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Abstract. Visual domain-specific languages usually have low entry barrier. Sometimes even
children can program on such languages by working with visual representations. This is widely
used in educational robotics domain, where most commonly used programming environments
are visual. The paper describes a novel dataflow visual programming environment for embed-
ded robotic platforms. Obviously, complex dataflow languages are not simple for understand-
ing. The purpose of our tool is to "bridge" between lightweight educational robotic program-
ming tools (commonly these tools provide languages which are based on control flow model)
and complex industrial tools (which provide languages based on more complex dataflow exe-
cution model). We compare programming environments mostly used by robotics community
with our tool. After brief review of behavioural robotic architectures, some thoughts on ex-
pressing them in terms of our dataflow language are given. Visual language, which is described
here, provides opportunity to mix dataflow and control flow models for robotics programming.
We believe that it is important for educational purposes. Program on our language consists of
different blocks (visual representation of data transformation processes) and "links" which pre-
sents data flow between them. Domain-specific modelling approach was used to develop our
language. Also, this paper provides the examples of solving two typical robot control tasks in
our language.
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1. Introduction

Programming languages for creating robotic controllers are actual topics of research
oftenly discussed at major conferences, such as ICRA? or IROS?. Visual program-
ming languages (\VVPLs) are also actively discussed for the last three decades, the larg-
est conferences are held annually, e.g. VL/HCCS3. VPLs are oftenly applied in robotics
domain [1-5] allowing to create and visualize robotic controllers. Robotic VPLs are
commonly used for educational purposes, making possible for students of even junior
schools to create robotic programs. For these aims there are already exists a great
number of educational robotic programming environments based on VVPLs, e.g. NXT-
G* TRIK Studio®, ROBOLABS, also there are some academic tools implementing
interesting and novel approaches to educational robotics programming [1], [3], [5].
Robotic control programs are inherently reactive: they transform data which is con-
tinuously coming from multiple sensors into the impulses on actuators. For this reason
dataflow languages (DFLs) are well-suitable for robotics programming. Many re-
searchers denoted the convenience of dataflow visual programming languages
(DFVPLs) [6], finding them more useful than textual DFLs, for example because data
flows explicitly displayed on the diagram. There are large and complex general-pur-
pose and domain-specific development environments such as LabVIEW? and Sim-
ulink® that provide a large (and sometimes even cumbersome) set of libraries for ro-
botics programming. More detailed discussion of robotics VPLs will be provided in
section 2.

There is a large number of robotic constructor Kits for learning the basics of robotics
and cybernetics, such as LEGO MINDSTORMS?, TRIK, ScratchDuino®. Modern
programming languages, which are used for programming those kits, are based on the
control flow model rather than on dataflow model. Control flow-based languages are
good for solving scholar "toy" tasks, but may be inconvenient for programming more
complex "real world" controllers that may be conveniently expresses on DFLs. The
simple DFVPL may be considered as a useful step from educational VVPLs to the pro-
gramming languages, which are used in universities and industry.

This paper discusses a novel extensible tool for programming all popular educational
robotic kits on dataflow visual programming language. It should be noted that, in
distinction from other tools, our tool is focused on embedded systems (section 6).

'[EEE International Conference on Robotics and Automation. Available: http://www.icra2016.org/

2International Conference on Intelligent Robots and Systems. Available: http://www.iros2016.org/

|[EEE  Symposium on Visual Languages and Human-Centric ~Computting. Available:
https://sites.google.com/site/vl- hcc2016/

4NXT-G quick programming guide. Available: http://www.legoengineering.com/nxt-g-quick-guide/

SAll about TRIK: TRIK Studio. Available: http://blog.trikset.com/p/trik-studio.html

SROBOLAB quick guide. Available: http://www.legoengineering.com/robolab-quick-guide/

"LabVIEW System Design Software - National Instruments. Available: http:/www.ni.com/labview/

8Simulink - Simulation and Model-Based Design. Available:
http://www.mathworks.com/products/simulink/

*MINDSTORMS EV3 — Products. Available: http://www.lego.com/en-us/mindstorms/products/

0gcratchDuino — Magnetic Robot Construction Kit. Available: http://www.scratchduino.com/
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Another interesting detail of our work is the application of DSM-aproach for imple-
mentation of visual editor: it is entirely generated by QReal DSM-platform [7], [8]
without even a line of code written. We also take into consideration the popularity of
Brooks' Subsumption Architecture [9] which is still mainstream approach to design
of complex robotic controllers [1], [2], [4], [10] despite it was proposed 30 years ago.
Brooks' Subsumption Architecture and some other are conveniently expressed in our
language, they are discussed in section 3.

