Yuuurun Anexcanap, Capuna Jlapuca, Dnbakuib Moxamen, Manuapa Manyaibs, MonTesu ®abpuimo, Pusepa
Buxktop. Refinement tumst qst si3sika Jolie. Tpyowt UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 33-44.

Refinement Types in Jolie

Alexander Tchitchigin <a.chichigin@innopolis.ru>
Larisa Safina <l.safina@innopolis.ru>
Mohamed Elwakil <m.elwakil@innopolis.ru>
Manuel Mazzara <m.mazzara@innopolis.ru>
Fabrizio Montesi <fmontesi@imada.sdu.dk>
Victor Rivera <v.rivera@innopolis.ru>
Innopolis University, Software Engineering Lab.
420500, Russia, Innopolis, Universitetskaya Str. 1

Abstract. Jolie is the first language for microservices and it is currently dynamically type
checked. This paper considers the opportunity to integrate dynamic and static type checking
with the introduction of refinement types, verified via an SMT solver. The integration of the
two aspects allows a scenario where the static verification of internal services and the dynamic
verification of (potentially malicious) external services cooperate in order to reduce testing
effort and enhance security.

Refinement types are well-known technique for numeric, array and algebraic data types. They
rely on corresponding SMT-theories. Recently SMT solvers got support for a theory of strings
and regular expressions. In the paper, we describe possible application of the theory to string
refinement types. We use Jolie programming language to illustrate feasibility and usefulness
of such extension. First, because Jolie already has syntax extension to support string
refinements. We build on top of that extension to provide static type checking. Second, because
in the realm of microservices the need for improved checking of string data is much higher as
most of external communication goes through text-based protocols.

We present simplified but real-world example from the domain of web-development. We
intentionally introduce a bug in the example demonstrating how easily it can slip a conventional
type system. Proposed solution is feasible, as it do not accept program with the bug. Complete
solution will need enhancements in precision and error reporting.

Keywords: Microservices, Jolie, Refinement Types, SMT, SAT, Z3

DOI: 10.15514/ISPRAS-2016-28(2)-2

For citation: Tchitchigin Alexander, Safina Larisa, Elwakil Mohamed, Mazzara Manuel,
Montesi Fabrizio, Rivera Victor. Refinement Types in Jolie. Trudy ISP RAN/Proc. ISP RAS,
vol. 28, issue 2, 2016, pp. 33-44. DOI: 10.15514/ISPRAS-2016-28(2)-2

33

Tchitchigin Alexander, Safina Larisa, Elwakil Mohamed, Mazzara Manuel, Montesi Fabrizio, Rivera Victor.
Refinement Types in Jolie. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 33-44.

1. Introduction

“Stringly typed” is a new antipattern referring to an implementation that needlessly
relies on strings, when other options are available. The problem of “string typing”
appears often in service-oriented architecture and microservices on the border
between a service and its clients (external interfaces) due to necessity to communicate
over text-based protocols (like HTTP) and collaboration with clients written in
dynamically-typed languages (like JavaScript). The solution to this problem can be
found with refinement types, which are used to statically (or dynamically) check
compatibility of a given value and refined type by means of predicates constraining
the set of possible values. Though employment of numerical refinements is well-
known in programming languages, string refinements are still rare.

In this paper, we introduce a design for extending the Jolie programming language
[24,3] and its type system. On top of previous extensions with choice type [27] and
regular expressions, we introduce here string refinement type and we motivate the
reasons for such extension. Section 2 recalls the basic of the Jolie language and its
type system while Section 3 describes the open problem this paper attacks with
clarifying examples. Section 4 discusses related work in the context of using SMT
solvers for static typing of refinement types.

