms and embedded systems. However, these
algorithms demand big computational resources that not allows applying them to
above-mentioned platforms and in real time.

The presence of numerous different sensors on these platforms, caused by the low
cost of their production and high precision at the same time, allows using their data
effectively. As the majority of above-stated tasks is any way connected with
detection of camera movement (which is the “bottleneck” in most algorithms), the
main preference is given to motion sensors — gyroscope and accelerometer [8], [9].
Expansion of mathematical model of computer vision algorithm not only increases
quality and reduces calculations but gives rise to new difficulties. In particular,
besides general intrinsic parameters of the camera (focal length, optical center,
rolling shutter) there are parameters of sensors (i.e, bias for gyroscope) and
parameters of model “camera-sensors” (camera and sensors orientation, camera and
sensors synchronization parameters). Therefore, if desired to scale an algorithm to a
large amount of platforms (for example, in case of mobile phones) automatic
calibration of these parameters is needed. It is caused by a big variety of cameras,
sensors and their combinations.

This work is a continuation of the research [10] conducted on a subject of real-time
digital video stabilization using MEMS-sensors and aims to prototype and
implement an algorithm of auto-calibration of key parameters for this task: focal
length and parameters of synchronization of frames and gyroscope data.

2. Preliminaries

This section is devoted to basic definitions, general mathematical models, and
agreements, which will come out throughout this work.

2.1 Pinhole camera model

Pinhole camera model (fig. 1) is a basic mathematical camera model, which
describes a mapping from 3-dimentional real world to its projection onto the image.
This mapping satisfies the formula, in which X is coordinates of a point in real
world and x is coordinates of its projection. In addition, it depends on camera
parameters: f — focal length, (ox, oy) — optical center [11].

T f: 0 —op X
9 = 0 fy —0y XQ
1 0 0 1 X3

2.2 Rotation camera model

In case of camera rotation in space using rotation operator R, we get the next
relationship between two projections x; and X, of one point in space X caught at a
different time t; (rotation R;) and t, (rotation Ry) correspondingly (fig. 2).
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Fig. 2. Rotation camera model
xr = KR(tl)X
€To = KR(tg)X
By transforming these expressions, the following needed relationship is established:
Ty = KR(tQ}RT(tl)K71m1
Thus, the matrix of image transformation between moments in time t1 and t2 is
defined as:
W(tl, tQ) = KR(tQ)RT(tl)K_l
o = W(tl,tg)ml

2.3 Rolling shutter effect

«Rolling shutter» (fig. 3, 4) is an effect arising on the majority of CMOS cameras,
at which each row of the frame is shot at different time due to vertical shutter.
When shutter scans the scene vertically, the moment in time at which each point of
the frame is shot, directly depends on the row it is located in. Thus, if i is the
number of the frame and y is the row of that frame, then the moment, at which it
was shot can be calculated this way:
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tisy) = ti+ b

where t; is the moment when frame number i was shot, t; is the time it takes to shot a
single frame, h is the height of the frame. This can be used to make the general
model more precise, when calculating the image transformation matrix.

Fig. 3. Object movement

Fig. 4. Rolling-shutter effect during capturing the moving object

2.4 Gyroscope

The gyroscope is a sensor (MEMS-sensor in our case) which sends information
about angular velocities of a body. Using this data and its timestamps, a rotation
matrix (rotation operator) can be calculated through integration.

There are two approaches for integration data of gyroscope with different
computational complexity and accuracy. The first approach is linear integration for
receiving Euler angles and then their transformation to a rotation matrix, where 6 —
is rotation angle of one axis and o — velocity over this axis between t and t + &:

t+48
0t + ) :0(1‘.)+[ w(t)dt, (2)
Jit

This approach is applied only in case of insignificant and small rotations, because of
the imperfection of Euler angles as an algebraic structure. The other and more
complex approach is to use quaternions for data integration. This article [12] gives a
full description about the integration of angular velocities using quaternions, and we
tend to apply it.
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2.5 Stabilization quality metrics

There are two main metrics which can estimate the quality of video stabilization of
static scene — RMSE (root mean square error) and ITF (inter-frame transformation
fidelity). The first is a comparison between two frames pixel-by-pixel using typical
L2 metric. The ITF metric directly depends on PSNR (peak signal-to-noise ratio)
parameter between two consecutive frames (k, k+ 1):
PSNR(k) = 10log, 17887

where Imax is maximum pixel intensity, and is counted as:

ITF = < S PSNR(k),
where N is count of frames in the video.