The remainder of a paper is organized as follows. An overview of robotics VPLs and
DFVPLs is presented in section 2. Section 3 provides some general thoughts on how
some widely used robotic behavioural architectures are expressed in our language. A
detailed description of our language is given in section 4. Section 5 demonstrates two
typical robotic controllers expressed in our language. The most important details of
implementation are discussed in section 6. Finally, the last section concludes the pa-
per and discusses possible directions for future work.

2. Similar Tools

Robot programming environments can be divided into three categories: educational,
which allows to program small educational robotic kits; industrial, which have a rich
toolkit for creating large and complex robotic controllers; academic, which imple-
ment new interesting ideas, however they are often unavailable for downloading or
unusable.

Educational visual environments are for example NXT-G and ROBOLAB for LEGO
MINDSTORMS NXT kit, EV3 Software for the Lego Mindstorms EV3 kit, TRIK
Studio for NXT, EV3 and TRIK. Those environments simplify solving primitive ro-
bot control tasks like finding a way out of the maze and driving along the line using
light sensors, which makes the process of learning the basics of programming and
robot control easy. But their simplicity often bounds the flexibility of the language.
Visual languages of all mentioned systems are based on control flow model.

There is also a number of well-known visual robotic programming environments of
industrial level. For example, general-purpose LabVIEW from National Instruments
with the DFVPL G, programming environment Simulink developed by MathWorks
for modelling different dynamic models or control systems. Those products offer a
huge set of models and libraries to create control systems, test benches, real-time sys-
tems of any complexity, using model-driven approach. LabVIEW provides oppor-
tunity for programming small robots. There are lots of examples of applying Lab-
VIEW in education [11], [12], but much more often adaptations like Robolab are used
in educational process. It should be noted that those environments are distributed un-
der the commercial license.

Another example of an visual robotics industrial system is the Microsoft Robotics
Developer Studio (MSRDS) [13], which is free for academic purposes and allow to
create distributed robotic systems on DFVPL. MSRDS officially supports a large set
of robotic platforms, LEGO NXT [14] in particular (however, the autonomous mode
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for NXT is not supported). MSRDS has the ability of manual integration with custom
robotic platforms, but unhappily is not maintained since 2014.

There is a lot of scientific research has done in this area, e.g., dissertation [1] describes
a visual programming module for expressing robotic controllers in terms of extended
Moore machines, [3], [4] describe visual environment for occam-z language and
Transterpreter framework, and its usage in education and swarm robotics. Article [5]
describes DFVPL for beginners, which is pretty close to a one we introduce here.
However at the moment RuRu is under development, it has pretty limited functional-
ity and even unavailable for download.

3. Robotic Behavioural Architectures

The task of creation complex and scalable robotic controller is indeed a non-trivial
task. Starting from middle 80's many researchers have attempted to solve this problem
and a number of behavioural robotic architectures were proposed [18]. Those ap-
proaches are quickly became popular in robotics community and they are still actual.
For example, the original work that introduced Brooks' Subsumption Architecture [9]
is one of the most cited works in the entire robotics domain. We believe that the de-
scription of modern language for programming robotic controllers should contain at
least general thoughts on how those architectures may be expressed in it.

A controller built on Brooks' Subsumption Architecture is decomposed into a hierar-
chy of levels of competence where each new layer describes a new feature of robot's
behaviour. Levels are "ordered"” upside-down, the higher levels describe more "intel-
ligent" behaviour of robot. Higher levels depend on lower ones but not vice versa, so
failures of higher levels do not imply the failure of lower. This is important feature
for mobile robotics, e.g. if robot's gripper was damaged the controller is still able to
deliver robot to its base. Levels of responsibility are expressed as a set of "behaviours"
running concurrently and interacting with each other via channels of suppression and
inhibition. Using them, higher levels can suppress the activity of lower ones thus cor-
recting the behaviour of the whole system.

Brooks' in his original work offered to express behaviours in terms of state machines.
Each layer implements some simple logic of transformation sensor inputs into im-
pulses on actuators. Dataflow languages are obviously as suitable as state machines
for expressing such behaviours. In our language each behaviour can be represented
as "black box" described by separate subprogram. Also, our language contains Sup-
pressor and Inhibitor elements for layers communication. Levels can be invoked con-
currently, so we can conclude that our language allows the convenient expression of
controllers built with Subsumption Architecture. That is demonstrated by an example
in section 5.