2. Jolie programming language

Jolie [24] is the first programming language based on the paradigm of microservices
[17]: all components are autonomous services that can be deployed independently and
operate by running parallel processes, programmed following the workflow approach.
Microservices can be composed to obtain, in turn, other microservices. The language
was originally developed in the context of a major formalization effort for workflow
and services composition languages, the EU Project SENSORIA [1], which spawned
many models for reasoning on the composition of services (e.g., [19,20]). Jolie comes
with a formally-specified semantics [16,15,23]; on the more practical side it is
inspired by standards for Serviceoriented Computing such as WS-BPEL [4]. The
combination of theoretical and practical aspects in Jolie enabled its usage in research
on correct-by-construction software (see, e.g., [26,9,21]).

Microservices work together by exchanging messages. In Jolie, messages are
structured as trees [23] (a variant of the structures that can be found in XML or JSON).
Communications are type checked at runtime, when messages are sent or received.
Type checking of incoming messages is especially relevant, since it mitigates the
effect of ill-behaved clients. The work in [25] presents a first attempt at formalizing
a static type checker for the core fragment of Jolie. However, for the time being, the
language is still dynamically type checked.

3. Extension of Jolie Type System

Safina et al [28] extended the basic type system of Jolie with type choices. The work
had been then continued with the addition of regular expression types, a special case

34

Yuuurun Anexcanap, Capuna Jlapuca, Dnbakuib Moxamen, Manuapa Manyaibs, MonTesu ®abpuimo, Pusepa
Buxktop. Refinement tumst qst si3sika Jolie. Tpyowt UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 33-44.

of refinement types. In refinement types, types are decorated with logical predicates
which further constrain the set of values described by the type and therefore represent
the specification of invariant on values. Here, we extend this with the possibility of
expressing invariants on string values in form of regular expressions.

The integration of static and dynamic analysis allows considering “internal” services
(native Jolie services) and calls from “external” services (potentially developed in
other languages) in a complementary way. The first ones can be statically checked
while the second ones, which could exhibit malicious behavior, still need a runtime
validation.

The key idea behind service-oriented computing, and microservices in particular, is
the ability to connect services developed in different programming languages and
possibly running on different servers over standard communication protocols [18]. A
common use case is the implementation of APIs for Web and mobile applications. In
such scenarios, the de-facto standard communication protocol is HTTP(S), combined
with standardized data formats (SOAP, JSON, etc.).

HTTP is a text-based protocol, where all data get serialized into strings'. Moreover,
clients of a service (an application or another service) may have been developed in a
language that does not support particular datatypes (e.g., JavaScript does not have a
datatype for calendar dates or time of day), therefore relying on string representation
for internal processing too. The same issue arises with key-value storage systems
(e.g., Memcache and Redis), which support only string keys and string values. These
factors make string handling an important part of a service application, especially at
the boundary with external systems.

Not all strings are made equal. For example, GUIDs are often used to identify records
in a store. GUIDs are represented as strings of hexadecimal digits with a particular
structure. Currently, developers have to manually check the conformance of received
values to the expected format. In such a scenario, a developer has to find her way in
a narrow stream between the Scylla of forgetting to insert necessary checks and the
Charybdis of inserting too many checks for data that has been already validated?.
Description of the shape of expected string data (like GUID or e-mail address) is
natural with regular expressions. Adding the description of this shape to the datatype
definition allows the compiler to automatically insert the necessary dynamic checks
(for public functions) and statically validate the conformance (for internal calls). This
is the extension of refinement type to string type. The same techniques and tools used
for static verification of conformance for numerical refinements [17, 12] can be used
for strings. For the purposes of this paper we will use Z3 SMT solver by Microsoft
Research [6], which recently got support for theory of strings and regular expressions
in its development branch.

1 Jolie partially mitigates this aspect with automatic conversion of string

serializations to structured data by following the interface definition of the service

[23]. However, this does not solve the general problem addressed here.