2.6 Features

In the computer vision, feature is a pattern that satisfies certain properties and can
be detected on the image. One of directions of feature use is feature matching,
which is mainly focused on searching of similar objects on two frames. In our work,
we use feature matching to estimate how the camera moved through shooting.

In our experiments we have used two features types — ORB (Oriented FAST and
rotated BRIEF) [13] and SIFT (Scale-Invariant Feature Transform) [14] which
prove themselves as the most stable and robust in feature matching. SIFT is
considered to exhibit the highest matching accuracies, but requires significant
computational resources, while ORB is very fast but less precise [15].

2.7 Description of stabilization algorithm

At the moment stabilization algorithm, proposed in our previous paper [10], works
as follows:

1) integrate gyroscope data (angular velocities and timestamps) using
quaternions;

2) determine frame timestamp and corresponding rotation matrix;

3) count transformation camera matrix for every horizontal section of the
frame (typically, there are several gyro reading per frame and,
consequently, several rotation matrices);

4) transform every section using transformation matrix and combine them;
5) write transformed frame to the video.

The algorithm stabilizes video like a tripod, at now complex camera motion is not
supported, but in progress.
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3. Detailed problem description

As it was mentioned in the description of the stabilization algorithm, it directly
depends on camera parameters: focal length, optical center and rolling shutter
parameter. In most cases, all parameters besides focal length can be got from API of
the device on which this algorithm runs (at the moment the major advantage is
given to Android platforms). Thus, one of the main goals of this research is to find
focal length, which is the most accurate for our stabilization algorithm.

The other significant direction is to synchronize frames received from the camera
and data received from sensors (fig. 5). Mistiming is caused by the time needed for
frame processing — scanning and encoding. Therefore, we need to find time offset of
this processing to consider it in our model.

angular velocities

A
'z N
U.)-l U.)2 U.)S U.)4 U.Js U.)a U.)7

""" S DU T SO S SOV

I current frame next frame I

Fig. 5. Matching the time series of frames and gyroscope

Thus, the main goal of this research is to find the suitable focal length and time
offset. Some of the described methods are wider and cover other parameters, and we
also consider this information.

4. Calibration algorithms

In this section, we describe various approaches that we have tested during this
research. The section contains a description of our basic method, review and
implementation of the most known methods of calibration from other areas, and our
improvements on these methods for our specific task.

4.1 Calibration based on stabilization metrics

focal length, time offset, rolling shutter

This simple approach is based on stabilization metrics described in section 2. Using
ITF metric, we can estimate the quality of video stabilization after transformation of
frames: the higher the value of metric — the better video is stabilized.

The approach determines three parameters: focal length, time offset and rolling
shutter parameter and is as follows: detect a range and step of each parameter (for
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example, range of focal length — [500, .., 1200] and step — 50) and find tuple of
parameters on which metric is maximized using brute-force search.

It is worth noting, despite of the huge computational complexity this method gives
the most accurate results due to the strong dependence on the current mathematical
model.

4.2 OpenCV calibration method

focal length, optical center, distortion coefficients
This algorithm is applicable only in case of known geometry of subject which is on
the scene. Also, the subject should contain easily distinguished feature points. This
subject is usually called calibration pattern. We have used use the main calibration
pattern which is supported by OpenCV — chesshoard. It depends on such parameters
as size of chesshoard, the distance between cells and others.
The algorithm also determines distortion coefficients and is as follows:

1) count initial intrinsic parameters of the camera. Initial distortion

coefficients are equal to zero;

2) estimate camera position using this initial parameters using PnP method;

3) using Levenberg-Marquardt algorithm minimize reprojection error — sum
of square root distances between two matched point.

4.3 Grid search method

focal length, time offset
Using frames and gyroscope data, we can estimate the motion of camera in two
ways:
1) use feature points on frames and estimate motion using the difference
between matched points on consequence frames;

2) use data of gyroscope — measurements and their timestamps.

This approach is as follows. Firstly, we determine two functions which describe the
average measure of camera motions in two ways — using feature points and using
gyroscope measurements. These functions must depends on time and if necessary
must have facilities for interpolation (data of gyroscope is discrete). Having these
functions, that describes motion in different ways, we can estimate shift (time
offset) of functions using cross-correlation.

Let us determine these functions:

Pmenr(ey (Ma—mp)+(my—m )

ri(t) = 2[M (1) (ti—t:_1)
wa (T +0Jy t)t+w:(t
ro(t) = 2= 35 )+w: (1)
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Fig. 6. Time offset between frame and gyroscope

On the picture (fig. 6), you can see similar shape of these functions.
We have tried two typical cross-correlation functions to find offset:
s(a,b) =axb

s(a,b) = —|a — b
If we have a set of possible offsets Td, we can find offset with a maximum value of
correlation between frames and gyroscope functions:

of fset = argmaxy,eT, Do S(re(t —ta),ry(t))
Authors who support this approach tend to opinion that initial scale constant is a
focal length value and try to find this constant like:
rg(t) = fxrp(t)
Using a method of the least squares:
f=argming >.i, (rp(ti +ta) — f*rg(t;))?