Connell's Colony Architecture [15] is a very similar to Brooks' one, but solves some
scalability issues of Subsumption Architecture. It also decomposes the controller into
a number of communicating concurrent levels, but they are unordered. The other dif-
ference is an absence of inhibition channel, data inhibition should be implicitly ex-
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pressed by predicated in layers. Our language does not force any order between lay-
ers, predicative inhibition can be implemented simply with Filter block. So Colony
Architecture is also well-expressed in our language.

There also exist Arkin’s Motor Schema [16] and Rosenblatt’s Distributed Architec-
ture for Mobile Navigation (DAMN) [17] which are compatible with our language,
but the detailed descriptions will be omitted here. General ideas on their implemen-
tation on occam-rz language can be found in [18], we believe that those ideas will
suffice in the context of this paper. The complete research of expressing behavioural
architectures in our language is a topic for separate paper.

4. Language Description

Evolution of a domain-specific modeling (DSM) tools allows to quickly create a fairly
sophisticated visual programming languages [19]. TRIK Studio programming envi-
ronment is an example of a system that was created using DSM-based approach on
QReal platform [7], [8]. Basing on an industrial experience of TRIK Studio develop-
ers we decided to create the visual editor of our language on QReal platform.
Program on DFVPL is a set of blocks and flows that connect blocks. DFVPL blocks
process incoming tokens and emit resulting data into the output data flows. Blocks in
our language can be divided into several groups that are described below. Some
blocks require to specify information on textual language. The language we use is a
statically typed dialect of Lua.
»  Control blocks that implement basic algorithmic constructions (conditions,
loops, etc).
o ConstValue and RandomValue blocks that are responsible for genera-
tion of a random number or a predetermined value of any type.
o Loop, If, Switch. These blocks implement general control flow algorith-
mic constructions in dataflow style. Loop is an entity which emits a se-
quence of numbers for a given amount of times. If checks the condition

specified on a textual language and sends them to True or False chan-
nel. Switch successively checks guard conditions and if it is evaluated

as true sends incoming data to corresponding channel.

o Function block, which allows to process of the input data in a textual
language. Most usually this block is used for mathematical processing
of data.

o FinalBlock stops the execution of program when receiving any data.

o Subprogram for reusing the code. Double-click on subprogram block
opens new visual editor tab with an implementation of this subprogram.
Contents of that tab can be then edited by user in exactly the same way
he edits the main diagram.

o  GetSetVariable — purely practical block for setting value of some global
variable or emitting it into output flows.
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o

o

Wait block delays data processing.

DelayAndFilter is the extension of the previous block adding the filter-
ing condition and checking the amount of emitted data validated by con-
dition.

Fork, EndFork blocks that provide an ability of invoking code in plat-
form-specific execution units. See section 6 for details.

Drawing. Blocks for drawing on display of the robot and on the floor in
simulator mode.

(e]

PaintSettings defines current background color, thickness and color of
pen and color and style of the brush that draw graphical primitives.
ShapePainter, SmilePainter, Text are used for drawing some shape, text
or smile on robot's display.

Clear block removes all graphics from robot's display when receiving
any token.

Pen block puts down or raises the marker for drawing the robot's trace
on the "floor" of 2D simulator.

Flow manipulation. These elements provide opportunity to manipulate data,
which flow between blocks.

@]

InPort, OutPort emit tokens that come into some instance of Subpro-
gram block into a diagram implementing it and similarly redirect data
from subprogram implementation into output flows of active instance
of Subprogram block.

Supressor, Inhibitor inhibit or replace token of some flow with tokens
of another. These, Subprogram and Fork blocks provide a compatibility
with the Brooks' Subsumption Architecture.

Zip, Unzip provide an opportunity to gather data from several Flows into
one and vice versa.

Actions provide an ability to query and modify state of robot's input and out-
put devices.

o

Sensor continuously emits data from specified sensor, e.g. infrared,
light, etc.

Servo, Motors process received data and send impulses to robot actua-
tors.

Encoders block sets the motors tacho limit when receiving data and con-
tinuously emits encoder values into output flows.

SendMessage, ReceiveMessage responsible for the coordination of a
group of robots.