2 Scylla and Charybdis are monsters of Greek mythology living on the two sides of

a narrow channel so that sailors trying to avoid one would have fallen into the other.
35

Tchitchigin Alexander, Safina Larisa, Elwakil Mohamed, Mazzara Manuel, Montesi Fabrizio, Rivera Victor.
Refinement Types in Jolie. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 33-44.

3.1 Example: a news board

The approach to static checking of string refinements using Z3 SMT solver is
illustrated here by a simple example, i.e. a service using refined datatype for GUIDs
and the SMT constraints generated for it.

A news board is a simple service in charge of retrieving posts composed by a
particular user of the system. The service receives user information via HTTP in a
string format. String refinement types allow the definition of constraints on user 1Ds
as an alternative to the implementation of the logic checking the constraint inside the
posts retrieving operation.

type guid: string(” [A-F\\d]{8,8} —[A-F\\d]{4,4} —[A-F\\d]
{4,4} —[A-F\\d]{4,4} —[A-F\\d]{12,12}")

Types for storing user and posts information are also necessary?.

type user: void {
.uid: guid
.name: string
.age: int(age>18) }
type post_type: void {
.pid: guid
.owner: guid
.content: string }
type posts: void { .postx: post_type }

We leave service deployment information out of this paper due to its low relevance
to the topic, the full code example can be found in [2]. The behavioral fragment of
the news board demonstrates the post retrieval for a particular user. To get the
information the right user has to be found (find_user_by name) and pass the GUID
to get all users posts.

There are two definitions of the operation in the following code fragment:
all_posts_by_user and all_posts_by_user2. In the first one the correct data is passed
toget_all_users_posts, i.e. user.uid; while in the second user.name is passed. Without
string refinement a problem would arise. The code is syntactically correct. However,
it’s semantically incorrect since no information can be retrieved by user’s name when
user’s ID is actually expected.

3 Please note that in Jolie we structure the variable’s data as a tree, where the nodes
contain values. Using the void type for the variable on the top of the tree, we show
that it contains no data and is used as a container for its subtypes.

36

Yuunrun Anexcannp, Capuna Jlapuca, Dnbakuiib Moxamen, Manuapa Manyaib, MonTesu ®abpuimo, Pusepa
Bukrop. Refinement Tums ans sa3sika Jolie. Tpyowt UCIT PAH, 2016, Tom 28, Bhimyck 2, c. 33-44.

main {
all_posts_by_user (name) {
find _user_by_name@SelfOut (name) (user);
get_all_users_posts@SelfOut (user.uid)(posts) };

all_posts_by_user2 (name) {
find _user_by_name@SelfOut (name) (user);
//and here we pass the wrong field!
get_all _users_posts@SelfOut (user.name) (posts) };

//find user_by name definition
//get_all _users_posts definition

}

Introducing string refinement allows Jolie to have both dynamic and static checking
for strings. In case of dynamic checking, the string is verified at runtime when passed
to the receiving service. The more interesting case is static checking by means of
SMT. Here we present the most essential parts of the encoding, complete example

can be found in [2].

;notions of tvpes, terms and tvping relation
[declare—sort Tvpe)

(declare—sort Term)

{declare—fun HasType (Term Tvpe) Bool)

type of strings of a programming language
(declare—fun string () Type)
rl':|1|:-.|:|f:.|r|| |.1'|||‘:| -/'::‘:]I1Ii]1—:.‘:| .l‘;l'l':.'ll'_; f.‘.'zh' to our :-11':.|'|;_'_
tvpe and back
(declare—fun BoxString (String) Term)
(declare=fun string —term=val (Term) String)
(assert (forall ((str String))
(= (string—term—val (BoxString str)) str)))
(assert (forall ((s String))
(HasType (BoxString s) string)))
guid type that refines string type
(declare—fun guid () Type)
(define—fun guid—re () (HegEx String)
the construction of the regular expression is omitted

)

Tchitchigin Alexander, Safina Larisa, Elwakil Mohamed, Mazzara Manuel, Montesi Fabrizio, Rivera Victor.
Refinement Types in Jolie. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 33-44.