4.4 Improvements for grid search method

This method presents a combination of two methods — method with stabilization
metrics and method with grid search. The time offset is found by grid search
method. If we have a set of possible focal lengths F and the calculated value of time
offset, we can calculate a value of focal length. which maximizes stabilization
metric:

f=argmaxsep ITF(f tq)

This method is suitable very well in case of using these time offset and focal length
in our video stabilization algorithm.

In addition, we have abandoned to take in account motion over zaxis, which is
perpendicular to the camera matrix. This motion has non-linear correlation with
linear angular velocity over this axis and leads to an error in the algorithm.
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5. Results of prototyping

In this section, we will describe results of experiments and conditions in which they
were conducted.

5.1 Dataset and environment

Our algorithm was tested on a dataset, which consists of video and gyroscope data
from smartphones with the Android operating system. For these purposes, we have
a special Android application, which records mp4 video file and csv format file with
stamps for gyroscope and frame events. This application supports mobile platforms
starting with 21 level Android API because of in this API event-driven scheme for
camera frames was supported by camera2 interface. The csv file consists of two
types of strings: «f» — for frames and «X, Y, Z, timestamp» — for gyroscope
readings.

A framework for calibration algorithm comparison was implemented in Python
using OpenCV 3.4 library. It consists of modules for video and gyroscope file
parsing and a module for integration of gyroscope readings using quaternion. The
framework also has opportunities for calculating metric statics for every method.
We have tested our algorithms on a dataset from the smartphone with the following
parameters:

e Model number: Xiaomi Redmi 3S;
e Android version: 6.0.1 (build MMB29M).

5.2 Experiments

Inside our framework, we have implemented all described algorithms and compare
them using stabilization quality metrics. We have tested algorithms on different
scene types and with different camera movements. An algorithm with stabilization
metric was considered as standard. All results are presented in tables. We compare
grid search method using different cross-correlation functions and different feature
detectors.

Experiments show that OpenCV algorithm has the worst result because of it is very
sensitive for the scene (user needs to use chessboard or other pattern) and rotation
and is not fit for our mathematical model. In the tables 1-3 you can see results of
grid search algorithm without/with improvements (metric) in comparison with
stabilization metric algorithm.

The algorithm is parametrized with feature types and shows the best results with the
second cross-correlation function (similarity function).
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Table 1. Result of calibration in case of 1-dimentional motion

Algorithm Offset, us | £ | Metric
Metric (standard) 45 850 | 14.04
Grid Search + ORB 45 825 13.97
Grid Search + SIFT 45 950 13.33
Grid Search + Metric + ORB 45 850 14.04
Grid Search + Metric + SIFT 45 850 14.04
Table 2. Result of calibration in case of 1-dimentional motion
Algorithm Offset, us | £ | Metric
Metric (standard) 45 850 | 16.25
Grid Search + ORB 50 850 16.10
Grid Search + SIFT 40 925 15.87
Grid Search + Metric + ORB 50 850 16.10
Grid Search + Metric + SIFT 40 850 15.53
Table 2. Result of calibration in case of 2-dimentional motion
Algorithm Offset, us | £ | Metric
Metric (standard) 45 850 | 15.82
Grid Search + ORB 45 950 15.05
Grid Search + SIFT 50 825 15.31
Grid Search + Metric + ORB 45 850 15.82
Grid Search + Metric + SIFT 50 850 15.30

The first two tables show the result of calibration in case of 1-dimentional motion. It
is demonstrated that in case of ORB and SIFT features results are identical in
accuracy. In addition, results show that in case of metric improvements focal length
after calibration is equal to standard in comparison with simple grid search.

The third table describes results of calibration in case of 2-dimentional motion.
Results are equal to the case of 1- dimensional motion. As we discussed earlier, the
algorithm does not consider 3-dimentional motion because of constraints of grid
search model.

5.3 Main results

To sum up, experiments have demonstrated that:
1) grid search method shows the better result for our mathematical model of
camera and camera motion;

2) using grid search method, the best calibration result is achieved with the
second cross-correlation function (similarity function);

3) ORB and SIFT features show equals results in search of the time offset,
therefore we can use ORB as a faster method of feature matching;

4) our improvements of grid search with stabilization metric allow to find
focal length which is equal to standard;
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5) the algorithm supports only two-dimensional motion (except motion over,
axis which is perpendicular to camera matrix), but this is not a strong
restriction for users, therefore, our algorithm can be used on a large scale.