Say, PlayTone, LED responsible for managing speakers and LED lights.
RemoveFile, WriteToFile, ReadFile implement working with file sys-
tem.
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o InitCamera, DetectByVideo, StreamingNode wrap some algorithms of
computer vision.
o PortBlock provides an ability to write low-level to some port of the ro-
bot.
o SystemCall responsible for the command execution by command line
interpreter, e.g. token "reboot" will reboot robot.
o Gamepad reads data from the operator's control device, e.g. gamepad,
and emits it.
These blocks are enough to express a pretty wide range of the robotic controllers of
varying complexity. If several blocks emitting data from one input device are met
only one of them is active. That detail distinguishes our tool from other implementing
data flow paradigm, for details see section 6. For example, figure 1 shows diagram
with Motors, ConstValue, Encoders, Flows where Encoders block is presented twice.
When interpretation started ConstValue emits data to Motors and Encoders (a) emits
a value of a tacho counter. When block Encoders (b) receives some data and thus
nullifies encoder value, at that moment Encoders (a) stops emitting tokens.

a) b}

@._ ___"Some blocks",, &
¢ d)

[~

a2

Fig. 1. Block with many representations but only one of them can be active. a,b — Encoders,
¢ — ConstValue, d — Motors.

shows diagram with Motors, ConstValue, Encoders, Flows where Encoders block is
presented twice. When interpretation started ConstValue emits data to Motors and
Encoders (a) emits a value of a tacho counter. When block Encoders (b) receives
some data and thus nullifies encoder value, at that moment Encoders (a) stops emit-
ting tokens.

One important detail about our language is that it explicitly supports control flow
model, that is important for educational goals. On figure 1 ConstValue and Motors
have incoming and outgoing "arrows", which are used to connect control flow data.
For example Motors block emits data to control flow channel when handle incoming
data and ConstValue emits its value when receives control flow token.
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Flows may be pinned to a block on left, right and bottom side, which are highlighted
when user edits block (see Fig. 2). Also block may contain text fields, e.g. on figure
2 user entered textual condition.

@ - o~
*

{ data=0

FALSE

hn-——-——J
vars(]

Fig. 2. Showing and editing of block.

5. Example

Figures 3, 4 show simple PD-regulator which keeps robot on a certain distance from
a wall using infrared sensor.

P

W b = &

e} ———

Fig. 3. Controller for the wall following.

Global variable is used for storing old sensor values. Expressions in Function block
are calculated in upside-down order, results of previous expressions are available on
lower levels. Each level emits resulting token into a corresponding flow, in our ex-
ample two flows are connected directly to motors control block.

&.

Fig. 4. Simulation process of the wall following.
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Let's describe more complex robotic controller. We have the robot equipped with two
power motors and two frontal infrared sensors positioned at an angle of 30 degrees
on either side of the longitudinal line of symmetry of the robot. Let's consider the
robot control system that manages robot wandering in space and avoiding frontal col-
lisions. But at the same time it allows manual control with gamepad. We divide the
problem into three levels responsibility using Subsumption Architecture. The first
will be responsible for aimless movement of the robot. The second is responsible for
collision avoidance: if the robot is too close to a collision, it must avoid the obstacles
preventing robot wandering. The third will be responsible for maintenance of the user
queries, the user obtains a full control, the previous levels are suppressed.

Figure 5 shows this decomposition. Each level represented as Subprogram and emits
pulses to actuators. Execution begins with the launch of all levels concurrently. Robot
wanders aimlessly. If the robot is close to the collision, the Collision avoidance level
suppresses the flow with data emitted by Wandering level. If the user starts to manip-
ulate with the gamepad, the data sent suppress levels described above.

-] 1) 5
. < N,
- o 2 . |

4

N,

&
)

=)

Fig. 5. Controller code with three competencies level. 1 — Human control level. 2 — Collision
avoidance level. 3 — Wandering level. 4 — Supressor block for levels 2,3. 5 — Supressor block
for levels 1 and 2,3. 6 — Unzip block. 7 — Motors block.

Each level is the simple robot controller without direct connection to actuators. Wan-
dering (first level) continuously generates random number for each robot actuator,
and sends its outside as array (see Fig. 6). The execution of this level starts with InPort
which emits data to activate two RandomValue blocks. Each RandomValue generate
random number and emits it to Wait block which after some predefined delay sends
it to Zip block which produces an array storing output values.