refinement definition for guid tvpe
(assert (forall ((x Term))
(iff (HasType x guid)
(and (HasType x string)
(str.in.re (string=term=val x) guid=re)})))
we -:1|l".'i1|| I_'-.'|||' "nser ' r'!|l'l:-'|l;'_|| iI g P -:l_il'l tions
[declare—fun user () Type)
(declare—fun user.uid (Term) Term)
{declare—fun user.name (Term) Term)
(declare—fun user.age (Term) Term)
typing rules for projections
(assert (forall ((t Term))
(implies (HasType t user)
(and (HasTvpe (user.uid t) guid)
[HasType (user.name t) string)
(HasType (user.age t) mnat)))))

(declare—fun find_user_by _name [Term) Term)
find _user_by_name : string —> user
(assert (forall ((name Term))
(implies (HasType name string)
(HasType (find_user_by_name name) user))))

type checking for all_posts_by_user
(assert (not (forall ((t Term))
(implies (HasType t string)
(HasType (user.uid (find_user_by_name t)) guid)))))
type checking for all _posts_by_ user2
(assert (not (forall ((t Term))
(implies (HasType t string)
(HasType (user.name (find_user_by_name t)) guid)))))

Type checking is based on proving a theorem stating that a function is correctly typed.
Technically, the opposite proposition is actually stated and the SMT solver is put in
charge of finding a counterexample. A failure in such an attempt leads to the
conclusion that the original theorem has to be true (proof by contradiction).

The Z3 solver successfully proves the well-typedness theorem for the correct
implementation of all posts by user, and fails to disprove the incorrect implementation
(all_posts_by_user2) due to many simplifications to the presented SMT encoding for
the sake of clarity and understandability. Employment of a more sophisticated
encoding for the actual implementation of refinement constraints may mitigate this
situation and is left as future work.

38

Yuuurun Anexcanap, Capuna Jlapuca, Dnbakuib Moxamen, Manuapa Manyaibs, MonTesu ®abpuimo, Pusepa
Buxktop. Refinement tumst qst si3sika Jolie. Tpyowt UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 33-44.

4. Related Work

Within the context of functional languages, type-checking of refined types by
employing SMT solvers is not new. In [7], the authors present the design and
implementation of the F7 enhanced type-checker for the functional language F# that
verifies security properties of cryptographic protocols and access control mechanisms
using Z3 [10]. The SAGE language [17] employs a hybrid approach [13] that
performs both static and dynamic type-checking. During compilation time, the
Simplify theorem prover [11] is used to check refinement types. If Simplify is not
able to decide a particular subtyping relation, a proper type cast is inserted in the code
and it is checked at runtime. If the type cast fails during runtime, this particular
subtyping relation is inserted in a database of known failed casts. In contrast to
checking syntactic subtyping as in F7 and SAGE, the authors of [8], introduce
semantic subtyping checking for a subset of the M language [5] using the Z3 SMT
solver.

5. Conclusions

The Jolie language is dynamically type-checked. This paper explores the possibility
of integrated dynamic and static type checking with the introduction of refinement
types, verified via an SMT solver. The integration of the two aspects allows a scenario
where the static verification of internal services and the dynamic verification of
(potentially malicious) external services cooperates in order to reduce testing effort
and enhance security.

In this work, we motivate the usefulness and feasibility of string refinement types
using an example. Naturally, we need to integrate this extension with an actual type-
checker employing a more advanced SMT-encoding. Not only for strings but for
numerical types too which is well-known and useful tool for correctness
enhancement.

When we have a type-checker for refinement types, an interesting empirical study
would be checking of existing programs augmented with refined types to discover
whether this technique can uncover bugs caused by a developer’s oversight.

References

[1]. EU Project SENSORIA. Accessed April 2016. http://www.sensoria-ist.eu/.