6. Conclusion

As lately cameras and motion sensors (gyroscope, accelerometer) very often tend to
occur on one platform (smartphones or embedded systems), the quantity of the
algorithms, using their joint information, has significantly increased. These
algorithms directly depends on parameters of the system «camera-sensors» such as
focal length, rolling shutter, synchronization parameters, which differ from platform
to platform, and therefore these parameters must be calibrated for increasing of
scalability.

Our work proposes the method for auto-calibration of focal length and time series
offset (synchronization parameter), which is the most suitable for our video
stabilization algorithm using MEMS-sensors. We have review different approaches
and choose the nearest for our specific task. We have found parameters for this
method, which increase the quality of the calibration algorithm.

It worth noting that proposed algorithm can be scaled not only for stabilization
video task. It can be scaled for all algorithms, which support our mathematical
model of camera and camera movement.

In the future, we plan to expand the count of calibration parameters with rolling
shutter parameter and parameter of relative orientation of the camera and sensor
axes.
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ABTOMaTMYeCcKas KaNnMOPOBKA U CUHXPOHMU3AaLMA KaMepbl U
M3MC-paTuukoB
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Canxm-Ilemepbypeckuii I'ocyoapcmeennuiii Yuugepcumem,
Kagpeopa Cucmemnozo npoepammuposanus
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AnHoTanms. JlaHHAas cTaThsl ONMCHIBAeT TEKYIIHE HCCIECAOBAHMS II0 TeME aBTOMAaTHIECKOH
KaJMOpPOBKM M CHHXpOHM3aluu Kamepbl 1 MOMC-naTunkoB. Pe3ynbraThl McCieqOBaHHSA
MPUMEHUMBI K 0001 cucteMe, umeroniei kamepy 1 MOMC-natyuku, IpuMepoM KOTOPBIX
sBisiercss rupockon. OCHOBHasi 3ajaya HAIIETO HCCIEJOBAHMSA — HAXOXKACHHE TaKHX
IapaMeTpoB CHCTEMBI KaMepa-JaTUMKH, Kak (OKYCHOE pacCTOSHHE KaMepbl U pa3HuIa BO
BPEMEHH MEXIy CUUTBIBAHMEM IIOKa3aHHWsS IaT4NMKa M CYHTHIBAHMEM Kaapa KaMepsl,
BbI3BaHHAs HEOOXOJMMOCTBIO MpPEA0OpabOTKU “CHIPOTO” KaJpa W TMEPEBOJOM €ro B
omnpeneNeHHbIH (GopmaT. ABTOMaTHuecKasi KaJHOpOBKa ITO3BOJISIET IPHMEHSATH AITOPUTMBI
KOMIBIOTEPHOTO 3peHusl (umdpoBas Buaeo crabummszanus, 3D-pekoHCTpyKImMs, cxKaTHe
BHUJICO, TOTOJHEHHAS PEAIbHOCTB), HCIOJIB3YIONINE KaAPbl BUJICO M MOKAa3aHUs JAaTYMKOB, Ha
0OJbIIIEM KOJMYECTBE YCTPOWCTB, OCHAIIEHHBIMH Kamepodh m MOMC-partumkamu. Taxoke
ABTOMAaTHYECKask KaJuOpOBKa IO3BOJIIET MOJHOCTHIO abCTparupoBaThCsi OT XapaKTEPHCTUK
KOHKPETHOTO YCTPOMCTBa ¥ pa3pabaTblBaTh AJITOPUTMBI, pabOTarOIIMEe HA PA3IHYHBIX
mwiatpopmax (MOOWIbHBIE TIAT(GOPMBI, BCTPaMBAEMBIE CHCTEMBI, JKIIH-KaMmepbl). CTaThbs
OIUCBHIBACT OOIIYI0 MaTeMaTHYECKyI0 MOJelb, HEOOXOAMMYIO [UIS pealM3alllid JIaHHON
(YHKIMOHATIBHOCTH, HCIOJB3Ysl METOJbI KOMITBIOTEPHOTrO 3peHHs W mokaszanust MOMC-
JaTYNKOB. ABTOpBI TPOBOAAT 0030p M CpaBHEHHE CYIIECTBYIOIIMX IOJIXOJ0B K
ABTOMATHYECKOH KanuOpOBKe, a Takke MpeIaraloT CBOM YIYYIICHHs, NOBBIIIAIONINE
KaueCTBO CYLIECTBYIOLINX alTOPHTMOB.
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