The second level is needed to prevent collisions (see Fig. 7). It continuously gathers
data by Zip from two infrared Sensors and checks if collision threatens (continuously
after some delay by DelayAndFilter). If the collision can occur values sent for actua-
tors to evade obstacles are calculated by Function. Function block emits it to Zip
block, which produces an array storing output values.
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The third level is responsible for gamepad control (see Fig. 8). Gamepad emits tokens

describing current joystick and buttons state. For simplicity, we assume that pressing
any button on gamepad will terminate the robot control program (by FinalBlock). The
tokens are converted from the Gamepad to the array of pulses for actuators by Func-

tion block, which emits it through OutPort block.

o

2 o o)

1) | :
S - p— )
o e

Fig. 6. Walking. 1 — InPort block. 2,3 — RandomValue blocks. 4,5 — Wait blocks. 6 — Zip
block. 7 — OutPort block.

4)

K(({* B 3) ? JE—
}((({l - fJ !.#::-.‘ — . y

S

Fig. 7. Collision avoidance. 1,2 — Sensor blocks. 3,6 — Zip block. 4 — DelayAndFilter block.
5 — Function block. 7 — OutPort block.Human control. 1 — Gamepad block. 2 — FinalBlock. 3
— Function block. 4 — OutPort block.
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Fig. 8. The third level.

6. Implementation

The system is implemented as two plugins for TRIK Studio. The first one describes
the visual language and provides visual editor for our system. It contains the meta-
model of dataflow visual language and entirely generated by QReal DSM-platform.
Plugged into TRIK Studio this module provides fully operational visual editor with
all advantages of TRIK Studio control flow editor like modern-looking user interface,
ability to create elements with mouse gestures, different appearances of links and so
on. The time spent on the development of this plugin (not considering discussing and
designing the prototype of visual language on paper) roughly equals three man-days.
The benefit on exploiting the DSM-approach is obvious, the development of the sim-
ilar editor from scratch would have been taken vastly more time.

The second plugin contains implementation of dataflow diagrams interpreter. Inter-
preter will transform given program, which is drawn in editor (provided by first
plugin) into a sequence of the commands sent to a target robot (see Fig. 9). The target
robot can be one of the supported in TRIK Studio infrastructure: Lego NXT or EV3
robot, TRIK robot, TRIK Studio 2D simulator or V-REP 3D simulator [20]. Com-
mands are sent via high-level TRIK Studio devices API, a part of it presented at Fig.
10.
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Fig. 9. The general architecture of the system.
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Fig. 10. Partial architecture of devices used in dataflow interpreter.

The general architecture of interpreter plugin is presented at Fig. 11. Interpreter
traverses given dataflow diagram, validates and prepares it for interpretation process.
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For each visited dataflow block implementation object is instantiated. Implementa-
tion objects are written in C++. Instantiation is performed by corresponding factory
object. Implementation objects are then subscribed each to other like they are con-
nected by flows on diagram, publish-subscribe pattern is used here. The set of initial
blocks is determined next, those are blocks without incoming flows. After all that
done preparation phase is complete and diagram starts being interpreted.

|nll.'r|:|n.'lm' | { B|D':ksfac1.-nry

#

Validatar Block

|
DwvicoBlock | | IntegralConstant

'.I'r.wé.rstr FilterBlock

]n'hi:imr‘ R

MotorsBlock || SensorBlock

‘GJnmp.‘ldElmk | o
ooo

Dl’."\'it!‘!r

Fig. 11. The general architecture of dataflow interpreter plugin.

Interpretation process is not as straightforward as in most asynchronous dataflow en-
vironments. Usually components of dataflow diagram are executed concurrently, on
different threads, processes or even machines (that is actively exploited, for example,
by Microsoft Robotics Developer Studio where dataflow diagram is deployed into a
number of web-services). That is a pretty convenient way to invoke dataflow dia-
grams on a powerful hardware, but not a case when we talk about embedded devices.
In our case we deal exactly with embedded devices (Lego NXT, EV3, TRIK, Arduino
controllers), so we propose here another way of executing dataflow diagrams. The
main idea is to introduce global message queue and event loop for messages pro-
cessing. When token is published by some block it is enqueued into messages queue
and waits for its turn to be delivered to subscribers (Fig. 12). In fact thus we flatten
the execution, convert concurrent way of dataflow interpretation to a pseudo-concur-
rent one where we schedule invocation order on our own. It must be noted that this
mechanism is similar to events propagation system of Qt framework. That is actively
exploited in our implementation, where message processing is completely performed
by QEventLoop class and tokens delivering is done by Qt signal/slot system in
QueuedConnection mode.
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Fig. 12. Proposed mechanism of pseudo-concurrent dataflow interpretation.