[2]. Gist of SMT constraints for the example. Accessed April 2016.
https://gist.github.com/gabriel-fallen/a04¢33860e2157201fa8.

[3]. Jolie Programming Language. Accessed April 2016. http://www.jolie-lang.org/.

[4]. WS-BPEL OASIS Web Services Business Process Execution Language. accessed April
2016. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html.

[5]. Power Query formula reference. Technical Report, August 2015.

[6]. Microsoft Research. Accessed April 2016. Z3. https://github.com/Z3Prover/z3.

39

Tchitchigin Alexander, Safina Larisa, Elwakil Mohamed, Mazzara Manuel, Montesi Fabrizio, Rivera Victor.
Refinement Types in Jolie. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 33-44.

[7].

[8].

[9].
[10].

[11].
[12].

[13].

[14].
[15].

[16].

[17].

[18].
[19].

[20].

[21].
[22].

[23].

[24].

40

Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Sergio
Maffeis. Refinement types for secure implementations. ACM Trans. Program. Lang.
Syst., 33(2):8:1-8:45, February 2011.

Gavin M. Bierman, Andrew D. Gordon, Catalin Hritcu, and David Langworthy. Semantic
subtyping with an SMT solver. In Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, ICFP 10, pages 105-116, New York, NY, USA,
2010. ACM.

Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty
asynchronous global programming. In POPL, pages 263-274, 2013.

Leonardo De Moura and Nikolaj Bjerner. Z3: An efficient SMT solver. In Proc. of 14th
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS’08/ETAPS’08, pages 337-340, Berlin, Heidelberg, 2008. Springer-
Verlag.

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for program
checking. J. ACM, 52(3):365-473, May 2005.

Joshua Dunfield. A unified system of type refinements. PhD thesis, Air Force Research
Laboratory, 2007.

Cormac Flanagan. Hybrid type checking. In Conference Record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 06,
pages 245-256, New York, NY, USA, 2006. ACM.

Tim Freeman and Frank Pfenning. Refinement types for ML. SIGPLAN Not., 26(6):268—
277, May 1991.

Claudio Guidi, Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro. Dynamic error
handling in service oriented applications. Fundam. Inform., 95(1):73-102, 2009.
Claudio Guidi, Roberto Lucchi, Gianluigi Zavattaro, Nadia Busi, and Roberto Gorrieri.
Sock: a calculus for service oriented computing. In ICSOC, volume 4294 of LNCS, pages
327-338. Springer, 2006.

Kenneth Knowles, Aaron Tomb, Jessica Gronski, Stephen N Freund, and Cormac
Flanagan. Sage: Unified hybrid checking for first-class types, general refinement types,
and dynamic (extended report), 2006.

James Lewis and Martin Fowler. Microservices: a definition of this new architectural
term. Accessed April 2016. http://martinfowler.com/articles/microservices.htm.

Roberto Lucchi and Manuel Mazzara. A pi-calculus based semantics for WS-BPEL. J.
Log. Algebr. Program., 70(1):96-118, 2007.

Manuel Mazzara, Faisal Abouzaid, Nicola Dragoni, and Anirban Bhattacharyya. Toward
design, modelling and analysis of dynamic workflow reconfigurations — A process algebra
perspective. In Web Services and Formal Methods - 8th International Workshop, WS-FM,
pages 64-78, 2011.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, | and
I1. Information and Computation, 100(1):1-40,41-77, September 1992.

Fabrizio Montesi. JOLIE: a Service-oriented Programming Language. Master’s thesis,
University of Bologna, 2010.

Fabrizio Montesi. Process-aware web programming with Jolie. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, SAC *13, pages 761-763, New York,
NY, USA, 2013. ACM.

Fabrizio Montesi and Marco Carbone. Programming Services with Correlation Sets. In
Proc. of Service-Oriented Computing - 9th International Conference, ICSOC, pages 125-
141, 2011.