Flat execution of dataflow diagram poses a number of small problems, one of them
will be discussed here. Input device blocks (for example blocks publishing tokens
from ultrasonic sensors) are constantly emitting tokens to subscribers. Subscribers
transmit tokens to a next one (possibly in modified state) and so on. Thus there ap-
pears a chain of data processing. In our language that chain can activate control flow
ports of blocks "reviving" them, so the control flow model is implicitly supported in
our language (this is important in educational reasons). If later in this chain same
input device block will be met then execution will come in a counter-intuitive way.
Such conflicts are ruled out with a simple heuristic that among all the blocks sharing
one physical device only one can be active and that is the last activated one. Thus
when the execution token comes into some device block it immediately "deactivates”
conflicting ones. Other problems like messages balancing (in case when some block
"flooding" the whole messages queue) will not be discussed here.

The last thing we should remark here is the presence of Fork block in our language
that usually is not provided by dataflow languages. Flattened model seems to work
well on embedded devices, but sometimes users still need to use concurrent execution
(for example for executing layers in Subsumption architecture). For that reason Fork
block is introduced, it forks the execution into a number of platform-specific execu-
tion units (for example pthreads on UNIX or tasks on NXT OSEK). This block can
be regarded as low-level control of execution process. It should be also marked that
this block almost has no sense in interpretation mode (because execution itself is per-
formed on desktop machine with only sending primitive commands to robot), but will
be very useful in future works when autonomous mode will be introduced.

7. Conclusion and Discussion

In this work, we presented the prototype of dataflow language for programming dif-
ferent robotic kits (LEGO MINDSTORMS NXT, LEGO MINDSTORMS EV3,
TRIK). The system provides ability to interpret diagrams on 2D- an 3D-simulators
and real robotic devices. Here, we also propose an approach for executing dataflow
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diagrams on embedded devices. The language implicitly supports control flow model
for educational purposes. It is also convenient for expressing typical robotic control-
lers architectures which is demonstrated on example.

The implemented system can be regarded as a platform for future investigations. First
of all, autonomous mode of work will be implemented. That will be done through
code generation into a number of textual languages already supported by TRIK Studio
(NXT OSEK C for Lego, bytecode for EV3, JavaScript, F# [21] and Kaotlin for
TRIK). We are also interested in academical research. First of all a formal semantics
of our language should be expressed for applying various formal methods of program
analysis. Another branch of research will be directed into a DSM-branch, here we
want to consider an ability of dynamic language metamodel generation from specifi-
cations of available modules of robotics middleware (like ROS [22] or Player [23]).
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O6pa3oBaTenbHbIN BU3yanbHbIM NOTOKOBbIN A3bIK AN
nporpamMmmuMpoBaHusi po6oToB

I A. 3umun <zimin.grigory@gmail.com>
H.A. Moposunos <mordvinov.dmitry@gmail.com>
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Abstract. BusyanbHsle MpeIMETHO-OPHEHTHPOBAHHbIC A3BIKH 3a4aCTyI0 HMCIOT HU3KHU#T TOpOr
BXOKAEHUS: AaXKe YUEHHKH LIKOJ U AOIIKOJBHBIX YUPEXKICHUH MOTYT IPOrpaMMUpPOBATh Ha
TaKWX S3bIKAX, OTIEPUPYS BU3YaIbHBIMU MOJCISIMU. DTOT (haKT HaIIIeJI IMHPOKOE IPUMEHEHHUE
B 00pa30BaTeIbHON POOOTOTEXHHUKE, T/ie OOJIBIIHMHCTBO HCIIOIB3YEMBIX Cpell pa3paboTKH Oc-
HOBAHO Ha BH3YaJbHBIX sI3bIKaxX. JlaHHas paboTa ONMUCHIBAET HOBBII IIOTOKOBBIH BU3yalIbHBIN
SI3BIK IIPOrPAMMHUPOBAHHSI pOOOTOB JUISl PaCIPOCTPAHEHHBIX BCTPANBAEMBIX POOOTOTEXHUYE-
ckux miarpopm. OUeBUIHO, YTO CIIOXKHBIE HOTOKOBbIC BU3YaJIbHbIE S3bIKH TPYIIHBI UL IOHHU-
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Manus. L{enbro Hamme# paboTsl OBUIO CO3/1aHNE MHCTPYMEHTA, TIPECTaBIAIONEro coooi mepe-
XOJIHYIO «CTYIIEHb)» MEXIY JIETKOBECHEIMI 00pa30BaTeIbHBIMI CPEaMy IPOTPaMMHUPOBAHYS,
KOTOpBIE OOBIYHO MPEJOCTABISIIOT SI3BIKM, OCHOBAaHHBIE Ha MOJEIH MOTOKA YIpaBICHHS, U
CJIOXHBIMH UHIYCTPHAIBHBIMU CPEIaMH, KOTOPBIE, B OCHOBHOM, NPENOCTABIAIOT S3BIKH, OC-
HOBaHHbIE Ha MOJIENM TMOTOKOB JAaHHBIX. B cTaThe mpuBOAMTCSA CpaBHEHHE LIMPOKO Paclpo-
CTPaHEHHBIX Cpell IPOrpaMMUPOBAHUSI POOOTOB C OMHMCAaHHOH B padoTe cpenoid. Takxe B pa-
60Te MpeACcTaBIeH KPAaTKHUi 0030p HOIYJSIPHEIX MOBEIEHIECKUX apXUTEKTYP JUIS TOCTPOCHUS
CJIOXHBIX CHCTEM YIpaBieHHs poOOTaMHM, TAaKHX KaK apXHTeKTypa kareropuii P. Bpykca n
«Kononus» JI. KonHens, 1 IpuUBeAEHBI UJECU UX BBIPAXKEHHS B HOBOM S3bIKE IPOrPAMMHPOBa-
HUS. SI3BIK OBIT CO31aH ¢ MOMOIIBIO IPEIMETHO-OPHEHTHPOBaHHOTO noaxoaa. OH mpexocTas-
JSIET BO3MOXKHOCTh COBMeIATh B ceOe J1Be MOJIEH HCIIOMHEHHMS: MTOJIb30BaTeIb MOXKET IPO-
TpaMMHpPOBATh Kak B TEPMUHAX ITOTOKOB JaHHBIX, TAK U B TEPMHUHAX MTOTOKA yIPaBIeHUsS. MBI
CUHTAEM, 4TO 3TO BaXKHO B 00pa30BaTeIbHBIX IeNsX. [IporpaMMbl Ha HalleM sI3bIKE COCTOAT U3
MHOJKECTBA «OJIOKOBY» — BU3yalbHBIX MPECTaBICHUH MPOIIECCOB TpaHC(HOPMAIIMH JaHHbIX, U
«CBsI3ei», KOTOPbIe BU3yalIU3UPYIOT IMOTOKH JaHHBIX MEXAYy HUMH. B kauecTBe ampobarmu
CpelIbl CO3/IaHbI Pa3IMYHbIE 110 CJIOKHOCTH MPOrPaMMEbl yIIPaBICHUS] poOOTaMu.

Keywords: moTokoBbie sI3bIKH, IIOTOKH JaHHBIX, BU3yaJIbHOE IPOrpaMMHUpPOBaHKe, 0Opa3oBa-
TeNbHast POOOTOTEXHUKA, IPEIMETHO-OPHEHTHPOBAHHOE MOICITMPOBAHNE, IIOBEACHUECKUE ap-
XHUTEKTYPBL.

DOI: 10.15514/ISPRAS-2016-28(2)-3

Jnsa umrupoBanusi: 3ummH [A., MopasunoB JI.A. OOpa3zoBaTenbHBIA BH3YaJTbHBII
MOTOKOBBIX SI3BIK ISl porpamMupoBanus podotos. Tpyner UCIT PAH, Tom 28, Bem. 2, 2016
T, cTp. 45-62 (Ha anmmmiickom). DOI: 10.15514/ISPRAS-2016-28(2)-3

Cnucok nutepatypbl

[1]. Banyasad, O. (2000). A Visual Programming Environment for Autonomous Robots.

[2]. Simpson, J., Jacobsen, C. L., & Jadud, M. C. (2006). Mobile robot control. Communi-
cating Process Architectures, 225.

[3]. Simpson, J., & Jacobsen, C. L. (2008, September). Visual Process-Oriented Programming
for Robotics. In CPA (pp. 365-380).

[4]. Posso, J. C., Sampson, A. T., Simpson, J., & Timmis, J. (2011). Process-Oriented Sub-
sumption Architectures in Swarm Robotic Systems. In CPA (pp. 303-316).

[5]. Diprose, J. P., MacDonald, B. A., & Hosking, J. G. (2011, September). Ruru: A spatial
and interactive visual programming language for novice robot programming. In Visual
Languages and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium on (pp. 25-
32). IEEE.