Yuuurun Anexcanap, Capuna Jlapuca, Dnbakuib Moxamen, Manuapa Manyaibs, MonTesu ®abpuimo, Pusepa
Buxktop. Refinement tumst qst si3sika Jolie. Tpyowt UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 33-44.

[25]. Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-oriented programming
with jolie. In Web Services Foundations, pages 81-107. 2014.

[26]. J. M. Nielsen. A Type System for the Jolie Language. Master’s thesis, Technical
University of Denmark, 2013.

[27]. Mila Dalla Preda, Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro, and Maurizio
Gabbrielli. AIOCJ: A choreographic framework for safe adaptive distributed applications.
In Software Language Engineering - 7th International Conference, SLE 2014, Visteras,
Sweden, September 15-16, 2014. Proceedings, pages 161-170, 2014.

[28]. Larisa Safina, Manuel Mazzara, Fabrizio Montesi, and Victor Rivera. Data-driven
workflows for microservices (genericity in jolie). In Proc. of 30th IEEE International
Conference on Advanced Information Networking and Applications (AINA), 2016.

Refinement Tunbl Ana Aasbika Jolie

Anexcandp Yuuueun <a.chichigin@innopolis.ru>
Jlapuca Cagpuna <l.safina@innopolis.ru>
Moxameo Dnveaxuns <m.elwakil@innopolis.ru>
Manysne Mayyapa <m.mazzara@innopolis.ru>
Dabpuyuo Monmesu <fmontesi@imada.sdu.dk>
Buxmop Pusepa <v.rivera@innopolis.ru>
Ynueepcumem Hnnononuc,
420500, Poccus, pecn. Tamapcman, e. Uunonoauc, yn. Yuusepcumemcxas, 0.1.

AunHotaumsi. Jolie — s3bIK TPOrpaMMHUpPOBaHUS s Pa3paboTKH MHKPOCEPBHCOB M Ha
TeKyLIMi MOMEHT SBISieTCS IUHAMHYECKH IpOBEpseMbIM. B cTaTbe paccMarpuBaeTcs
BO3MOXKHOCTb OOBCIMHUTH JUHAMHYECKYIO M CTaTHYECKYIO MPOBEPKY THIIOB C MOMOIIBIO
refinement Tunos, nposepsiembix SMT-pemarenem. CoeiMHEHNHE ITUX JBYX ACHEKTOB JEacT
BO3MOXXHBIM CLICHApHi{, KOrJa CTaTuueckas BepHUOUKALMS 6HYMPEHHUX CEPBUCOB H
JMHAMHYEeCKasi MpoBepka (MOTEHUUAIBHO 3JIOHAMEPEHHBIX) GHEUHUX CEPBHCOB COBMECTHO
CHI)KAIOT 00BEMBI HEOOXOANMOTO TECTHPOBAHHS U YBEJIMUMBAIOT OE30MAaCHOCTD CHCTEMBI.
Refinement Tumsl XOpomro H3BECTHBI MPUMEHHUTEIBHO K YHCIOBBIM THIAM JIaHHBIX,
anreOpanyeckKiM THIIAM JAHHBIX U MaccuBaM. OHHM OCHOBBIBAIOTCSI Ha COOTBETCTBYOIIMX
SMT Teopusx. HegaBao SMT-pemarenu HOIydrIIu MOAEPKKY TEOPHU CTPOK H PETYISPHBIX
BBIp@XKEHHUil. B cTaThe OMMCHIBAETCS BO3MOXKHOCTH MPHMEHEHHS STOH TEOPHH K CTPOKOBBIM
refinement Tumam. Msbl ucnonme3yeM sA3bIK nporpammupoBanust Jolie 4uroOsI
MPOJIEMOHCTPUPOBATh LEIECOOOPA3HOCT M IOJE3HOCTh TAKOTrO paciiupeHHs. B mepyro
ouepens, motomy uto Jolie yxke CONEpKUT CHHTAKCHYECKOE PAaCUIMpEeHHe IS CTPOKOBBIX
refinement TumoB. MpbI pa3sBHBaeM yKa3aHHOE PACIIMPEHHE, MPEIOCTAaBIAA CTATHYECKYHO
HPOBEPKY THIOB. BO-BTOPBIX, MOCKOJIBKY B 00JACTH MHKPOCEPBHUCOB 3HAUCHHE YIYUYILICHHON
HPOBEPKU CTPOKOBBIX JAHHBIX TOpa3lo BbILNIE, TAK KaK OONBIIMHCTBO KOMMYHHKALHH C
BHEIIHIMH CHCTEMaMH IIPOUCXO/UT IT0 TEKCTOBBIM IPOTOKOJIAM.

MbI JEMOHCTPUPYEM YIPOIIEHHBI, HO PEANHMCTUYHBIN IIPUMEp CHCTEMbl U3 obnactu Web-
paspaboTku. B mnpumep mnpenHamMepeHHO BHECEHa OLIMOKA, MOKa3blBas, KakK JIETKO OHA
YCKOJIB3a€eT OT TPAAULIMOHHOI CHCTEMBI THIIOB. [Ipe/IoxkeHHOE paciupeHne Lenecoo0pasHo,
HOCKOJIBKY OHO HE NPOITyCKaeT IporpamMmy ¢ omnOkoi. IToiaHoneHHoe pemeHue norpedyer
JOpabOTKU B 4aCTH TOYHOCTH IIPOBEPKH M KauecTBa COOOMIeHHH 00 ommnoKax.

41

Tchitchigin Alexander, Safina Larisa, Elwakil Mohamed, Mazzara Manuel, Montesi Fabrizio, Rivera Victor.
Refinement Types in Jolie. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 33-44.

KaroueBsie ciaoBa: Mukpocepsucsr, Jolie, Refinement tumsr, SMT, SAT, Z3
DOI: 10.15514/ISPRAS-2016-28(2)-2

Jas uutupoBanus: Ynunrun Anexcannp, Caduna Jlapuca, DnpBakuins Moxamen, Mannapa
Mamyaiis, Monresn ®@abpunuo, Pusepa Bukrop. Refinement tumbr mist si3sika Jolie. Tpysr
VICII PAH, tom 28, Bbim. 2, 2016 1., ctp. 33-44 (ua aunrnuiickom). DOI: 10.15514/ISPRAS-
2016-28(2)-2

Cnucok nutepaTtypbl

[1]
(2]

[3].
[4].

[5].

[6].
[7].

[8l.

[a].
[10].

[11].
[12].

[13].

[14].
[15].

[16].

[17].

42

. EU Project SENSORIA. Accessed April 2016. http://www.sensoria-ist.eu/.

. Gist of SMT constraints for the example. Accessed April 2016.
https://gist.github.com/gabriel-fallen/a04¢33860e2157201fa8.

Jolie Programming Language. Accessed April 2016. http://www.jolie-lang.org/.
WS-BPEL OASIS Web Services Business Process Execution Language. accessed April
2016. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html.

Power Query formula reference. Technical Report, August 2015.

Microsoft Research. Accessed April 2016. Z3. https://github.com/Z3Prover/z3.

Jesper Bengtson, Karthikeyan Bhargavan, Cedric Fournet, Andrew D. Gordon, and Sergio
Maffeis. Refinement types for secure implementations. ACM Trans. Program. Lang.
Syst., 33(2):8:1-8:45, February 2011.

Gavin M. Bierman, Andrew D. Gordon, Catalin Hritcu, and David Langworthy. Semantic
subtyping with an SMT solver. In Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’10, pages 105-116, New York, NY, USA,
2010. ACM.

Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty
asynchronous global programming. In POPL, pages 263-274, 2013.