[6]. Johnston, W. M., Hanna, J. R., & Millar, R. J. (2004). Advances in dataflow programming
languages. ACM Computing Surveys (CSUR), 36(1), 1-34.

[7]. KyzenkoBa A.C., Hdepunacka A.O., Tapan K.C., ITogxomaes A.B., Jluteuxos 10.B.,
Bprikenn T.A. Cpexnctsa OBICTpOi pa3pabOTKH MPEeAMETHO-OPHEHTHPOBAHHBIX PEIICHUH
B MetaCASE-cpenctse QReal. Hayuno-mexuuueckue éedomocmu CII6I'TTY, 142

[8]. Kuzenkova A., Deripaska A., Bryksin T., Litvinov Y., Polyakov V. QReal DSM platform-
An Environment for Creation of Specific Visual IDEs. INENASE (pp. 205-211) 2013.

[9]. Brooks, R. A. (1986). A robust layered control system for a mobile robot.Robotics and
Automation, IEEE Journal of, 2(1), 14-23.

61



Zimin G.A., Mordvinov D.A. Visual Dataflow Language for Educational Robots Programming. Trudy ISP RAN /Proc.
ISP RAS, 2016, vol. 28, no 2, pp. 45-62.

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].
[18].

[19].

[20].

[21].

[22].

[23].

62

Proetzsch, Martin, Tobias Luksch, and Karsten Berns. "The behaviour-based control ar-
chitecture iB2C for complex robotic systems." KI 2007: Advances in Artificial Intelli-
gence. Springer Berlin Heidelberg, 2007. 494-497.

Erwin, B., Cyr, M., & Rogers, C. (2000). Lego engineer and robolab: Teaching engineer-
ing with labview from kindergarten to graduate school. International Journal of Engineer-
ing Education, 16(3), 181-192.

Gomez-de-Gabriel, J. M., Mandow, A., Fernandez-Lozano, J., & Garcia-Cerezo, A.
(2011). Using LEGO NXT mobile robots with LabVVIEW for undergraduate courses on
mechatronics. Education, IEEE Transactions on, 54(1), 41-47.

Kuzenkova, A., Deripaska, A., Bryksin, T., Litvinov, Y., & Polyakov, V. (2013). QReal
DSM platform-An Environment for Creation of Specific Visual IDEs. In ENASE (pp. 205-
211)

Kim, S. H., & Jeon, J. W. (2007, October). Programming LEGO Mindstorms NXT with
visual programming. In Control, Automation and Systems, 2007. ICCAS'07. International
Conference on (pp. 2468-2472). IEEE.

Connell, Jonathan H. A colony architecture for an artificial creature. No. Al-TR-1151.
MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE
LAB, 1989.

Arkin, Ronald C. Motor schema based navigation for a mobile robot: An approach to
programming by behavior. Robotics and Automation. Proceedings. 1987 IEEE Interna-
tional Conference on. Vol. 4. IEEE, 1987.

Rosenblatt, Julio K. DAMN: A distributed architecture for mobile navigation. Journal of
Experimental & Theoretical Artificial Intelligence 9.2-3 (1997): 339-360.

Simpson, Jonathan, and Carl G. Ritson. Toward Process Architectures for Behavioural
Robotics. CPA. 2009.

Ko3uos, [Imutpuii BnagumupoBnd. OCHOBBI BU3yalbHOTO MOJeUpoBanus. M.: H30-60
HUnmepnem ynusepcumema ungpopmayuonnvix mexuwonoeui, UHTYUT.py, BUHOM, Jla-
bopamopus 3uanuil. 2008.

Rohmer, Eric, Surya PN Singh, and Marc Freese. V-REP: A versatile and scalable robot
simulation framework. Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ Interna-
tional Conference on. IEEE, 2013.

Kirsanov, Alexander, lakov Kirilenko, and Kirill Melentyev. Robotics reactive program-
ming with F#/Mono. Proceedings of the 10th Central and Eastern European Software
Engineering Conference in Russia. ACM, 2014.

Quigley, Morgan, et al. ROS: an open-source Robot Operating System. ICRA workshop
on open source software. Vol. 3. No. 3.2. 2009.

Gerkey, Brian, Richard T. Vaughan, and Andrew Howard. The player/stage project: Tools
for multi-robot and distributed sensor systems. Proceedings of the 11th international con-
ference on advanced robotics. VVol. 1. 2003.