Leonardo De Moura and Nikolaj Bjarner. Z3: An efficient SMT solver. In Proc. of 14th
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS’08/ETAPS’08, pages 337-340, Berlin, Heidelberg, 2008. Springer-
Verlag.

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for program
checking. J. ACM, 52(3):365-473, May 2005.

Joshua Dunfield. A unified system of type refinements. PhD thesis, Air Force Research
Laboratory, 2007.

Cormac Flanagan. Hybrid type checking. In Conference Record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’06,
pages 245-256, New York, NY, USA, 2006. ACM.

Tim Freeman and Frank Pfenning. Refinement types for ML. SIGPLAN Not., 26(6):268—
277, May 1991.

Claudio Guidi, Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro. Dynamic error
handling in service oriented applications. Fundam. Inform., 95(1):73-102, 2009.
Claudio Guidi, Roberto Lucchi, Gianluigi Zavattaro, Nadia Busi, and Roberto Gorrieri.
Sock: a calculus for service oriented computing. In ICSOC, volume 4294 of LNCS, pages
327-338. Springer, 2006.

Kenneth Knowles, Aaron Tomb, Jessica Gronski, Stephen N Freund, and Cormac
Flanagan. Sage: Unified hybrid checking for first-class types, general refinement types,
and dynamic (extended report), 2006.

Yuuurun Anexcanap, Capuna Jlapuca, Dnbakuib Moxamen, Manuapa Manyaibs, MonTesu ®abpuimo, Pusepa
Buxktop. Refinement tumst qst si3sika Jolie. Tpyowt UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 33-44.

(18]

[19].

[20].

[21].
[22].

[23].

[24].

[25].
[26].

[27].

[28].

. James Lewis and Martin Fowler. Microservices: a definition of this new architectural
term. Accessed April 2016. http://martinfowler.com/articles/microservices.htm.

Roberto Lucchi and Manuel Mazzara. A pi-calculus based semantics for WS-BPEL. J.
Log. Algebr. Program., 70(1):96-118, 2007.

Manuel Mazzara, Faisal Abouzaid, Nicola Dragoni, and Anirban Bhattacharyya. Toward
design, modelling and analysis of dynamic workflow reconfigurations — A process algebra
perspective. In Web Services and Formal Methods - 8th International Workshop, WS-FM,
pages 64-78, 2011.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, | and
I1. Information and Computation, 100(1):1-40, 41-77, September 1992.

Fabrizio Montesi. JOLIE: a Service-oriented Programming Language. Master’s thesis,
University of Bologna, 2010.

Fabrizio Montesi. Process-aware web programming with Jolie. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, SAC *13, pages 761-763, New York,
NY, USA, 2013. ACM.

Fabrizio Montesi and Marco Carbone. Programming Services with Correlation Sets. In
Proc. of Service-Oriented Computing - 9th International Conference, ICSOC, pages 125—
141, 2011.

Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-oriented programming
with jolie. In Web Services Foundations, pages 81-107. 2014.

J. M. Nielsen. A Type System for the Jolie Language. Master’s thesis, Technical
University of Denmark, 2013.

Mila Dalla Preda, Saverio Giallorenzo, lvan Lanese, Jacopo Mauro, and Maurizio
Gabbrielli. AIOCJ: A choreographic framework for safe adaptive distributed applications.
In Software Language Engineering - 7th International Conference, SLE 2014, Visteras,
Sweden, September 15-16, 2014. Proceedings, pages 161-170, 2014.

Larisa Safina, Manuel Mazzara, Fabrizio Montesi, and Victor Rivera. Data-driven
workflows for microservices (genericity in jolie). In Proc. of the 30th IEEE International
Conference on Advanced Information Networking and Applications (AINA), 2016.

43

Tchitchigin Alexander, Safina Larisa, Elwakil Mohamed, Mazzara Manuel, Montesi Fabrizio, Rivera Victor.
Refinement Types in Jolie. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 33-44.

44

